JPH0445405A - Production of frp armored optical cable - Google Patents

Production of frp armored optical cable

Info

Publication number
JPH0445405A
JPH0445405A JP2152618A JP15261890A JPH0445405A JP H0445405 A JPH0445405 A JP H0445405A JP 2152618 A JP2152618 A JP 2152618A JP 15261890 A JP15261890 A JP 15261890A JP H0445405 A JPH0445405 A JP H0445405A
Authority
JP
Japan
Prior art keywords
optical fiber
outer periphery
uncured
cable
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2152618A
Other languages
Japanese (ja)
Inventor
Shigehiro Matsuno
繁宏 松野
Kenji Kozuka
健次 小塚
Minoru Naito
稔 内藤
Kazuo Yasuda
一雄 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP2152618A priority Critical patent/JPH0445405A/en
Priority to JP15953391A priority patent/JP3176390B2/en
Priority to FI912771A priority patent/FI912771A/en
Priority to TW080104562A priority patent/TW205598B/zh
Priority to DK91305285.8T priority patent/DK0461871T3/en
Priority to ES91305285T priority patent/ES2085427T3/en
Priority to EP91305285A priority patent/EP0461871B1/en
Priority to DE69118443T priority patent/DE69118443T2/en
Priority to KR1019910009709A priority patent/KR0137760B1/en
Priority to US07/714,607 priority patent/US5126167A/en
Publication of JPH0445405A publication Critical patent/JPH0445405A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the properties of the armored cable and to reduce an initial cost as well as to save manpower by doubling and twisting an uncured FRP armoring wire on the outer periphery of an optical fiber cable in tight contact therewith and applying an outer layer coating layer on the outer periphery thereof, then setting the internal uncured thermosetting resin at the time of producing the above-mentioned optical fiber cable. CONSTITUTION:This production process has a 1st stage to obtain the optical fiber cable a2 by housing optical fibers into the grooves of a spacer a1 and forming a skin sheath on the outer periphery thereof, a 2nd stage to obtain the plural uncured armored bodies by impregnating the thermosetting resin in reinforcing fibers a31 and coating the fibers with a thermoplastic resin in the uncured state of the thermosetting resin, then solidifying the resin, a 3rd stage to form a coating layer by the thermoplastic resin after the plural armored bodies a3 obtd. in the 2nd stage are doubled and twisted while being supplied to the outer periphery to arrange the optical fiber cable obtained by the 1st stage at the center, and a 4th stage to respectively solidify and cure the coating layer and the thermosetting resin. The 1st to 4th stages are continuously executed. Finally, the optical cable a4 is taken up on a rotary winder 12 via a rotary take-off 40.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高い抗張力性と可撓性とを合せ持ったFRP鎧
装光ケーブルの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing an FRP armored optical cable having both high tensile strength and flexibility.

(発明の背景) ケーブルの外周を保護強化するにあたり軽量化、非電気
誘導化等の目的で通信、導電ケーブル等の外周を複数本
の繊維強化熱硬化性樹脂(以下FRPと称す)製線条物
で被覆したいわゆる鎧装ケーブルは、特公昭56−50
364号等により公知である。
(Background of the Invention) In order to protect and strengthen the outer periphery of the cable, a plurality of fiber-reinforced thermosetting resin (hereinafter referred to as FRP) filaments are used to cover the outer periphery of communication and conductive cables for the purpose of reducing weight and making them non-electrical. The so-called armored cable covered with a material was developed in the 1980s.
It is publicly known from No. 364 and the like.

一方、近年、光ファイバケーブルは、高容量性、高速通
信性から通信用ケーブルとして採用されている。
On the other hand, in recent years, optical fiber cables have been adopted as communication cables due to their high capacity and high speed communication properties.

この光ファイバケーブルとしては、大容量のものは、抗
張力線の外周に高密度ポリエチレン等の熱可塑性樹脂に
よって複数の螺旋状ゝ溝を有するいわゆる螺旋スペーサ
′を使用し、この溝に光フアイバ心線あるいは光フアイ
バテープ心線を収納し、その外周を熱可塑性樹脂によっ
て被覆したものが一般的である。
Large-capacity optical fiber cables use a so-called helical spacer, which has multiple spiral grooves made of thermoplastic resin such as high-density polyethylene, around the outer periphery of the tensile strength wire, and the optical fiber core is inserted into these grooves. Alternatively, it is common to have an optical fiber tape in which the outer periphery is coated with a thermoplastic resin.

