JPH0443986B2 - - Google Patents

Info

Publication number
JPH0443986B2
JPH0443986B2 JP61201287A JP20128786A JPH0443986B2 JP H0443986 B2 JPH0443986 B2 JP H0443986B2 JP 61201287 A JP61201287 A JP 61201287A JP 20128786 A JP20128786 A JP 20128786A JP H0443986 B2 JPH0443986 B2 JP H0443986B2
Authority
JP
Japan
Prior art keywords
pbo
oxide
layer
titanium
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61201287A
Other languages
Japanese (ja)
Other versions
JPS6357791A (en
Inventor
Minoru Ueda
Akio Watanabe
Takayuki Shimamune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61201287A priority Critical patent/JPS6357791A/en
Priority to EP19870112001 priority patent/EP0262369B1/en
Priority to DE8787112001T priority patent/DE3774385D1/en
Priority to CA 544902 priority patent/CA1321979C/en
Priority to CN87106028A priority patent/CN1015382B/en
Priority to MYPI87001472A priority patent/MY102525A/en
Priority to KR1019870009500A priority patent/KR900001552B1/en
Priority to US07/091,148 priority patent/US4822459A/en
Publication of JPS6357791A publication Critical patent/JPS6357791A/en
Priority to SG33392A priority patent/SG33392G/en
Publication of JPH0443986B2 publication Critical patent/JPH0443986B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、酸化鉛被覆電解用電極に関し、特に
酸水溶液や有機物含有液等の電解において、酸素
発生や陽極酸化等を行う陽極に適した酸化鉛被覆
電解用電極及びその製造方法に関するものであ
る。 〔従来の技術と問題点〕 従来から、酸化鉛を被覆した金属電極は、酸素
発生電解、陽極酸化、電気メツキ、有機電解、排
水電解処理用等の耐食性を要し、或いは、高い酸
素過電圧を必要とする電解用陽極に適したものと
して知られ、これまで種々の改良がなされてきて
いる。しかし、特に実用的な面で問題点が依然と
して存し、工業的に広く使用されるまでには至つ
ていない。 電極として使用される酸化鉛には、斜方晶系の
α−PbO2と、正方晶系でルチル型構造のβ−
PbO2の2種がある。α−PbO2はβ−PbO2に比
較して陽極として電解に使用する場合耐食性が悪
いが、反面、チタン等の金属基体上に電解的に形
成する場合には殆ど電着内部歪のないα−PbO2
を得ることができる。一方、β−PbO2は導電性
が良く、耐食性も良好であるが、電解的にβ−
PbO2を形成すると、一般に電着内部歪が大きく
なり、ひび割れを生じたり、金属基体との付着性
が悪くなる問題がある。 又、一般にPbO2層は機械的にもろく、工作性
に劣る上、PbO2層の酸化作用により、チタン等
の金属基体を不働態化し、通電を困難にする等の
問題がある。 これらの問題点の内、金属基体と酸化鉛との付
着性を改良するため、金属基体の表面積を増大さ
せる手段を取ることが知られている(例えば、特
公昭58−31396号、特公昭59−34235号)。これら
は多孔質金属等を基体とするため、その製作に特
殊な技術を要し、複雑な構造となる上、機械的強
度にも問題がある。 又、金属基体の不働態化を防止するため、金属
基体上に白金族金属を部分的に放電盛金する方法
(特公昭57−45835号)、基体表面に微小な貴金属
部を点在させる方法(特公昭54−32435号)が提
