JPH0447455B2 - - Google Patents

Info

Publication number
JPH0447455B2
JPH0447455B2 JP62041752A JP4175287A JPH0447455B2 JP H0447455 B2 JPH0447455 B2 JP H0447455B2 JP 62041752 A JP62041752 A JP 62041752A JP 4175287 A JP4175287 A JP 4175287A JP H0447455 B2 JPH0447455 B2 JP H0447455B2
Authority
JP
Japan
Prior art keywords
chamber
light source
reaction chamber
reaction
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62041752A
Other languages
Japanese (ja)
Other versions
JPS62216223A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP4175287A priority Critical patent/JPS62216223A/en
Publication of JPS62216223A publication Critical patent/JPS62216223A/en
Publication of JPH0447455B2 publication Critical patent/JPH0447455B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体処理装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to semiconductor processing equipment.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来プラズマCVD装置としては、第1図に示
された構造がそと代表的なものであり、以下にそ
の概要を述べる。
The structure shown in FIG. 1 is a typical conventional plasma CVD apparatus, and its outline will be described below.

反応室2内に抵抗加熱ヒーターユニツト6を負
電極を兼ねるように設け、この負電極上に被形成
面を有する基板5を配置している。さらにこの負
電極に相対した平行平板型の正電極4を多孔状に
設けている。反応性気体は、15,16,17よ
り流量計13,バルブ14を経由して8の供給側
に至り、正電極4の穴より下方向に噴出し、
13.56MHz等の高周波電源10により、電極間に
電気エネルギが供給され、反応空間にプラズマ放
電が発生し、反応生成物が基板5上に形成され
る。反応性気体は主として基板5の方向へ流れる
が同時に多くの反応生成物が反応室側壁方向に乱
れ拡散し反応容器1の内壁に付着してしまう。さ
らに基板5に供給する熱は抵抗加熱ヒータ6で行
うため、高周波電源の一方は負電極即ち接地側と
しなければならない。このため反応性気体は反応
が強くおきる陽極即ち正電極の穴より噴出し、そ
れがフレークとなつて基板表面に落下してしま
い、ピンホールを誘発してしまうという欠点を有
する。さらにこのプラズマCVD装置は電極に平
行に1まいの基板5を置くのみであるため、多量
生産性に乏しく、さらに不要の反応生成物の排気
系7を基板の外側に設け(基板の下側にはヒータ
が入つている)ているため、基板上で中央部と周
辺部とで被膜の膜厚にバラツキが生じやすく、ま
た被膜成長も十分でなく、0.5〜1Å/秒程度で
あつた。
A resistance heater unit 6 is provided in the reaction chamber 2 so as to serve as a negative electrode, and a substrate 5 having a surface to be formed is placed on the negative electrode. Furthermore, a parallel plate type positive electrode 4 facing this negative electrode is provided in a porous manner. The reactive gas reaches the supply side of 8 from 15, 16, and 17 via the flow meter 13 and valve 14, and is ejected downward from the hole of the positive electrode 4.
Electrical energy is supplied between the electrodes by a high frequency power source 10 such as 13.56 MHz, plasma discharge is generated in the reaction space, and reaction products are formed on the substrate 5. The reactive gas mainly flows toward the substrate 5, but at the same time, many reaction products are turbulently diffused toward the side wall of the reaction chamber and adhere to the inner wall of the reaction chamber 1. Furthermore, since the heat supplied to the substrate 5 is performed by the resistance heater 6, one side of the high frequency power source must be a negative electrode, that is, the ground side. Therefore, the reactive gas is ejected from the hole in the anode, that is, the positive electrode, where a strong reaction occurs, and the flakes fall onto the surface of the substrate, resulting in the formation of pinholes. Furthermore, since this plasma CVD apparatus only places one length of substrate 5 parallel to the electrode, it is poor in mass productivity, and furthermore, an exhaust system 7 for unnecessary reaction products is provided outside the substrate (on the bottom side of the substrate). (contains a heater), the thickness of the coating tends to vary between the center and peripheral areas on the substrate, and the coating does not grow sufficiently, at about 0.5 to 1 Å/sec.

