JPH044587A - Heating method with current feed to electric resistor - Google Patents

Heating method with current feed to electric resistor

Info

Publication number
JPH044587A
JPH044587A JP10559390A JP10559390A JPH044587A JP H044587 A JPH044587 A JP H044587A JP 10559390 A JP10559390 A JP 10559390A JP 10559390 A JP10559390 A JP 10559390A JP H044587 A JPH044587 A JP H044587A
Authority
JP
Japan
Prior art keywords
current
electrode
resistor
core
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10559390A
Other languages
Japanese (ja)
Inventor
Yosuke Yamada
陽介 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP10559390A priority Critical patent/JPH044587A/en
Publication of JPH044587A publication Critical patent/JPH044587A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a resistor element from destruction by forming a plurality of current feed paths, through which current is fed upon selecting two of current feeding electrodes arbitrarily, and performing the current feeding while the current feed paths are changed over one after so that the resistor element is heated uniformly. CONSTITUTION:Current is first fed to a current feed path leading from an electrode 3a to another 3c, and at the same time, current is fed to a current feed path leading from an electrode 3b to a one 3d. Then the circuit for supplying the electrodes with electricity is changed over to feed current to the path leading from the electrode 3b to 3a, and at the same time, current is fed to the path leading from the electrode 3d to 3c. These procedures are performed alternately, and thereby the whole core 1 is heated uniformly. Because current feeding to the path from the electrode 3a to 3c encounters a larger resistance of core 1 than feeding current to the path from the electrode 3b to 3a, the current feeding time must be prolonged accordingly so as to make uniform the temp. of the core 1. This can prevent physical damage such as crack or craze resulting from temp. difference.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気抵抗を有する抵抗体の通電加熱方法に係
り、特にテレビジョン用トランスコアや複雑な形をした
抵抗体全体を均一温度に加熱させる通電加熱方法に関す
るものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for heating a resistor having electrical resistance, and in particular to a method for heating a transformer core for television or the entire resistor having a complicated shape to a uniform temperature. The present invention relates to an electrical heating method for heating.

(従来の技術) テレビジョン受像機に使用されるトランスのコアの一例
を第5図に示す。
(Prior Art) An example of the core of a transformer used in a television receiver is shown in FIG.

このトランスのコア1はコア上体1aとコア下体1bと
に分かれており、このコア上体1aとコア下体1bとの
突き合せ面1c、1dに熱硬化性の接着剤2a、2bを
充填し、コア1全体を加熱させて接着剤2a、2bを硬
化させてコア上体1aとコア下体1bとを接着させてい
る。
The core 1 of this transformer is divided into an upper core body 1a and a lower core body 1b, and the abutting surfaces 1c and 1d between the upper core body 1a and the lower core body 1b are filled with thermosetting adhesives 2a and 2b. The entire core 1 is heated to harden the adhesives 2a and 2b, thereby bonding the upper core body 1a and the lower core body 1b.

従来のテレビジョン用トランスのコアの接着方法を第6
図と共に説明する。
The sixth method for bonding the core of a conventional television transformer
This will be explained with figures.

まず、コア上体1aの上面2箇所に電極3a。First, electrodes 3a are placed at two locations on the upper surface of the core upper body 1a.

3bを接続し、コア下体1bの下面2箇所に電極3c、
3dを図に示すように接続する。
3b, and electrodes 3c at two locations on the lower surface of the core lower body 1b,
Connect 3d as shown.

そして、接着剤2aを硬化させるために、電極3aから
電極3Cへ電流を流し、更に、接着剤2bを硬化させる
ために電極3bから電極3dへ電流を流す。
Then, in order to cure the adhesive 2a, a current is passed from the electrode 3a to the electrode 3C, and further, a current is passed from the electrode 3b to the electrode 3d in order to cure the adhesive 2b.