案されている。これらは、高価な貴金属を多量に
使用する必要があり、実用的でない上、製造方法
がかなり繁雑となる。 一方、金属基体上に、種々の下地層又は中間層
を介して酸化鉛層を被覆する多くの提案が知られ
ている。例えば、チタン基体表面に予めチタン
()を被覆する方法(特公昭53−45191号)、白
金族金属の薄いフラツシユ層を設ける方法(特公
昭56−9236号)、白金族金属等又は金属酸化物の
中間層を設ける方法(特公昭58−30957号、特公
昭58−31396号、特公昭59−34235号)、第〜第
族元素の炭化物、ホウ化物及び/又は第1〜
第亜族の珪化物及び/又は炭化珪素の中間層を
設けるもの(特公昭50−72878号)、スズ化合物と
アンチモン化合物からなる半導体中間層を設ける
もの(特開昭52−82680号)等がある。 これらの内、白金族金属又はその酸化物を含む
中間層を設ける場合、中間層自体が極めて高価で
実用的でない。しかもこれらは通常電極活性物質
として使用されるものであり、酸化鉛に比して一
般に陽極として酸素過電圧が小さいため、酸化鉛
被覆層のピンホール等を通して電解液が浸入した
場合、中間層が陽極として作用し、中間層表面で
電解反応によるガス発生が起こり、酸化鉛層を剥
離、破壊に至らしめる危険がある。又、スズ化合
物とアンチモン化合物の半導性物質に代表され
る、白金族金属を含まない中間層では、中間層が
陽極として作動する恐れは少ないが、導電性が不
十分であり、通電上問題が残る。更に、鉛イオン
半径は、Pb4+(6配位)で0.78〓あり、Sn4+
0.69〓やTi4+の0.61〓に比較して大きいために、
中間層と酸化鉛層が融合し、或いは固溶体を形成
して強固に付着することが困難である。又、β−
PbO2層は上記のようにイオン半径が大きいため、
ルチル型酸化物として、それ自身も相当応力がか
かつており、中間層を介しても完全な付着は困難
である。 そのため、歪の少ないα−PbO2の使用が提案
されており、特公昭55−9472号では、α−PbO2
とβ−PbO2の交互の層を設けている。又、金属
基体表面に銀メツキを施し、その上にα−PbO2
を設けることも知られている(特公昭51−23494
号)。これらは、歪の少ない酸化鉛層ができるが、
α−PbO2の耐食性の悪さや酸性液中での銀の溶
解等の問題があり、未だ十分なものとは言えな
い。 このように、従来の酸化鉛被覆電極は、性能上
や製造上等、種々の問題があり、未だ実用的に十
分に優れた電極が得られなかつた。 〔発明の目的〕 本発明は、叙上の問題を解決するためになされ
たもので、非多孔質の金属材からなる金属基体上
に緻密で付着性が優れ、且つ電着内部歪の少な
い、β−PbO2被覆を有する、長寿命で安定性の
良好な酸化鉛被覆電極を提供することを目的とす
る。 〔問題点を解決するための手段〕 本発明は、第一に非多孔質の金属材からなる耐
食性金属基体上に、白金及び/又はパラジウム酸
化物、又はこれらとチタン、タンタル、スズの酸
化物の少なくとも1種からなる酸素過電圧の大き
い下地層、α−PbO2よりなる中間層、及びβ−
PbO2よりなる被覆層を順次被覆してなることを
特徴とする酸化鉛被覆電解用電極である。 第二に、非多孔質金属材からなる耐食性金属基
体上に、白金及び/又はパラジウム酸化物、又は
これらとチタン、タンタル、スズの酸化物の少な
くとも1種からなる酸素過電圧の大きい下地層を
形成し、次に、α−PbO2よりなる中間層を形成
し、次いでβ−PbO2よりなる被覆層を形成する
ことを特徴とする酸化鉛被覆電解用電極の製造方
法である。 以下、本発明をより詳細に説明する。 本発明において、電極の基体として耐食性を有
する金属を用いるが、弁金属と総称されるチタ
ン、ジルコニウム、ニオブ、タンタル又はそれら
の基合金が好適である。該金属基体の形状素材金
属が非多孔質のものであればは特に限定されず、
板、有孔板、棒状体、エキスパンドメタル、網状
体等いずれでもよい。前記の通り、特公昭59−
34235号に記載の如き、多孔質の金属は特殊で複
雑な製造技術を要し、又、これを十分な大きさの
電極基体とした場合、機械的強度が十分でないの
で、本発明の対象とする金属基体からは除かれ
る。該基体は、後にその上に比較的厚い酸化鉛の
層を被覆するので、表面を凹凸化処理し、付着面
積を増大させることが好ましい。そのため、通常
は比較的大きい粒径を有するグリツト又はサンド
を使用してブラスト処理を行う。又、蓚酸、硫
酸、塩酸等を用いる酸洗により基体表面に微細な
凹凸を形成し、下地層との付着性の向上を図ると
共に、表面の清浄化や活性化を行うことが望まし
い。 このように、準備した金属基体の表面に基体を
保護し、中間層との付着性を良くする等のため、