また、光ファイバケーブルは、側圧、引張力などの外力
から保護するため、その外周に高強力の線状材で鎧装す
る場合は、前記光ファイバケーブルの製造に引続いて線
条物をケーブルの外周に撚合せて外層被覆を施す工程に
付される。
In addition, in order to protect optical fiber cables from external forces such as lateral pressure and tensile force, if the outer periphery of the optical fiber cable is armored with a high-strength wire material, the wire material should be attached to the cable after manufacturing the optical fiber cable. The material is then twisted around the outer periphery of the material and coated with an outer layer.

そして、FRP線状材による鎧装を施す場合は、前記公
告公報に記載されている如く、FRPのストレスクラッ
クを防止するため、未硬化状のFRPの外周を熱可塑性
樹脂等で被覆し、これを用いることが提案されており、
このような未硬化状のFRP鎧装線として本出願人の先
願である特公昭51−43501号の方法による熱可塑
性樹脂被覆層を有する複合状FRP線が好適に用いられ
る。
When armoring with FRP wire material is applied, the outer periphery of the uncured FRP is coated with thermoplastic resin, etc., in order to prevent stress cracks in the FRP, as described in the above-mentioned public notice. It is proposed to use
As such an uncured FRP armored wire, a composite FRP wire having a thermoplastic resin coating layer prepared by the method disclosed in Japanese Patent Publication No. 51-43501, which is an earlier application of the present applicant, is preferably used.

しかし、従来において、未硬化状の複合状FRP線によ
り鎧装する場合は、未硬化状の複合状FRP線の製造と
、これをケーブルの外周に鎧装する工程とは、別々に行
なっているため、この未硬化状線材を使用するまでの貯
蔵時間を要し、可使時間いわゆるポットライフの長いも
の、例えば、常温にて30日間程度は使用可能であるも
のが要求される。
However, in the past, when sheathing with unhardened composite FRP wires, the manufacturing of the unhardened composite FRP wires and the process of sheathing them around the outer periphery of the cable were performed separately. Therefore, it takes a long time to store the uncured wire before using it, and it is required to have a long pot life, for example, one that can be used for about 30 days at room temperature.

そこで、本出願人は、この種の未硬化状線状材であって
可使時間の長い熱硬化性樹脂組成について既に特開平1
−139872号によって提案している。
Therefore, the present applicant has already disclosed a thermosetting resin composition for this kind of uncured linear material having a long pot life in Japanese Patent Application Laid-Open No.
-139872.

しかし、同公開特許公報に記載された熱硬化性樹脂組成
としても一旦ボビン、ドラム等に巻き取る際に複合未硬
化状線状材中で補強繊維の片寄りや乱れが発生すること
もあって硬化後の強度において、FRP一般に用いられ
ているスチレンモノマーを架橋成分として含む組成と比
較して20〜30%程度劣る。
However, even with the thermosetting resin composition described in the same patent publication, the reinforcing fibers may become uneven or disordered in the composite uncured linear material once it is wound onto a bobbin, drum, etc. The strength after curing is about 20 to 30% lower than that of a composition containing styrene monomer as a crosslinking component, which is commonly used in FRP.

また、光ファイバケーブルを製造するに際しては、前記
の螺旋スペーサの溝中に光フアイバ心線等を収納する必
要があって、このためボビン等に巻かれた光フアイバ心
線等を回転するか、スペーサ自身を長軸の周りに回転す
る必要があるし、FRP鎧装を施す場合も鎧装線ないし
ケーブル自体を回転する必要があり、何れにしても回転
装置の複雑化、大型化を余儀なくされる。
Furthermore, when manufacturing an optical fiber cable, it is necessary to store the optical fiber in the groove of the spiral spacer, and for this purpose, the optical fiber, etc. wound around a bobbin or the like must be rotated or It is necessary to rotate the spacer itself around its long axis, and when applying FRP armor, it is necessary to rotate the armor wire or cable itself, and in any case, the rotation device is forced to become more complicated and larger. Ru.