このとき、電極3a及び電極3bに供給する電流の電源
を1つにすると、コア1の両輪の抵抗値のバランスがく
ずれたときに片軸のみに電流が流れ、特に、コア1の抵
抗値は温度上昇と共に下がる性質があるため、電流がよ
り片軸に流れやすくなるため、電極3a、3bに電流を
供給する電源4a、4bは別々に用意する。
At this time, if one power source is used to supply the current to the electrodes 3a and 3b, when the resistance values of the two wheels of the core 1 are unbalanced, the current will flow only to one axis, and in particular, the resistance value of the core 1 will be Since the current tends to decrease as the temperature rises, the current flows more easily in one axis, so power sources 4a and 4b for supplying current to the electrodes 3a and 3b are prepared separately.

このようにして、コア1に通電するとコア上体1aとコ
ア下体1bとの接合部分は90〜120秒程度で約砂径
0℃に上昇し、接着剤2a、2bが硬化する。
In this manner, when the core 1 is energized, the joint portion between the core upper body 1a and the core lower body 1b rises to a sand diameter of about 0° C. in about 90 to 120 seconds, and the adhesives 2a and 2b harden.

(発明が解決しようとする課題) 上記したように、テレビジョン用トランスコア1のコア
上体1aとコア下体1bを接看させるために通電された
場合、従来の方法では脚の部分のみが発熱し、第6図の
斜線で示した部分は低温のままなので、その境界部分に
ひび割れが生じ、良質のトランスコアが得られないとい
う課題があった。
(Problems to be Solved by the Invention) As described above, when electricity is applied to allow the upper core body 1a and the lower core body 1b of the television transformer core 1 to be viewed, in the conventional method, only the leg portions generate heat. However, since the shaded area in FIG. 6 remains at a low temperature, cracks occur at the boundary between these areas, making it impossible to obtain a high-quality transformer core.

また、同様の通電方法で、複雑な形状をした大型抵抗体
に通電すると、大型抵抗体を流れるll流は、電極間の
最短経路を通り、その部分だけ局部発熱を生じる。
Furthermore, when a large resistor with a complicated shape is energized using a similar energizing method, the 11 current flowing through the large resistor passes through the shortest path between the electrodes, causing local heat generation in that portion.

そして、場合によっては抵抗体の内部で局部発熱を生じ
る部分と電流が通らず発熱しない部分とで、80〜10
0℃もの温度差を生じることがあり、抵抗体にひび割れ
が生じたり、抵抗体が破壊されるという欠点があった。
In some cases, the difference between the part that generates local heat inside the resistor and the part that does not conduct current and generate heat is 80 to 10.
A temperature difference of as much as 0° C. may occur, which has the disadvantage of causing cracks or destruction of the resistor.

そこで、本発明は、上記した従来技術の課題を解決し、
抵抗体を均一に温度上昇させて抵抗体破壊を防ぐことが
できる抵抗体通電加熱方法を提供することを目的とする
Therefore, the present invention solves the problems of the prior art described above, and
It is an object of the present invention to provide a resistor current heating method capable of uniformly increasing the temperature of a resistor and preventing destruction of the resistor.

(1題を解決するための手段) 上記目的を達成させるための手段として、電気抵抗を有
する抵抗体に通電してこの抵抗体を加熱させる抵抗体通
電加熱方法であって、前記抵抗体に少なくとも3個の通
電用電極を接続し、この通電用電極のうち任意の2個を
選択して通電させる通電路を複数構成し、この複数構成
された通電路を、前記抵抗体が均一に加熱されるよう順
次切換えて通電させることを特徴とする抵抗体通電加熱
方法を提供しようとするものである。
(Means for Solving Problem 1) As a means for achieving the above object, there is provided a resistor energization heating method in which a resistor having electrical resistance is heated by supplying current to the resistor, the resistor having at least Three current-carrying electrodes are connected, and a plurality of current-carrying paths are formed in which any two of the current-carrying electrodes are selected and energized, and the resistor is uniformly heated through the plurality of current-carrying paths. It is an object of the present invention to provide a method for heating a resistor by energizing it, which is characterized by sequentially switching and energizing the resistor so that the current is applied.

(実施例) 本発明の抵抗体通電加熱方法の実施例を図面と共に説明
する。
(Example) An example of the resistor current heating method of the present invention will be described with reference to the drawings.