これらの問題を解決するための装置として、反
応容器内に設けられた供給手段と排気手段とを相
対し、その内部に基板を保持するホルダ(基板保
持用ジグ)を用いて筒状空間を作り、この空間の
内壁のみを実質的に被形成面とすることにより、
プラズマ反応による反応生成物をこの空間より反
応容器内の外空間への放出を防止し、結果とし
て、形成された被膜に対してピンホールの発生原
因となる反応生成物のフレークが発生することを
防止し、さらには装置のメンテナンスを容易にす
ることができる装置が考えられた。この装置は筒
状空間に被形成面を1つの側に有する基板を裏面
を互いに密接して、一定の距離例えば2〜6cm代
表的には3〜4cm離して平行に配列し、基板の被
形成面を重力にそつて配向させ、この基板が林立
した筒状空間においてのみプラズマ放電を行なわ
しめるため、反応性気体を選択的に導く構造とし
て反応性気体の収集効率を従来の1〜3%よりそ
の10〜30倍の20〜50%にまで高めている。
As a device to solve these problems, a cylindrical space is created using a holder (substrate holding jig) that holds the substrate inside the reaction vessel, with the supply means and exhaust means provided in the reaction vessel facing each other. By using only the inner wall of this space as the surface to be formed,
This prevents the reaction products from the plasma reaction from being released from this space into the outside space of the reaction vessel, and as a result, prevents the formation of reaction product flakes that can cause pinholes in the formed film. A device has been devised that can prevent this and further facilitate the maintenance of the device. In this device, substrates having a surface to be formed on one side are arranged in parallel in a cylindrical space with their back surfaces in close contact with each other and separated by a certain distance, typically 3 to 4 cm. In order to orient the surface along the gravity and perform plasma discharge only in the cylindrical space where this substrate stands, the structure selectively guides the reactive gas, increasing the collection efficiency of the reactive gas from 1 to 3% compared to the conventional method. It has been increased to 20-50%, 10-30 times that amount.

この装置は、複数の基板に対して被膜を形成す
るため、基板の加熱はランプを用いて行う方法が
とられた。しかしランプを反応室内に設けること
は、ランプに被膜が形成されてランプの光量が減
少する等の理由によつて避けなければならず、こ
のためこの装置の場合、基板の加熱は反応室と光
源室とを透明な窓板材で仕切り、光源室に赤外線
ランプを設け、そのランプで反応室内の基板を加
熱する方法を採用した。
Since this device forms coatings on a plurality of substrates, a lamp is used to heat the substrates. However, installing a lamp inside the reaction chamber must be avoided for reasons such as the formation of a film on the lamp and the reduction of the lamp's light intensity.For this reason, in the case of this device, the heating of the substrate is done between the reaction chamber and the light source. The chamber was separated from the reaction chamber by a transparent window plate, an infrared lamp was installed in the light source chamber, and the substrate inside the reaction chamber was heated by the lamp.

しかもこの場合にも、また新たな問題が生じ
た。それは反応を行わせる際に反応室内の圧力を
下げると、光源室と反応室との間に圧力差が生
じ、その圧力差のために窓板材が破損してしまう
という問題である。
Moreover, a new problem arose in this case as well. The problem is that when the pressure inside the reaction chamber is lowered during reaction, a pressure difference is created between the light source chamber and the reaction chamber, and the window plate material is damaged due to this pressure difference.