白金及び/又はパラジウム酸化物を含む下地層を
形成する。該下地層として形成される白金は、通
常金属状であるが、パラジウムは金属状では耐食
性に劣るので、酸化物となつていることが必要で
ある。そのような下地層を形成するには、通常、
熱分解法が好適であり、熱分解可能な白金及び/
又はパラジウムの塩を含む溶液を塗布し、乾燥
後、空気中等にて加熱、熱分解処理して白金及
び/又はパラジウム酸化物を含む下地層被覆が容
易に得られる。 本発明において下地層に白金及び/又はパラジ
ウム酸化物用いる理由は、これらの物質は酸素発
生過電圧が十分大きいからである。即ち、酸化鉛
電極は陽極として水溶液中で使用される場合が多
いが、この時の反応は酸素発生が主である。そし
て、酸化鉛は酸素発生過電圧が大きいので、下地
層の過電圧を大きくして下地層近傍での酸素発生
等を防ぐ必要があり、上記物質がこの要求を十分
満たすことが分かつた。尚、貴金属を使用しない
導電性酸化物、例えば、酸化スズや酸化チタンで
は過電圧は十分大きいが、導電性に劣り、ルテニ
ウム、イリジウム、ロジウム等の他の貴金属で
は、導電性は良いものの、いずれも酸化鉛より酸
素過電圧が小さいため、本発明には適しない。 又、該下地層は、白金及び/又はパラジウム酸
化物のみで十分効果を達成できるが、基体との結
合性をより改善し、高価な貴金属の使用量を減ら
す等のため、他の金属酸化物と混合して使用して
も良い。他の金属酸化物として、チタン酸化物、
タンタル酸化物をドープしたチタン酸化物、スズ
酸化物等が好適に用いられ、併せて下地層自身の
耐食性の向上、酸素過電圧の上昇等の効果が期待
できる。他の金属酸化物の組成量は下地層全量の
0〜90モル%が好ましい。 下地層の被覆厚さは、0.05〜3μm程度が好適で
あり、0.05μm未満では基体を十分被覆できず、
又、3μmを越えると電気抵抗が増大する傾向があ
る。下地層を形成する熱分解条件は、被覆組成に
より適宜選定されるが、通常空気等の酸化性雰囲
気中、300〜700℃で5〜30分加熱処理すれば良
い。所望の被覆厚さを得るためには、塗布溶液の
塗布、加熱処理を繰り返して行えば良い。尚、下
地層の被覆は、同一組成の被覆の繰り返しばかり
でなく、組成の異なる被覆を適宜の順序で行つ
て、全体として所望の組成の下地層を形成するこ
とも出来る。後者の場合でも、被覆自身が薄いた
め、被覆層の加熱形成時に相互に成分が拡散し、
全体として十分に導電性の高い下地層被覆が得ら
れる。 上記した下地層に次いで、α−PbO2よりなる
中間層を形成する。該α−PbO2は、基体/下地
層と後記するβ−PbO2被覆層とのつなぎの役割
を主に果たす。即ち、前記したように、Pb4+
金属イオン半径は下地層又は基体金属のチタン、
スズ、タンタル、ニオブのそれに比して0.1〜0.2
〓大きく、両者共ルチル型酸化物となり、β−
PbO2と同型であるので、そのミスフイトがより
大きく付着性が悪くなる恐れがあるので、結晶系
の異なるα−PbO2中間層を介することにより、
これを緩和することが出来る。従つて、α−
PbO2層の厚さは、このつなぎの役割を果たす範
囲で薄くてよく、厚過ぎると耐食性や導電性に問
題が起こる恐れがあるので、20〜500μm程度が適
当である。α−PbO2中間層の形成方法は、特に
限定されるものではないが、通常、Pbイオンを
含むアルカリ水溶液中から陽極酸化反応によつて
電解的に形成する方法が好適である。代表的な条
件として、3〜5N NaOH水溶液中に、一酸化鉛
(PbO)を溶解飽和させた電解液を用い、前記下
地層を被覆した基体を陽極として、0.1〜10A/
dm2の電流密度、温度20〜60℃、電圧1〜2Vで
0.1〜10時間電解することにより所望の厚さの中
間層被覆が得られる。 このようにして、α−PbO2中間層を被覆した
後、その表面にβ−PbO2被覆層を形成する。β
−PbO2層は、中間層のα−PbO2との親和性が極
めて良好であり、従来から知られているβ−
PbO2の形成方法が適用できる。通常30〜35%の
硝酸鉛水溶液等の酸性浴を電解液とし、前記下地
層及び中間層を被覆した基体を陽極として電解的
方法により容易にβ−PbO2層を形成することが
できる。電流密度は0.1〜20A/dm2とし、電解時
間は01.〜10時間程度が適当である。尚、このよ
うな方法によつてβ−PbO2層中にわずかにα−
PbO2層が混入してくるが、耐久性上問題とはな
らない。 このようにして、β−PbO2層を電極活性表面
とする酸化鉛被覆電極が容易に得られる。 〔実施例〕 以下、本発明の実施例を記載するが、これらは
本発明を限定するものではない。 実施例 1 板厚1.5mmの純チタン製のエクスパンドメツシ
ユの表面を、#70(平均粒径0.7mm)のスチールグ
リツトを使用してブラストがけを行い、次いで25