第1図は本発明をテレビジョン用トランスコアに適用し
た場合の実施例(第1実施例)を示す図である。
FIG. 1 is a diagram showing an embodiment (first embodiment) in which the present invention is applied to a television transformer core.

なお、第1図中、第5図に示すトランスコア及び第6図
に示す従来例と同一部分には同一番号を符してその説明
を省略する。
In FIG. 1, the same parts as the transformer core shown in FIG. 5 and the conventional example shown in FIG. 6 are denoted by the same numbers, and the explanation thereof will be omitted.

第1図において、最初に電極3aから電極3Cへの通電
路に通電し、同時に電極3bから電極3dへの通電路に
通電する(■)。
In FIG. 1, electricity is first applied to the current-carrying path from electrode 3a to electrode 3C, and at the same time, current is applied to the current-carrying path from electrode 3b to electrode 3d (■).

次に、電極へ通電するための回路を切換えて、電極3b
から電極3aへの通電路に通電し、同時に電極3dから
電極3Cへの通電路に通電する(■)。
Next, switch the circuit for energizing the electrode, and
The current is applied to the current path from the electrode 3a to the electrode 3a, and at the same time, the current is applied to the current path from the electrode 3d to the electrode 3C (■).

そして、以上の通電を交互に行うことによりコア1全体
を均一に加熱することができる。
The entire core 1 can be heated uniformly by performing the above-described energization alternately.

また、コア1の温度が下がるのを防ぐためと、通電して
いる部分と、通電していない部分との温度差を生じさせ
ないために、通電の切換えサイクルは、短い時間に切換
える方が良い。そして、第1図に示す実施例では、電極
3aから電極3cへの通電路に通電する方(電極3bか
ら電極3dへの通電路に通電する方)が、電極3bから
電極3aへの通電路に通電する方(電極adがら電極3
Cへの通電路に通電する方)よりも、コア1の抵抗値が
大きいので、その分、通電時間を長くしてコア1の温度
が均一になるようにする。
Furthermore, in order to prevent the temperature of the core 1 from dropping and to prevent a temperature difference between energized parts and non-energized parts, it is better to switch the energization cycle in a short time. In the embodiment shown in FIG. 1, the one that supplies current to the current-carrying path from electrode 3a to electrode 3c (the one that supplies current to the current-carrying path from electrode 3b to electrode 3d) is the one that supplies current to the current-carrying path from electrode 3b to electrode 3a. (from electrode ad to electrode 3)
Since the resistance value of the core 1 is larger than that of the energizing path to C), the energizing time is increased accordingly to make the temperature of the core 1 uniform.

なお、従来と同様の電流値で同じコア1を加熱させるの
に本実施例において電極3aから電極3Cへの通電時間
を1秒、電極3bから電極3aへの通電時間を0.3秒
として交互に切換えたとき、全体が140℃になるまで
に約50秒であった。
In addition, in order to heat the same core 1 with the same current value as in the conventional case, in this embodiment, the time for energizing from electrode 3a to electrode 3C is 1 second, and the time for energizing from electrode 3b to electrode 3a is alternately 0.3 seconds. It took about 50 seconds for the entire temperature to reach 140°C.

そして、このときの通電のための回路例を第2図に示す
FIG. 2 shows an example of a circuit for energizing at this time.

同図において、電源E1と電源E2とは、同じ電圧、電
流値を有する直流電源であり、回路中に存在する各リレ
ーR1は、同時に開閉し、各リレーR2も同特に開閉す
る。また、リレーR1とR2とは同時に切り換わり、片
方が開くと他の−方は閉じるように制御されている。
In the figure, a power source E1 and a power source E2 are DC power sources having the same voltage and current value, and each relay R1 in the circuit opens and closes at the same time, and each relay R2 also opens and closes at the same time. Further, the relays R1 and R2 are controlled to switch simultaneously so that when one opens, the other closes.