本発明は、光源室と反応室とを窓板材で仕切る
構造の装置において問題となる、光源室と反応室
との間に生じる圧力差をなくすことを目的とした
ものである。
The present invention aims to eliminate the pressure difference that occurs between the light source chamber and the reaction chamber, which is a problem in an apparatus having a structure in which the light source chamber and the reaction chamber are partitioned by a window plate material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の目的を、減圧状態に保持するこ
とのできる反応室と、前記反応室に透光性の平板
な窓板材を介して内部に加熱用の光源ランプを有
する光源室を具備した装置であつて、前記反応室
と前記光源室とをバルブを介して接続し、前記反
応室の圧力と前記光源室の圧力をほぼ等しい圧力
に調節することを可能にしたことにより達成させ
たものである。
The present invention has achieved the above-mentioned object by providing an apparatus comprising: a reaction chamber capable of maintaining a reduced pressure state; and a light source chamber having a heating light source lamp inside the reaction chamber via a transparent flat window plate material. This is achieved by connecting the reaction chamber and the light source chamber via a valve, making it possible to adjust the pressure in the reaction chamber and the pressure in the light source chamber to approximately equal pressures. be.

このような構造にすることにより、反応室内を
減圧にする時には前記バルブを開けて前記光源室
内を同時に減圧し、また反応室内を大気圧にする
時には、同様に前記バルブを開けて前記光源室内
を同時に大気圧にすることができ、さらには反応
室内に反応性気体を供給する時には、前記バルブ
を閉じて前記光源室内への反応性気体の流入を防
止することを可能にしたものである。
With this structure, when the pressure inside the reaction chamber is reduced, the valve is opened to simultaneously reduce the pressure inside the light source chamber, and when the inside of the reaction chamber is brought to atmospheric pressure, the valve is similarly opened and the pressure inside the light source chamber is reduced. At the same time, the pressure can be set to atmospheric pressure, and furthermore, when supplying reactive gas into the reaction chamber, the valve can be closed to prevent the reactive gas from flowing into the light source chamber.

このように光源室をほぼ反応室と等しい圧力に
することにより、窓板材を大面積とすることが可
能となり大面積、大容量の反応空間を均一に加熱
することができるという特徴を持つ。
By setting the light source chamber to approximately the same pressure as the reaction chamber in this manner, it is possible to make the window plate material large in area, and the feature is that a large area and large capacity reaction space can be uniformly heated.

以下図面を用いて本発明を詳細に説明する。 The present invention will be explained in detail below using the drawings.

〔実施例〕〔Example〕

第2図に従つて本発明の半導体処理装置を示
す。
According to FIG. 2, a semiconductor processing apparatus of the present invention is shown.

反応室20は反応性気体を供給する系34と真
空排気する系35を具備する。
The reaction chamber 20 is equipped with a system 34 for supplying a reactive gas and a system 35 for evacuation.

これらの反応性気体は供給系34より供給手段
のノズル(フードともいう)36により下方向に
噴射される。このフードの吹き出し口は1〜2mm
の穴が多数あけられ、全体に均一にふき出すよう
にしてある。さらにこのフードにはプラズマ放電
用の負の電極37を有し、これはリードをへて電
気エネルギ供給用の発振器に至つている。他方の
正の端子は排気手段35のフード上に設けられて
網目状または多孔状の正電極38に接続されてい
る。
These reactive gases are injected downward from the supply system 34 by a nozzle (also referred to as a hood) 36 of the supply means. The air outlet of this hood is 1-2mm.
A large number of holes are drilled to ensure that the water spills out evenly throughout. Furthermore, this hood has a negative electrode 37 for plasma discharge, which leads via a lead to an oscillator for supplying electrical energy. The other positive terminal is provided on the hood of the exhaust means 35 and connected to a mesh-like or porous positive electrode 38.

排気手段35は供給手段34と概略同一形状を
有し、ともに透明石英により作られており、全体
の穴より均一に筒状空間に気体を層流にして排気
口35より真空ポンプに至る。
The exhaust means 35 has approximately the same shape as the supply means 34, and both are made of transparent quartz, and creates a laminar flow of gas uniformly in the cylindrical space through the entire hole, leading to the vacuum pump from the exhaust port 35.