%の沸騰塩酸水溶液中で15分間酸洗した。このチ
タンエクスパンドメツシユを基体として、その表
面に厚さ0.1μmの組成がpt:Ta=1:1(金属モ
ル比)の白金と酸化タンタルからなる下地層を設
けた。下地層は、塗布液に白金として塩化白金酸
を、タンタルとして五塩化タンタルを4%塩酸水
溶液に溶解したものを用い、これを基体のエクス
パンドメツシユに刷毛にて塗布し、40℃で乾燥
後、マツフル炉にて500℃10分間加熱し、この操
作を4回繰り返して形成した。 次いで、これを陽極として、陰極にチタン板を
使用して3.5Nの苛性ソーダ水溶液に一酸化鉛
(PbO)を溶解飽和させた液を電解液として、40
℃において1A/dm2の電流密度で2時間電解を
行い、中間層のα−PbO2被覆層を形成した。該
中間層の厚さは約100μmであつた。 更に表面被覆層として、β−PbO2からなる二
酸化鉛層を以下の電解的方法で形成した。即ち、
電解液として濃度30重量%の硝酸鉛水溶液を用
い、陰極としてチタン板を使用し、マグネチツク
スターラーを用いて液を攪拌しながら、温度65〜
70℃、2A/dm2にて2時間通電した。これによ
つて、厚さ約200μmのβ−PbO2被覆層を有する
電極が得られた。 対比用電極として、下地層である白金−タンタ
ル酸化物を除いたもの(対比例1)、中間層であ
るα−PbO2層を除いたもの、(対比例2)及び表
面被覆層のみのもの(対比例3)を作製した。こ
れらの対比例試料は、上記の条件以外は全て実施
例電極の作製方法と同じとした。これらの試料に
ついて、60℃、150g/の硫酸水溶液中で陽極
として、200A/dm2の電流密度で加速電解試験
を行つた。 その結果を第1表に示した。 これらの表から分かるように、下地層のない試
料(対比例1及び対比例3)は、最初の3〜5時
間以内に通電不能となり、基体から被覆が剥離し
た。又、中間層を設けず、下地層の上に直接表面
被覆層を設けたもの(対比例2)はある程度の寿
命を認められるが、β−PbO2(被覆層)と下地層
との結合性が悪いために電解中に間もなく被覆層
の剥離が生じた。これに対して本実施例の電極
は、300時間以上の電解で重量減少や剥離が無く、
安定に長時間電解を行うことが出来ることが分か
つた。
[Industrial Application Field] The present invention relates to a lead oxide coated electrode for electrolysis, and in particular to a lead oxide coated electrode for electrolysis that is suitable for use as an anode for generating oxygen, anodic oxidation, etc. in the electrolysis of acid aqueous solutions, organic matter-containing liquids, etc. The present invention relates to a manufacturing method thereof. [Conventional technology and problems] Traditionally, metal electrodes coated with lead oxide have required corrosion resistance for use in oxygen generating electrolysis, anodization, electroplating, organic electrolysis, wastewater electrolysis treatment, etc., or have required high oxygen overvoltage. It is known to be suitable for the required electrolytic anode, and various improvements have been made so far. However, there are still problems, particularly in practical terms, and it has not yet been widely used industrially. The lead oxides used as electrodes include α-PbO2, which has an orthorhombic system, and β- PbO2 , which has a tetragonal system and a rutile structure.