そして、リレーR1を閉じてリレーR2を開くと、電源
E1により、電極3bから電極3dに通電され、電源E
2により、電極3aから3Cに通電される。
Then, when relay R1 is closed and relay R2 is opened, power is energized from electrode 3b to electrode 3d by power source E1.
2, electricity is supplied from the electrodes 3a to 3C.

また、リレーR2を閉じて、リレーR1を開くと電源E
1により、電極3dから電極3Cに通電され、電源E2
により電極3bから電極3aに通電されることになり、
これを短時間で交互に繰り返すことにより、コア1を均
一に加熱することができる。
Also, when relay R2 is closed and relay R1 is opened, the power
1, electricity is passed from the electrode 3d to the electrode 3C, and the power source E2
As a result, current is applied from electrode 3b to electrode 3a,
By repeating this process alternately in a short period of time, the core 1 can be heated uniformly.

次に、大型抵抗体を通電加熱する場合の実施例(第2実
施例)を第3図に示す。
Next, FIG. 3 shows an example (second example) in which a large resistor is heated with electricity.

同図では、直方体の大型抵抗体5に6個の電極6a〜6
fを接続した例であり、上面2個所に電極6a、6bを
接続し、下面2個所に電極6C。
In the figure, six electrodes 6a to 6 are arranged on a large rectangular parallelepiped resistor 5.
In this example, electrodes 6a and 6b are connected to two places on the top surface, and electrodes 6C are connected to two places on the bottom surface.

6dを接続し、両側面にそれぞれ電極6e、6fを図に
示すように接続する。
6d, and electrodes 6e and 6f are connected to both sides as shown in the figure.

そして、本実施例においても同様にして、最初に電極6
aから電極6Cへの通電路に通電しく以下電極6a→6
Cと記載する)同時に電極6b→6dへの通電路に通電
する(■)。そして、通電回路を切換えて、電極6b→
6a(同時に電極6′d→6c)への通電路に通電しく
■)、ざらに電極6a−+6e (同時に電極6cm+
6e、電極6b→6f、電極6d→6f)への通電路に
通電しく■)、これを繰返して電極6a→6d、電極6
b→5c、・・・と通電路を切換えていくことにより、
大型抵抗体5を均一パターンに加熱することができる。
In this embodiment as well, the electrode 6 is first
To energize the energizing path from a to the electrode 6C, the following electrode 6a → 6
(denoted as C) At the same time, the current is applied to the current path from electrode 6b to electrode 6d (■). Then, switch the energizing circuit and electrode 6b→
6a (at the same time, energize the energizing path from electrode 6'd to 6c), and roughly electrodes 6a-+6e (at the same time, electrode 6cm+
6e, electrode 6b → 6f, electrode 6d → 6f)), repeat this to connect electrode 6a → 6d, electrode 6
By switching the current path from b to 5c,...
The large resistor 5 can be heated in a uniform pattern.

次に、大型抵抗体を通電加熱する場合の別の実施例(第
3の実施例)を第4図に示す。
Next, FIG. 4 shows another embodiment (third embodiment) in which a large resistor is electrically heated.

この実施例は、図のような多数の段を有する形状をした
大型抵抗体7に12個の電極8a〜8jを接続した例で
あり、各面にそれぞれ1個ずつの電極を図に示すように
接続する。
This embodiment is an example in which 12 electrodes 8a to 8j are connected to a large resistor 7 having a shape with many steps as shown in the figure, and one electrode is connected to each surface as shown in the figure. Connect to.

そして、前述した実施例と同様に大型抵抗体7が均一に
加熱されるように電極間の通電路を切換えることにより
、複雑な形をした大型抵抗体でも均一に加熱することが
できる。
As in the above-described embodiment, even a large resistor with a complicated shape can be heated uniformly by switching the current path between the electrodes so that the large resistor 7 is heated uniformly.