反応性気体は供給口36より下方向に筒状空間
39を経て排気口35に至る。筒状空間は外周を
石英で作り、その内壁に被形成面を有する基板4
0が一定の間〓例えば5cmをとつて互いに裏面を
接して配設されている。
The reactive gas flows downward from the supply port 36 through the cylindrical space 39 and reaches the exhaust port 35 . The cylindrical space has an outer periphery made of quartz and a substrate 4 having a surface to be formed on its inner wall.
While 0 is constant, for example, they are arranged at a distance of 5 cm with their back surfaces touching each other.

2〜10cm好ましくは3〜5cmの一定の間〓をへ
被形成面を概略平行に配置された基板の上部、下
部および中央部さらに周辺部での膜厚の均一性、
また膜質の均質性を促すため、反応室に隣接して
設けられた光源室41,43内に上側の赤外線ラ
ンプ44、下側の赤外線ランプ42として、赤外
線ランプを被形成面方向に設け、さらに少なくと
も上方向および下方向よりランプを互いに90゜曲
げて金メツキされた設置面の反射鏡を有して配置
し、筒状空間93全体の均熱化をはかつた。即ち
10cmまたは電極方向に10〜20cmを有する巾15〜
100cmの基板の多くがその温度分布において、100
〜650℃例えば200±10℃以内好ましくは±5℃以
内とした。
Uniformity of film thickness at the top, bottom, center, and peripheral areas of the substrate with the surface to be formed approximately parallel to each other within a certain distance of 2 to 10 cm, preferably 3 to 5 cm;
In addition, in order to promote homogeneity of the film quality, infrared lamps are provided in the light source chambers 41 and 43 provided adjacent to the reaction chamber, as an upper infrared lamp 44 and a lower infrared lamp 42, in the direction of the surface to be formed. The lamps are bent at 90 degrees from at least the upper and lower sides and are arranged with gold-plated reflecting mirrors on the mounting surface, so that the entire cylindrical space 93 is heated evenly. That is,
Width 15~ with 10cm or 10~20cm in electrode direction
Many of the 100 cm substrates have a temperature distribution of 100 cm.
~650°C, for example, within 200±10°C, preferably within ±5°C.

この加熱用のランプ42,44が設けられてい
る空間と、反応容器内の反応室20とは窓板材で
ある透明石英板45,46によつて仕切られ、反
応生成物が赤外線ランプに至りランプの表面に付
着することを防いでいる。
The space in which the heating lamps 42 and 44 are provided and the reaction chamber 20 inside the reaction container are partitioned by transparent quartz plates 45 and 46, which are window plates, and the reaction products reach the infrared lamp and the prevents it from adhering to the surface.

また光源室と反応室とはバルブを介して接続さ
れている。そのためこの光源室は反応室とほぼ同
じ圧力となるように調整することができる。この
反応容器の2つの圧力調整は、反応性気体を流し
ていない時、例えばオーバーホール用の大気圧に
する時、また真空引をする時、バルブ47を開と
して等圧とし、また反応気体が供給される時は閉
として光源室内に反応性気体が流入することを防
いでいる。
Further, the light source chamber and the reaction chamber are connected via a valve. Therefore, this light source chamber can be adjusted to have approximately the same pressure as the reaction chamber. The pressure of this reaction vessel is adjusted in two ways: when the reactive gas is not flowing, for example, when the pressure is set to atmospheric pressure for overhaul, and when the vacuum is drawn, the valve 47 is opened to maintain the same pressure, and when the reactive gas is supplied When the light source is closed, it is closed to prevent reactive gases from flowing into the light source chamber.

このように光源室41,43を減圧とすること
により石英板45,46を薄く大型化することが
可能となり、反応空間を大きくすることが可能で
ある。
By reducing the pressure in the light source chambers 41 and 43 in this way, it is possible to make the quartz plates 45 and 46 thinner and larger, and it is possible to enlarge the reaction space.