There are two types of PbO2 . Compared to β-PbO 2, α-PbO 2 has poor corrosion resistance when used as an anode for electrolysis, but on the other hand, when it is electrolytically formed on a metal substrate such as titanium, α-PbO 2 has almost no internal strain due to electrodeposition. −PbO2
can be obtained. On the other hand, β- PbO2 has good conductivity and corrosion resistance, but it is electrolytically
When PbO 2 is formed, there is generally a problem that the internal strain of the electrodeposition becomes large, causing cracks and poor adhesion to the metal substrate. Furthermore, in general, the PbO 2 layer is mechanically fragile and has poor workability, and the oxidation effect of the PbO 2 layer makes the metal substrate such as titanium passivated, making it difficult to conduct electricity. Among these problems, in order to improve the adhesion between the metal substrate and lead oxide, it is known to take measures to increase the surface area of the metal substrate (for example, Japanese Patent Publication No. 58-31396, Japanese Patent Publication No. 59 Sho. −34235). Since these are based on porous metal or the like, special techniques are required to manufacture them, resulting in complex structures and problems with mechanical strength. In addition, in order to prevent the metal substrate from becoming passivated, there is a method of partially discharging a platinum group metal on the metal substrate (Japanese Patent Publication No. 57-45835), and a method of dotting the surface of the substrate with minute noble metal parts. (Special Publication No. 54-32435) has been proposed. These require the use of a large amount of expensive precious metals, are not practical, and require a considerably complicated manufacturing method. On the other hand, many proposals are known for coating a lead oxide layer on a metal substrate via various underlayers or intermediate layers. For example, a method of pre-coating titanium () on the surface of a titanium substrate (Japanese Patent Publication No. 53-45191), a method of providing a thin flash layer of platinum group metal (Japanese Patent Publication No. 56-9236), a method of coating a titanium substrate surface with titanium (2017-45191), a method of providing a thin flash layer of a platinum group metal (Japanese Patent Publication No. 56-9236), a method of coating a titanium substrate surface with titanium (2017-45191), a method of providing a thin flash layer of a platinum group metal (Japanese Patent Publication No. 56-9236), a method of coating a titanium substrate surface with titanium (2018), etc. (Japanese Patent Publication No. 58-30957, Japanese Patent Publication No. 58-31396, Japanese Patent Publication No. 59-34235)
Those with an intermediate layer made of a subgroup silicide and/or silicon carbide (Japanese Patent Publication No. 72878/1982), those with a semiconductor intermediate layer made of a tin compound and an antimony compound (Japanese Unexamined Patent Publication No. 52-82680), etc. be. Among these, when an intermediate layer containing a platinum group metal or its oxide is provided, the intermediate layer itself is extremely expensive and impractical. Moreover, these are normally used as electrode active materials and generally have a lower oxygen overvoltage as an anode than lead oxide, so if the electrolyte enters through a pinhole in the lead oxide coating layer, the intermediate layer will become an anode. There is a risk of gas generation due to electrolytic reaction on the surface of the intermediate layer, which may lead to peeling and destruction of the lead oxide layer. In addition, with intermediate layers that do not contain platinum group metals, such as semiconducting substances such as tin compounds and antimony compounds, there is little risk that the intermediate layer will function as an anode, but the conductivity is insufficient and there are problems with current flow. remains. Furthermore, the lead ion radius is 0.78〓 for Pb 4+ (6 coordination), and that for Sn 4+
Because it is larger compared to 0.69〓 and 0.61〓 of Ti 4+ ,
It is difficult for the intermediate layer and the lead oxide layer to fuse or form a solid solution and adhere firmly. Also, β-
Since the PbO 2 layer has a large ionic radius as mentioned above,
As a rutile type oxide, it itself is subject to considerable stress, and complete adhesion is difficult even through an intermediate layer. Therefore, the use of α-PbO 2 with less distortion has been proposed, and in Japanese Patent Publication No. 55-9472, α-PbO 2
and β-PbO 2 . In addition, silver plating is applied to the surface of the metal substrate, and α-PbO 2
It is also known to provide a
issue). These produce a lead oxide layer with little strain, but