また、抵抗体の一部分が高温に弱い部分に接している場
合などでは、電極の位置9通電路を選択したり通電時間
を調整することにより、その部分だけ温度上昇を防ぐと
いったように、希望する部分だけを希望する温度にして
自由な温度分布を作るように加熱することも可能である
In addition, if a part of the resistor is in contact with a part that is sensitive to high temperatures, you can prevent the temperature from rising only in that part by selecting the electrode position 9 energizing path or adjusting the energizing time. It is also possible to heat only a portion to a desired temperature to create a free temperature distribution.

(発明の効果) 本発明の抵抗体通電加熱方法は、抵抗体に少なくとも3
個の通電用電極を接続し、このうち任意の2個を選択し
て通電させる通電路を、抵抗体が均一に加熱されるよう
順次切換えて通電させているので、抵抗体内部での温度
差をはとんと生じることなく、抵抗体全体を均一に加熱
することができ、温度差が原因で生じるひび2割れ等の
物理的ダメージを防止することができる。
(Effects of the Invention) The resistor energization heating method of the present invention provides at least 3
The current-carrying electrodes are connected, and any two of them are selected and the current-carrying path is sequentially switched so that the resistor is evenly heated, so the temperature difference inside the resistor is reduced. It is possible to uniformly heat the entire resistor without causing excessive heat, and it is possible to prevent physical damage such as cracks caused by temperature differences.

また、抵抗体内部の温度差が非常に小さいので、通電す
る電流の電流値、電圧値を上げても、物理的ダメージを
生じず、より短時間で抵抗体の温度を上昇させることが
できる。
Further, since the temperature difference inside the resistor is very small, even if the current value and voltage value of the current to be applied are increased, physical damage does not occur, and the temperature of the resistor can be raised in a shorter time.

さらに、複雑な形状の抵抗体でも均一に加熱することが
できる。
Furthermore, even a resistor with a complicated shape can be heated uniformly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の抵抗体通電加熱方法をテレビジョン用
トランスコアに使用した実施例を示す正面図、第2図は
この実施例の通電路を示す回路図、第3図及び第4図は
他の実施例を示す正面図、第5図はテレビジョン用トラ
ンスコアを示す斜視図、第6図は従来例を示す正面図で
ある。 1・・・トランスコア、2a、2.b・・・接着剤、3
a 〜3d、6a 〜6f、8a 〜8J)−・・電極
、4a、4b、E+、E2−電源、 5.7・・・大型抵抗体、R1,R2・・・リレー。 特許出願人 日本ビクター株式会社 代表者 垣本邦夫 第1図 gl 第2−図 第3図 第q図
Fig. 1 is a front view showing an embodiment in which the resistor energization heating method of the present invention is used in a television transformer core, Fig. 2 is a circuit diagram showing the energization path of this embodiment, and Figs. 3 and 4. 5 is a front view showing another embodiment, FIG. 5 is a perspective view showing a transformer core for television, and FIG. 6 is a front view showing a conventional example. 1...Trans core, 2a, 2. b...Adhesive, 3
a to 3d, 6a to 6f, 8a to 8J) - Electrode, 4a, 4b, E+, E2- power supply, 5.7... Large resistor, R1, R2... Relay. Patent applicant: Victor Japan Co., Ltd. Representative: Kunio Kakimoto Figure 1 gl Figure 2-Figure 3 Figure q

Claims (1)

【特許請求の範囲】  電気抵抗を有する抵抗体に通電してこの抵抗体を加熱
させる抵抗体通電加熱方法であつて、前記抵抗体に少な
くとも3個の通電用電極を接続し、 この通電用電極のうち任意の2個を選択して通電させる
通電路を複数構成し、 この複数構成された通電路を、前記抵抗体が均一に加熱
されるよう順次切換えて通電させることを特徴とする抵
抗体通電加熱方法。
[Scope of Claims] A method for energizing a resistor having electrical resistance and heating the resistor, the method comprising: connecting at least three current-carrying electrodes to the resistor; A resistor comprising a plurality of energizing paths selected from the plurality of energizing paths to be energized, and energizing the plurality of energizing paths by sequentially switching the plurality of energizing paths so that the resistor is heated uniformly. Electrical heating method.
JP10559390A 1990-04-20 1990-04-20 Heating method with current feed to electric resistor Pending JPH044587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10559390A JPH044587A (en) 1990-04-20 1990-04-20 Heating method with current feed to electric resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10559390A JPH044587A (en) 1990-04-20 1990-04-20 Heating method with current feed to electric resistor