第2図において反応容器はその一方の側に基板
を装填し、減圧処理を行うための第1の予備室1
8を有し、さらに他方に基板、ホルダをとり出す
ための第2の予備室19を有する。第1の予備室
18、反応室20、第2の予備室19の連設部に
は、ゲート弁21,22を設け、基板、ホルダの
反応室中の移動には、これらゲート弁は開とな
り、処理反応中および第1、第2の予備室での基
板の装填時、取り出し時には閉となつている。装
填、取り出し時はともに予備室18,19内で大
気圧とし、ガス系23,24より真空状態から大
気圧に戻すための窒素が供給される。
In FIG. 2, the reaction vessel has a first preparatory chamber 1 for loading a substrate on one side and performing a depressurization process.
8, and further has a second preliminary chamber 19 for taking out the substrate and holder on the other side. Gate valves 21 and 22 are provided in the connection between the first preliminary chamber 18, the reaction chamber 20, and the second preliminary chamber 19, and these gate valves are opened when the substrate and holder are moved within the reaction chamber. It is closed during processing reactions and when loading and unloading substrates in the first and second preliminary chambers. During loading and unloading, the preliminary chambers 18 and 19 are kept at atmospheric pressure, and nitrogen is supplied from the gas systems 23 and 24 to return the vacuum state to atmospheric pressure.

第1の予備室18において、外部より基板、ホ
ルダを装填し、とびら25を閉めて、基板状の吸
着物を加熱真空脱気させるため、石英板28,2
9を介し、赤外線ランプ26,27、真空排気手
段30を有している。この予備室を真空引をする
際に、さらにバルブ31を開として、赤外線ラン
プ26,27を設けた光源室を真空引をした。こ
の後ゲート弁21を開け、予め真空引がされてい
る反応室20内に基板、ホルダを移動させた後ゲ
ート弁21を閉じる。
In the first preliminary chamber 18, a substrate and a holder are loaded from the outside, the door 25 is closed, and the quartz plates 28, 2
9, it has infrared lamps 26, 27 and vacuum evacuation means 30. When evacuating this preparatory chamber, the valve 31 was further opened to evacuate the light source chamber provided with the infrared lamps 26 and 27. Thereafter, the gate valve 21 is opened, and after moving the substrate and holder into the reaction chamber 20 which has been evacuated in advance, the gate valve 21 is closed.

このホルダの第1の予備室より反応室への移動
には、第1の予備室内に設けられたジグ移動用ガ
イドにより移動が行われ、第1の予備室と反応室
両方を真空排気した後、連結部のゲート弁を開け
て行わしめ、またさらに反応室より、反応室内で
被膜が形成された基板およびホルダを、第2の予
備室19を移動する時は、反応室内の反応性気体
を真空引きした後、連結部のゲート弁を開けて、
真空排気がされている第2の予備室に設けられた
ジグ用ガイドにより行われる。
To move this holder from the first preliminary chamber to the reaction chamber, the movement is performed by a jig movement guide provided in the first preliminary chamber, and after both the first preliminary chamber and the reaction chamber are evacuated. , open the gate valve of the connection part, and furthermore, when moving the substrate and holder on which the film has been formed in the reaction chamber from the reaction chamber to the second preliminary chamber 19, remove the reactive gas in the reaction chamber. After vacuuming, open the gate valve of the connection part,
This is carried out using a jig guide provided in a second preliminary chamber that is evacuated.

かかる構造により、反応室内には何らの移動用
のジグ機構がなく、そのため反応室内を単純空間
にすることができ、機構の角部に発生し易いフレ
ークを少なくし、さらにホルダの移動動作により
新たに被膜になつている反応生成物を摺動により
粉末化することによるピンホール発生の原因を防
ぐことができた。
With this structure, there is no jig mechanism for movement inside the reaction chamber, making it possible to create a simple space within the reaction chamber, reducing flakes that tend to occur at the corners of the mechanism, and furthermore, the movement of the holder allows new It was possible to prevent pinholes from occurring due to powdering of the reaction product that had formed into a film by sliding.