そこで、本発明者らは、上述の問題、すなわち鎧装線の
強度低下や設備の複雑化、大型化を抑制できる生産性の
高いFRP鎧装光ファイバケーブルの製造方法について
鋭意検討して本願発明を完成した。
Therefore, the present inventors have diligently studied a method for manufacturing FRP armored optical fiber cables with high productivity that can suppress the above-mentioned problems, namely, the decrease in the strength of armored wires and the complexity and enlargement of equipment, and have developed the present invention. completed.

(発明の構成) 上記目的を達成するために、本発明の繊維強化熱硬化性
樹脂製鎧装光ケーブルの製造方法は、スペーサの溝内に
光ファイバを収納して、その外周に外皮シースを形成し
て光ファイバケーブルを得る第1工程と、補強繊維に熱
硬化性樹脂を含浸させ、この熱硬化性樹脂が未硬化状態
で熱可塑性樹脂を被覆した後固化させて複数の未硬化状
鎧装体を得る第2工程と、前記第1工程で得られた光フ
ァイバケーブルを中心に配置し、かつ、前記第2工程で
得られた複数の鎧装体をその外周に供給しつつこれらを
撚合わせた後熱可塑性樹脂により被覆層を形成する第3
工程と、前記被覆層および前記熱硬化性樹脂をそれぞれ
固化、硬化させる第4工程とを有し、前記第1から第4
工程が連続して行われることを特徴とする。 本発明の
鎧装体に使用できる補強用繊維の素材は、抗張力性を有
するものであれば特にその種類を問わないが、連続繊維
状のガラス繊維、芳香族ポリアミド繊維、カーボン繊維
などや、ナイロン、ポリエステル、ビニロンなどの合成
繊維があげられる。
(Structure of the Invention) In order to achieve the above object, the method for manufacturing a fiber-reinforced thermosetting resin armored optical cable of the present invention includes storing an optical fiber in a groove of a spacer and forming an outer sheath around the outer periphery of the optical fiber. The first step is to impregnate reinforcing fibers with a thermosetting resin, and the thermosetting resin is coated with a thermoplastic resin in an uncured state, and then hardened to form a plurality of uncured armor sheaths. a second step of obtaining a body, and placing the optical fiber cable obtained in the first step at the center, and twisting them while supplying a plurality of armored bodies obtained in the second step to the outer periphery thereof. After the combination, a third layer is formed of a thermoplastic resin to form a covering layer.
and a fourth step of solidifying and curing the coating layer and the thermosetting resin, respectively.
It is characterized in that the steps are performed continuously. The reinforcing fiber material that can be used for the armor body of the present invention is not particularly limited as long as it has tensile strength, but continuous glass fibers, aromatic polyamide fibers, carbon fibers, nylon fibers, etc. Examples include synthetic fibers such as , polyester, and vinylon.

繊維の含有率は、概ね50〜75voN%、より好まし
くは55〜70 vog%である。
The fiber content is approximately 50 to 75 voN%, more preferably 55 to 70 vog%.

また、鎧装体の補強繊維に含浸させる熱硬化性樹脂は、
不飽和ポリエステル樹脂が一般的であるが、エポキシ樹
脂、フェノール樹脂などであってもよい。
In addition, the thermosetting resin that is impregnated into the reinforcing fibers of the armor body is
Unsaturated polyester resins are common, but epoxy resins, phenolic resins, etc. may also be used.

前記補強繊維に未硬化状熱硬化性樹脂を含浸させたもの
の外周を被覆する熱可塑性樹脂は、溶融押出による被覆
が容易なものであれば特にその種類を問わないが、一般
的には、柔軟性、耐低温物性、経済性などからポリエチ
レン系の樹脂や柔軟性の樹脂としてポリアミド樹脂が推
奨される。
The type of thermoplastic resin that covers the outer periphery of the reinforcing fibers impregnated with an uncured thermosetting resin is not particularly limited as long as it can be easily coated by melt extrusion, but generally, it is a flexible resin. Polyethylene-based resins and polyamide resins are recommended as flexible resins due to their properties, low-temperature resistance, and economic efficiency.