Publications (1)

Publication Number Publication Date
JPH044587A true JPH044587A (en) 1992-01-09

Family

ID=14411800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10559390A Pending JPH044587A (en) 1990-04-20 1990-04-20 Heating method with current feed to electric resistor

Country Status (1)

Country Link
JP (1) JPH044587A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260690A (en) * 2006-03-27 2007-10-11 Hitachi Ltd Electric current bonding apparatus and electric current bonding method
JP2009530495A (en) * 2006-03-16 2009-08-27 ノーブル アドヴァンスト テクノロジーズ インコーポレイテッド Method and system for uniform resistance heating of articles
JP2011189402A (en) * 2010-03-17 2011-09-29 Jfe Steel Corp Resistance heating method of metal sheet
JP2011240382A (en) * 2010-05-19 2011-12-01 Toyota Motor Corp Method for energization heating
JP2012024835A (en) * 2010-07-27 2012-02-09 Toyota Motor Corp Electric heating method
EP2489747A1 (en) * 2009-10-16 2012-08-22 Toyota Jidosha Kabushiki Kaisha Energization heating method and energization heating device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530495A (en) * 2006-03-16 2009-08-27 ノーブル アドヴァンスト テクノロジーズ インコーポレイテッド Method and system for uniform resistance heating of articles
JP2007260690A (en) * 2006-03-27 2007-10-11 Hitachi Ltd Electric current bonding apparatus and electric current bonding method
JP4520422B2 (en) * 2006-03-27 2010-08-04 株式会社日立製作所 Energization joining apparatus and energization joining method
EP2489747A1 (en) * 2009-10-16 2012-08-22 Toyota Jidosha Kabushiki Kaisha Energization heating method and energization heating device
EP2489747A4 (en) * 2009-10-16 2013-12-25 Toyota Motor Co Ltd Energization heating method and energization heating device
JP2011189402A (en) * 2010-03-17 2011-09-29 Jfe Steel Corp Resistance heating method of metal sheet
JP2011240382A (en) * 2010-05-19 2011-12-01 Toyota Motor Corp Method for energization heating
JP2012024835A (en) * 2010-07-27 2012-02-09 Toyota Motor Corp Electric heating method

Similar Documents

Publication Publication Date Title
CA1264360A (en) Self-heating, self-soldering bus bar
PT96015A (en) TYPE CONNECTION ELEMENT WITH A PERFECT ELECTRIC RESISTANCE FOR THE MUTUAL UNION OF PLASTIC ELEMENTS BY TERMOSOLDADURA
JPH044587A (en) Heating method with current feed to electric resistor
JP2651793B2 (en) Ceramic fiber heater
JP2006305591A (en) Welding method
US645066A (en) Method of electric welding.
JP2018144068A5 (en)
JP3737966B2 (en) Thermal welding method and apparatus for thermoplastic resin molded product
CN207593003U (en) A kind of high frequency constant-temperature soldering station
JP2019003924A (en) Ceramic heater
JP4987839B2 (en) Heating device
JPH1080777A (en) Method for electrically connecting two superimposed metallic conductors by welding or brazing
JPS59118426A (en) Jointing method of plastic body
US831186A (en) Electric heating unit.
US1284257A (en) Electric heating apparatus.
US1449852A (en) Electromagnetic apparatus
JP6428227B2 (en) Large current power supply and energization heating system
JPS5818232Y2 (en) electric oven control device
US480392A (en) Method of electric soldering
US936692A (en) Commutator-brush.
CN117242895A (en) Heating circuit and apparatus
KR100495300B1 (en) Spot welding method using tungsten board wilding electrode of electronic parts
JPH0831530A (en) Ic socket built-in heater
JPH03264602A (en) Aluminum sintered body
CN107470804A (en) A kind of Electronic Assemblies technique