この後第1の予備室を窒素気体により大気圧と
し、次の基板、ホルダを装填させる。これを1つ
の工程とし、この工程がくりかえされる。
Thereafter, the first preliminary chamber is brought to atmospheric pressure with nitrogen gas, and the next substrate and holder are loaded. This is considered as one process, and this process is repeated.

かくの如くに連続製造方式を基本条件としてい
るため、それぞれの反応室内での被膜の特性の向
上に加えて、チアンバー内壁に不要の反応生成物
が付着することを防ぎ、逆にみかけ上の反応室の
内壁を筒状空間の側面とすることにより、被膜作
製の度に、即ち新たにホルダを反応室内に挿着す
る度に、あたかも新しい内壁が作られるため、く
りかえしの被膜形成によつても被膜が従来のプラ
ズマCVD装置の内壁のように何度も層状に積層
されるのを防ぐことができる。即ちフレークの発
生を防止できる。
Since the continuous production method is the basic condition, in addition to improving the properties of the coating in each reaction chamber, it also prevents unnecessary reaction products from adhering to the inner walls of the chamber, and conversely reduces the apparent reaction. By making the inner wall of the chamber the side surface of the cylindrical space, a new inner wall is created each time a film is formed, that is, each time a new holder is inserted into the reaction chamber. It is possible to prevent the coating from being stacked in layers many times like the inner wall of conventional plasma CVD equipment. That is, the generation of flakes can be prevented.

本実施例においては光源室を反応室、予備室等
の上下の位置に設けたが特にこの位置に限定され
るわけではなく、これらの反応室や予備室等の内
部に均一な光を照射できれば、どの位置に置かれ
ていてもよい。
In this example, the light source chamber was provided above and below the reaction chamber, preliminary chamber, etc., but it is not limited to this position in particular, and as long as uniform light can be irradiated inside these reaction chambers, preliminary chambers, etc. , may be placed in any position.

〔効果〕〔effect〕

本発明は減圧状態に保持することのできる反応
室と、前記反応室に透光性の平板な窓板材を介し
て内部に加熱用の光源ランプを有する光源室を具
備した装置であつて、前記反応室と前記光源室と
をバルブを介して接続し、前記反応室の圧力と前
記光源室の圧力をほぼ等しい圧力に調整すること
を可能にしたことにより反応室内を減圧にする時
には前記バルブを開けて前記光源室内を同時に減
圧し、また反応室内を大気圧にする時には、同様
に前記バルブを開けて前記光源室内を同時に大気
圧にすることができ、さらには前記反応室内に反
応性気体を供給する時には、前記バルブを閉じて
前記光源室内への反応性気体の流入を防止するこ
とが可能となる。加えて、光源室を反応室とほぼ
等しい圧力に調整することができるため、光源室
と反応室との間に設けられた窓板材を薄く大面積
にすることが容易になり、大面積、大容量の反応
空間を実現することが可能となつた。
The present invention is an apparatus comprising a reaction chamber that can be maintained in a reduced pressure state, and a light source chamber having a heating light source lamp inside the reaction chamber through a transparent flat window plate material, The reaction chamber and the light source chamber are connected via a valve, and the pressure in the reaction chamber and the pressure in the light source chamber can be adjusted to approximately the same pressure, so that when the pressure inside the reaction chamber is reduced, the valve is connected. When the light source chamber is opened to simultaneously reduce the pressure in the light source chamber and the reaction chamber to atmospheric pressure, the valve can be opened in the same way to simultaneously bring the light source chamber to atmospheric pressure, and furthermore, reactive gas can be introduced into the reaction chamber. When supplying, the valve can be closed to prevent reactive gas from flowing into the light source chamber. In addition, since the light source chamber can be adjusted to almost the same pressure as the reaction chamber, it is easy to make the window panel material between the light source chamber and the reaction chamber thin and large. It has become possible to realize a reaction space with a large capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプラズマCVD装置の概要を示
す。第2図は本発明のプラズマCVD装置の概要
を示す。 26,27,42,44……ランプ、32,3
3,41,43……光源室、31,47……等圧
用バルブ、28,29,45,46……石英窓
板。
FIG. 1 shows an outline of a conventional plasma CVD apparatus. FIG. 2 shows an outline of the plasma CVD apparatus of the present invention. 26, 27, 42, 44... lamp, 32, 3
3, 41, 43... Light source chamber, 31, 47... Equal pressure bulb, 28, 29, 45, 46... Quartz window plate.