FRP鎧装光ケーブルを製造するに際しては、未硬化状
の複合状鎧装体を製造する方法は、本出願人による先願
の特公昭51−43501号による方法を基本として、
得ようとするケーブルに必要な数の鎧装体を同時に熱可
塑性樹脂によって被覆し、該被覆層を直ちに冷却した後
、その直後に撚工程に入る。
When manufacturing an FRP armored optical cable, the method for manufacturing an uncured composite armored body is based on the method disclosed in Japanese Patent Publication No. 51-43501 filed by the present applicant.
The number of armor bodies required for the cable to be obtained is simultaneously coated with thermoplastic resin, the coating layer is immediately cooled, and immediately thereafter the twisting process begins.

鎧装体の撚合せは、ボビン等に巻付けられ、回転引取機
に同調して回転可能に供給される光ファイバケーブル用
スペーサの溝部に光フアイバテープ心線等を収納し、さ
らにその外周にテーピング、外皮シースを施された光フ
ァイバケーブルを中央に供給し、その外周にガイドを介
して複数の鎧装体を供給しつつ撚合せた後、熱可塑性樹
脂被覆を施し、しかる後加熱硬化槽に導いて未硬化状鎧
装体の内部樹脂を硬化せしめ回転引取機を経て回転巻取
機に巻取られる過程において、回転引取機等の回転によ
って行なわれる。
Twisting of the armored body is accomplished by storing optical fiber tape cores in the grooves of an optical fiber cable spacer, which is wound around a bobbin or the like and rotatably supplied in synchronization with a rotary take-up machine. Optical fiber cables that have been taped and sheathed are supplied to the center, and multiple armor bodies are supplied to the outer periphery via guides and twisted, then coated with thermoplastic resin, and then placed in a heat curing bath. This is done by the rotation of the rotary take-up machine, etc. in the process of hardening the internal resin of the uncured armor sheath and winding it up by the rotary take-up machine via the rotary take-up machine.

なお、光ファイバケーブル用スペーサの回転供給装置と
、後方の回転引取機との距離が長くなると、その間でス
ペーサあるいは光ファイバケーブルに捩り力が付加され
る危惧もあるので、このような場合には、例えば外皮シ
ースを施した先ファイバケーブルを同調回転する引取機
で引取つり供給するなど適宜回転引取機を追加配置すれ
ばよい。
In addition, if the distance between the optical fiber cable spacer rotation supply device and the rear rotary take-up machine becomes long, there is a risk that twisting force will be applied to the spacer or optical fiber cable between them. For example, a rotary take-off machine may be additionally arranged as appropriate, for example, a sheathed fiber cable may be taken off and supplied by a take-off machine that rotates synchronously.

光ファイバケーブルの外周に未硬化状の鎧装体を撚合せ
るに際しての各鎧装体のテンションTは、これに使用さ
れている補強繊維の単位重量W(。
The tension T of each armor sheath when twisting the uncured armor sheath around the outer periphery of the optical fiber cable is the unit weight W of the reinforcing fiber used therein.

/ m )に対して T≧(9000xWx0.05)Xi/3 (g)とす
ることが硬化後の光ケーブルの引張弾性率や引張強力な
どの物性を向上させる点から好ましい。
/m), it is preferable that T≧(9000xWx0.05)Xi/3 (g) from the viewpoint of improving physical properties such as tensile elastic modulus and tensile strength of the optical cable after curing.

(実 施 例) 以下、本発明の好適な実施例について添付図面を参照に
して詳細に説明する。
(Embodiments) Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明にかかるFRP鎧装光ケーブルの製造方
法の一実施例を示している。
FIG. 1 shows an embodiment of the method for manufacturing an FRP armored optical cable according to the present invention.

同図に示す製造方法は、光ファイバケーブルを得る第1
工程と、鎧装体を得る第2工程と、光ファイバケーブル
と鎧装体とを撚合わせて被覆する第3工程と、被覆層お
よび熱硬化性樹脂を固化。
The manufacturing method shown in the figure is the first step to obtain an optical fiber cable.
a second step of obtaining an armor body; a third step of twisting and covering the optical fiber cable and the armor body; and solidifying the coating layer and thermosetting resin.

硬化させる第4工程とからなり、これらの工程が連続し
て行われる。
and a fourth step of curing, and these steps are performed successively.