There are problems such as poor corrosion resistance of α-PbO 2 and dissolution of silver in acidic liquid, and it is still not considered to be sufficient. As described above, conventional lead oxide coated electrodes have various problems in terms of performance, manufacturing, etc., and it has not yet been possible to obtain a sufficiently excellent electrode for practical use. [Object of the Invention] The present invention has been made in order to solve the above-mentioned problems. The purpose of the present invention is to provide a lead oxide coated electrode having a β-PbO 2 coating and having a long life and good stability. [Means for Solving the Problems] The present invention first provides a coating of platinum and/or palladium oxide, or oxides of titanium, tantalum, and tin together with platinum and/or palladium oxide on a corrosion-resistant metal substrate made of a non-porous metal material. an underlayer with a high oxygen overpotential made of at least one of the above, an intermediate layer made of α-PbO 2 , and a β-
This is a lead oxide-coated electrode for electrolysis, characterized by being sequentially coated with coating layers made of PbO 2 . Second, a base layer with a high oxygen overvoltage consisting of platinum and/or palladium oxide, or at least one of these and titanium, tantalum, and tin oxides is formed on a corrosion-resistant metal substrate made of a non-porous metal material. This is a method for producing a lead oxide-coated electrode for electrolysis, which is characterized in that, next, an intermediate layer made of α-PbO 2 is formed, and then a coating layer made of β-PbO 2 is formed. The present invention will be explained in more detail below. In the present invention, a metal having corrosion resistance is used as the base of the electrode, and titanium, zirconium, niobium, tantalum, or a base alloy thereof, which is collectively called valve metal, is suitable. There is no particular limitation as long as the material metal for the shape of the metal base is non-porous,
It may be a plate, a perforated plate, a rod-shaped body, an expanded metal, a net-shaped body, or the like. As mentioned above, the special public service was issued in 1983.
Porous metals as described in No. 34235 require special and complicated manufacturing techniques, and if they are used as electrode substrates of sufficient size, they do not have sufficient mechanical strength, so they are not the subject of the present invention. It is excluded from metal substrates. Since the substrate will later be coated with a relatively thick layer of lead oxide, it is preferable to roughen the surface to increase the adhesion area. Therefore, the blasting process is usually carried out using grit or sand having a relatively large particle size. It is also desirable to form fine irregularities on the surface of the substrate by pickling with oxalic acid, sulfuric acid, hydrochloric acid, etc. to improve adhesion to the underlying layer and to clean and activate the surface. In this way, in order to protect the surface of the prepared metal substrate and improve adhesion with the intermediate layer,
A base layer containing platinum and/or palladium oxide is formed. The platinum formed as the underlayer is usually in the form of a metal, but since palladium has poor corrosion resistance in the form of a metal, it is required to be in the form of an oxide. To form such a base layer, typically
Pyrolysis methods are preferred, with pyrolyzable platinum and/or
Alternatively, a solution containing a palladium salt is applied, dried, and then heated and thermally decomposed in the air to easily obtain a base layer coating containing platinum and/or palladium oxide. The reason why platinum and/or palladium oxide is used for the underlayer in the present invention is that these materials have a sufficiently large oxygen generation overvoltage. That is, a lead oxide electrode is often used as an anode in an aqueous solution, and the main reaction at this time is oxygen generation. Since lead oxide has a large oxygen generation overvoltage, it is necessary to increase the overvoltage of the underlayer to prevent oxygen generation in the vicinity of the underlayer, and it has been found that the above-mentioned material satisfies this requirement. Conductive oxides that do not use noble metals, such as tin oxide and titanium oxide, have a sufficiently high overvoltage, but have poor conductivity, while other noble metals such as ruthenium, iridium, and rhodium have good conductivity, but none of them. Since it has a lower oxygen overvoltage than lead oxide, it is not suitable for the present invention. In addition, although sufficient effects can be achieved by using only platinum and/or palladium oxide for the underlayer, other metal oxides may be used to further improve the bonding properties with the substrate and reduce the amount of expensive precious metals used. It may be used in combination with. Other metal oxides include titanium oxide,
Titanium oxide, tin oxide, etc. doped with tantalum oxide are preferably used, and effects such as improving the corrosion resistance of the underlayer itself and increasing oxygen overvoltage can be expected. The composition amount of other metal oxides is preferably 0 to 90 mol% of the total amount of the underlayer. The coating thickness of the base layer is preferably about 0.05 to 3 μm; if it is less than 0.05 μm, it will not be possible to sufficiently cover the substrate.