Claims (1)

【特許請求の範囲】[Claims] 1 減圧状態に保持することのできる反応室と、
前記反応室に透光性の平板な窓板材を介して内部
に加熱用の光源ランプを有する光源室を具備した
装置であつて、前記反応室と前記光源室とをバル
ブを介して接続し、前記反応室の圧力と前記光源
室の圧力をほぼ等しい圧力に調整することを可能
にしたことを特徴とする半導体処理装置。
1 a reaction chamber that can be maintained in a reduced pressure state;
An apparatus comprising a light source chamber having a heating light source lamp inside the reaction chamber via a transparent flat window plate material, the reaction chamber and the light source chamber being connected via a bulb, A semiconductor processing apparatus characterized in that the pressure in the reaction chamber and the pressure in the light source chamber can be adjusted to substantially equal pressures.
JP4175287A 1987-02-24 1987-02-24 Semiconductor processing apparatus Granted JPS62216223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4175287A JPS62216223A (en) 1987-02-24 1987-02-24 Semiconductor processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4175287A JPS62216223A (en) 1987-02-24 1987-02-24 Semiconductor processing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57167281A Division JPS5956726A (en) 1982-09-20 1982-09-25 Plasma cvd apparatus

Publications (2)

Publication Number Publication Date
JPS62216223A JPS62216223A (en) 1987-09-22
JPH0447455B2 true JPH0447455B2 (en) 1992-08-04

Family

ID=12617151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4175287A Granted JPS62216223A (en) 1987-02-24 1987-02-24 Semiconductor processing apparatus

Country Status (1)

Country Link
JP (1) JPS62216223A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143718U (en) * 1974-09-27 1976-03-31
JPS5344487A (en) * 1976-08-25 1978-04-21 Wacker Chemitronic Process for preparing large surfaced silicon plate not supported on substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143718U (en) * 1974-09-27 1976-03-31
JPS5344487A (en) * 1976-08-25 1978-04-21 Wacker Chemitronic Process for preparing large surfaced silicon plate not supported on substrate

Also Published As

Publication number Publication date
JPS62216223A (en) 1987-09-22

Similar Documents

Publication Publication Date Title
US6176198B1 (en) Apparatus and method for depositing low K dielectric materials
US5288329A (en) Chemical vapor deposition apparatus of in-line type
JPH02138473A (en) Treating device and treating method
JPH03120362A (en) Apparatus and method for plasma treatment
JPH01107519A (en) Vapor growth apparatus
JPS61101020A (en) Treating apparatus
JPH0447455B2 (en)
JPS63109174A (en) Sheet-fed cvd device
JP3267306B2 (en) Method for manufacturing semiconductor device
JPH06151411A (en) Plasma cvd device
JPS59167012A (en) Plasma cvd equipment
WO2019227192A1 (en) Process reactor for plasma-enhanced chemical deposition of thin film coatings and vacuum apparatus
JPH0324274A (en) Vapor phase growing device
JPH0341722A (en) Thin-film manufacturing apparatus
JPH06168914A (en) Etching process
JPS62214177A (en) Gaseous phase reactor
JPH0717146Y2 (en) Wafer processing equipment
JPS6223106A (en) Processor
JPH05267277A (en) Plasma cvd apparatus
JPH11106930A (en) Plasma cvd system
JPH05156454A (en) Film forming device
JP2649333B2 (en) Plasma processing equipment
JPH01251607A (en) Laser cvd apparatus
JPS58117870A (en) Film forming device
JPH0628239B2 (en) Continuous plasma CVD equipment