なお、第1図に示す符号10の装置は、予め別工程で作
られたスペーサa1が捲回され、このスペーサa1を送
り出しながら水平面内で回転させるスペーサ供給装置で
あり、また、同符号12の装置は製造されたFRP鎧装
光ケーブルa4を巻き取りながら水平面内で回転させる
回転巻取装置である。
The device 10 shown in FIG. 1 is a spacer feeding device in which a spacer a1 made in advance in a separate process is wound and rotated in a horizontal plane while feeding out the spacer a1. The device is a rotary winding device that rotates the manufactured FRP armored optical cable A4 in a horizontal plane while winding it up.

まず、スペーサa1の製造方法について説明すると、ス
ペーサa1の中央に配置する抗張力線a11として、3
.5mmの繊維強化熱硬化性樹脂製線状物の外周に低密
度ポリエチレンにより5.8mmの被覆を施したものを
用いた。
First, to explain the manufacturing method of the spacer a1, as the tensile strength line a11 arranged at the center of the spacer a1, 3
.. A 5 mm fibre-reinforced thermosetting resin filament whose outer periphery was coated with 5.8 mm of low density polyethylene was used.

なお、この抗張力線allの製造法の詳細は、本出願人
の先願特許である特公平1−50591号公報に開示さ
れている。
The details of the method for producing this tensile strength wire all are disclosed in Japanese Patent Publication No. 1-50591, which is a prior patent filed by the present applicant.

次いで、抗張力線allの外周に溶融状の高密度ポリエ
チレンを回転しながら押出して、溝幅および溝深さがと
もに1.511!1であって、外径が9゜4mm、溝数
が12個、螺旋のピッチが500■lの螺旋スペーサa
1を作製した。
Next, molten high-density polyethylene was extruded around the outer periphery of the tensile strength wire all while rotating, and the groove width and groove depth were both 1.511!1, the outer diameter was 9°4 mm, and the number of grooves was 12. , a spiral spacer a with a spiral pitch of 500 μl
1 was produced.

第1工程では、このスペーサa1をスペーサ供給装置1
0に捲回して、スペーサa1を繰り出す一方で、小ボビ
ン14に巻かれたナイロンシース光フアイバ心線a21
を8本繰り出しつつスペーサa1の溝内に挿入し、さら
にその外周にポリエステル繊維製の細幅テープa22を
2本が交差するようにして巻き付けた。
In the first step, the spacer a1 is transferred to the spacer supply device 1.
0 and unwinding the spacer a1, the nylon sheathed optical fiber core wire a21 wound around the small bobbin 14
Eight tapes were fed out and inserted into the groove of the spacer a1, and a narrow polyester fiber tape a22 was wound around the outer periphery of the spacer so that the two tapes intersected.

そして、テープa22が巻き付けられた状態で溶融押出
し機16のクロスヘツドに挿通して、その外周に低密度
ポリエチレン(日本ユニカー(株)製、NUCG−05
88)を押出して、外径が13.5mmになるように外
皮シースa23を形成し、これを直ちに冷却槽18で冷
却し、光ファイバケーブルa2を得た。
Then, the tape A22 wrapped around it is inserted into the crosshead of the melt extruder 16, and the outer periphery is coated with low density polyethylene (manufactured by Nippon Unicar Co., Ltd., NUCG-05).
88) was extruded to form an outer sheath a23 having an outer diameter of 13.5 mm, which was immediately cooled in the cooling tank 18 to obtain an optical fiber cable a2.

第2工程では、鎧装体a3は、12本で構成するので、
クリールスタンド20に配置されたガラス繊維ロービン
グ(日東紡績製R3110)13本およびガラス繊維ヤ
ーン(日本電気ガラス製280TEX)2本からなる補
強繊維a31を用いこれを不飽和ポリエステル樹脂(三
井東圧化学製、ニスターH−8000)および硬化用過
酸化物触媒を混合した樹脂浴22に導き、補強繊維a3
1に樹脂を含浸し、しかる後、外径が3.5mmになる
ように成形機24で絞り成形した。
In the second step, the armor body a3 is composed of 12 pieces, so
Reinforcing fibers A31 consisting of 13 glass fiber rovings (R3110 manufactured by Nittobo Co., Ltd.) and 2 glass fiber yarns (280TEX manufactured by Nippon Electric Glass Co., Ltd.) arranged on the creel stand 20 are used and are combined with unsaturated polyester resin (manufactured by Mitsui Toatsu Chemical Co., Ltd.). , Nistar H-8000) and a curing peroxide catalyst, and reinforcing fibers a3
1 was impregnated with resin, and then drawn by a molding machine 24 so that the outer diameter was 3.5 mm.

次いで、溶融押出し機26に挿通して、補強繊維a31
に含浸させた熱硬化性樹脂が未硬化の状態で、その外周
に低密度ポリエチレンを押出し、外径が4.5鰭になる
ように被覆層a32を設け、その後直ちに表面の被覆層
a32だけを冷却槽28で冷却して12本の鎧装体a3
を得た。
Next, the reinforcing fiber a31 is inserted into the melt extruder 26.
In an uncured state, the thermosetting resin impregnated with the thermosetting resin is extruded on the outer periphery of the thermosetting resin, and a coating layer a32 is provided so that the outer diameter becomes 4.5 fins, and then only the coating layer a32 on the surface is immediately removed. Cooled in cooling tank 28 and made 12 armor a3
I got it.

第3工程では、第1工程で得られた光ファイバケーブル
a2を中心に配置し、第2工程で得られた内部の熱硬化
性樹脂が未硬化状態の鎧装体a3をガイド30,32を
通してケーブルa2の外周に収斂させ、前記スペーサa
1が捲回されたスペーサ供給装置10と同調して回転す
る回転引取機40により回転させられているケーブルa
2の外周に12本の鎧装体a3が周方向に密着して配置
され、かつ、スペーサa1の螺旋ピッチと同一である5
 00 mmのピッチで撚合わせた。
In the third step, the optical fiber cable a2 obtained in the first step is placed at the center, and the armor body a3 obtained in the second step, in which the thermosetting resin inside is in an uncured state, is passed through the guides 30 and 32. The spacer a is converged around the outer periphery of the cable a2.
Cable a rotated by a rotary take-up machine 40 that rotates in synchronization with the spacer supply device 10 in which C.1 is wound.
Twelve armor bodies a3 are arranged in close contact with each other in the circumferential direction on the outer periphery of spacer 2, and the helical pitch is the same as that of spacer a1.
They were twisted at a pitch of 0.00 mm.

次いで、この状態で撚合わせたものを押出し機34のク
ロスヘツドに通して、その外周に低密度ポリエチレンを
押出して、外径が26.5m+mになるように外装被覆
層a41を形成した。
Next, the twisted material in this state was passed through the crosshead of the extruder 34, and low-density polyethylene was extruded around the outer periphery of the twisted material to form an outer covering layer a41 having an outer diameter of 26.5 m+m.

第4工程では、まず、第3工程で形成された外層被覆層
a41が冷却槽36で冷却されて固化され、次いで98
℃の熱湯槽38に導いて、鎧装体a3の補強繊維a31
に含浸させられている熱硬化性樹脂が硬化され、これに
よりFRP鎧装光ケーブルa4が得られ、光ケーブルa
4は回転引取機40を介して回転巻取機12に巻きとっ
た。
In the fourth step, the outer coating layer a41 formed in the third step is first cooled and solidified in the cooling tank 36, and then
The reinforcing fibers a31 of the armor body a3 are
The thermosetting resin impregnated into the fiber is cured, thereby obtaining an FRP armored optical cable a4.
4 was wound onto the rotary winder 12 via the rotary winder 40.

得られたFRP鎧装光ケーブルa4の断面形状は、第2
図に示すものであり、引張り性能、捻回性能、圧縮性能
、曲げ性能、低温特性などにおいて充分満足するもので
あった。
The cross-sectional shape of the obtained FRP armored optical cable a4 is as follows.
As shown in the figure, the tensile performance, twisting performance, compression performance, bending performance, low temperature properties, etc. were fully satisfactory.

(作用効果) 本発明のFRP鎧装光ファイバケーブルによれば、光フ
ァイバケーブルの製造に直結して、未硬化状のFRP鎧
装線を該光ファイバケーブルの外周に密接して撚合せし
、その外周に外層被覆層を施した後内部の未硬化状熱硬
化性樹脂を硬化するので、従来において未硬化段階での
貯蔵安定性を考慮した熱硬化性樹脂組成と比較して強度
発現性の高い熱硬化性樹脂及び触媒を使用でき、得られ
るFRP鎧装ケーブルのFRPによる鎧装効果を充分に
発揮させることができる。
(Operation and Effect) According to the FRP armored optical fiber cable of the present invention, uncured FRP armored wire is closely twisted around the outer periphery of the optical fiber cable in direct connection with the production of the optical fiber cable, After applying an outer coating layer to the outer periphery, the uncured thermosetting resin inside is cured, so compared to conventional thermosetting resin compositions that take into account storage stability in the uncured stage, strength development is improved. A high thermosetting resin and catalyst can be used, and the resulting FRP armored cable can fully exhibit the armoring effect of FRP.

また、光ファイバケーブルを得る第1の工程、未硬化状
のFRP鎧装線を得る第2の工程、この未硬化状の鎧装
線を前記光ファイバケーブルに撚合せその外周に熱可塑
性樹脂により被覆層を形成する第3の工程及び未硬化状
熱硬化性樹脂を硬化する第4の工程とを直結しているの
で、これらの各工程を各別に行なう場合と比較して、各
別の工程において必須である回転引取機、回転巻取機及
び巻取ドラム等が不要となり、設備の低減および省力化
などに資する。
In addition, a first step of obtaining an optical fiber cable, a second step of obtaining an uncured FRP armored wire, the uncured armored wire is twisted to the optical fiber cable, and the outer periphery is coated with thermoplastic resin. The third step of forming the coating layer and the fourth step of curing the uncured thermosetting resin are directly connected, so compared to the case where each of these steps is performed separately, the number of separate steps is reduced. This eliminates the need for a rotary take-up machine, a rotary winder, a winding drum, etc., which are indispensable in the process, contributing to equipment reduction and labor savings.

上記の如く、本発明の方法によれば、鎧装ケーブルの物
性の向上及び設備費の低減化、省力化などが画られ、極
めて有用な方法である。
As described above, the method of the present invention improves the physical properties of armored cables, reduces equipment costs, saves labor, and is an extremely useful method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかるFRP鎧装光ファイバケーブ
ルの製造方法の工程説明図、第2図は同製造方法によっ
て得られるFRP鎧装光ファイバケーブルの一例を示す
断面図である。 al・・・・・スペーサ a2・・・・・・光ファバケーブル a21・・・光フアイバ心線 a23・・・外皮シース a3・・・・・・鎧装体 a31・・・補強繊維 a32・・・被覆層 a4・・・・・FRP鎧装光ケーブル a41・・・外層被覆層
FIG. 1 is a process explanatory diagram of a method for manufacturing an FRP armored optical fiber cable according to the present invention, and FIG. 2 is a sectional view showing an example of an FRP armored optical fiber cable obtained by the same manufacturing method. al... Spacer a2... Optical fiber cable a21... Optical fiber core wire a23... Outer sheath a3... Armor body a31... Reinforcement fiber a32... ...Coating layer a4...FRP armored optical cable a41...Outer coating layer

Claims (1)

【特許請求の範囲】 スペーサの溝内に光ファイバを収納して、その外周に外
皮シースを形成して光ファイバケーブルを得る第1工程
と、 補強繊維に熱硬化性樹脂を含浸させ、この熱硬化性樹脂
が未硬化状態で熱可塑性樹脂を被覆した後固化させて複
数の未硬化状鎧装体を得る第2工程と、 前記第1工程で得られた光ファイバケーブルを中心に配
置し、かつ、前記第2工程で得られた複数の鎧装体をそ
の外周に供給しつつこれらを撚合わせた後熱可塑性樹脂
により被覆層を形成する第3工程と、 前記被覆層および前記熱硬化性樹脂をそれぞれ固化、硬
化させる第4工程とを有し、 前記第1から第4工程が連続して行われることを特徴と
するFRP鎧装光ケーブルの製造方法。
[Claims] A first step of storing an optical fiber in a groove of a spacer and forming an outer sheath around its outer periphery to obtain an optical fiber cable; and a step of impregnating reinforcing fibers with a thermosetting resin and applying heat to the reinforcing fibers. a second step in which the thermoplastic resin is coated with the curable resin in an uncured state and then solidified to obtain a plurality of uncured armor bodies, and the optical fiber cable obtained in the first step is arranged at the center; and a third step of supplying the plurality of armor bodies obtained in the second step to the outer periphery thereof, twisting them together, and then forming a covering layer with a thermoplastic resin; and the covering layer and the thermosetting resin. A method for manufacturing an FRP armored optical cable, comprising a fourth step of solidifying and hardening the resin, and the first to fourth steps are performed continuously.
JP2152618A 1990-06-13 1990-06-13 Production of frp armored optical cable Pending JPH0445405A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2152618A JPH0445405A (en) 1990-06-13 1990-06-13 Production of frp armored optical cable
JP15953391A JP3176390B2 (en) 1990-06-13 1991-06-04 Method of manufacturing reinforced plastic armored cable
FI912771A FI912771A (en) 1990-06-13 1991-06-07 FOERFARANDE FOER FRAMSTAELLNING AV EN FIBERFOERSTAERKAD KABEL OCH KABEL FRAMSTAELLD ENLIGT FOERFARANDET.
TW080104562A TW205598B (en) 1990-06-13 1991-06-11
DK91305285.8T DK0461871T3 (en) 1990-06-13 1991-06-12 Process for producing a fiber-reinforced plastic reinforced cable
ES91305285T ES2085427T3 (en) 1990-06-13 1991-06-12 MANUFACTURING METHOD OF A CABLE PROTECTED WITH PLASTIC REINFORCED WITH FIBER.
EP91305285A EP0461871B1 (en) 1990-06-13 1991-06-12 Method of manufacturing a fiber reinforced plastic armored cable
DE69118443T DE69118443T2 (en) 1990-06-13 1991-06-12 Method for producing a cable reinforced with fiber-reinforced plastic
KR1019910009709A KR0137760B1 (en) 1990-06-13 1991-06-13 Fiber reinforced plastic armored cable and its manufacturing process
US07/714,607 US5126167A (en) 1990-06-13 1991-06-13 Process of manufacturing a fiber reinforced plastic armored cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152618A JPH0445405A (en) 1990-06-13 1990-06-13 Production of frp armored optical cable

Publications (1)

Publication Number Publication Date
JPH0445405A true JPH0445405A (en) 1992-02-14

Family

ID=15544318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152618A Pending JPH0445405A (en) 1990-06-13 1990-06-13 Production of frp armored optical cable

Country Status (1)

Country Link
JP (1) JPH0445405A (en)

Similar Documents

Publication Publication Date Title
JP3176390B2 (en) Method of manufacturing reinforced plastic armored cable
US5084221A (en) Process for manufacturing a twisted frp structure
US4677818A (en) Composite rope and manufacture thereof
US4457583A (en) Method of making an optical fiber cable
JP2003033984A (en) Composite structural member and its production method
US4984869A (en) Optical fibre cable and method of making same
CN113866922A (en) Outdoor optical cable with large-core-number micro-beam tube and process manufacturing method thereof
WO2017193431A1 (en) Intelligent composite core conductor and preparation method thereof
JPH0445405A (en) Production of frp armored optical cable
JP2984021B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP4282128B2 (en) Method for producing aramid fiber reinforced curable resin wire
JPH0489346A (en) Concrete reinforcing member and its production
JPH02242987A (en) Strand for twisted yarn of fiber composite material, twisted yarn and production thereof
JP2599187B2 (en) Method of manufacturing composite striatum
JP3176389B2 (en) Method of manufacturing waterproof fiber-reinforced thermosetting resin twisted structure for optical cable
CN111965774B (en) Low-temperature-resistant special optical cable and production process
JP3422536B2 (en) Manufacturing method of double groove spiral slot
JPH0445914A (en) Manufacture of reinforced plastic armored cable
WO2022048035A1 (en) Composite material enhanced insulated conductor and manufacturing method therefor
JPS6341817A (en) Production of optical fiber cable
CN115891226A (en) High-speed pultrusion optical cable reinforced core and production process
JPS63205326A (en) Production of cordlike or rodlike prepreg
CN115657242A (en) Small-diameter fiber reinforced optical cable and manufacturing process thereof
JPH03268927A (en) Manufacture of spacer made of fiber reinforced and curing resin for carrying optical fiber