Moreover, if the thickness exceeds 3 μm, the electrical resistance tends to increase. The thermal decomposition conditions for forming the base layer are appropriately selected depending on the coating composition, but it is usually sufficient to perform a heat treatment at 300 to 700°C for 5 to 30 minutes in an oxidizing atmosphere such as air. In order to obtain the desired coating thickness, the application of the coating solution and the heat treatment may be repeated. Incidentally, the coating of the base layer is not limited to repeating coatings of the same composition, but also coatings of different compositions can be performed in an appropriate order to form a base layer having a desired composition as a whole. Even in the latter case, since the coating itself is thin, the components will diffuse into each other when the coating layer is heated and formed.
As a whole, a base layer coating with sufficiently high conductivity is obtained. Next to the base layer described above, an intermediate layer made of α-PbO 2 is formed. The α-PbO 2 mainly serves as a link between the substrate/underlayer and the β-PbO 2 coating layer described later. That is, as mentioned above, the metal ion radius of Pb 4+ depends on the underlying layer or base metal titanium,
0.1 to 0.2 compared to that of tin, tantalum, and niobium
〓 Largely, both become rutile type oxides, β-
Since it is the same type as PbO 2 , there is a risk that the misfit will be larger and the adhesion will be worse.
This can be alleviated. Therefore, α−
The thickness of the PbO 2 layer may be as thin as it can play the role of this connector. If it is too thick, problems may occur in corrosion resistance and conductivity, so a thickness of about 20 to 500 μm is appropriate. The method for forming the α-PbO 2 intermediate layer is not particularly limited, but a method in which it is formed electrolytically by an anodic oxidation reaction from an alkaline aqueous solution containing Pb ions is usually suitable. Typical conditions include using an electrolytic solution in which lead monoxide (PbO) is dissolved and saturated in a 3-5N NaOH aqueous solution, and using the base coated with the base layer as an anode, at a current of 0.1-10A/
At current density of dm 2 , temperature 20-60℃, voltage 1-2V
An interlayer coating of desired thickness is obtained by electrolyzing for 0.1 to 10 hours. After coating the α-PbO 2 intermediate layer in this manner, a β-PbO 2 coating layer is formed on its surface. β
-PbO 2 layer has extremely good affinity with α-PbO 2 in the intermediate layer, and has a very good affinity with the previously known β-PbO 2 layer.
The method of forming PbO 2 is applicable. The β-PbO 2 layer can be easily formed by an electrolytic method using an acidic bath such as a 30 to 35% lead nitrate aqueous solution as an electrolyte and using the substrate coated with the base layer and intermediate layer as an anode. The appropriate current density is 0.1 to 20 A/dm 2 and the electrolysis time is approximately 0.1 to 10 hours. In addition, by this method, a slight amount of α- is added to the β- PbO2 layer.
Although two layers of PbO are mixed in, this does not pose a problem in terms of durability. In this way, a lead oxide coated electrode having the β-PbO 2 layer as the electrode active surface can be easily obtained. [Examples] Examples of the present invention will be described below, but these are not intended to limit the present invention. Example 1 The surface of an expanded mesh made of pure titanium with a plate thickness of 1.5 mm was blasted using #70 steel grit (average grain size 0.7 mm), and then 25 mm
% boiling aqueous hydrochloric acid for 15 minutes. Using this titanium expanded mesh as a base, a 0.1 μm thick underlayer consisting of platinum and tantalum oxide having a composition of pt:Ta=1:1 (metal molar ratio) was provided on its surface. For the base layer, use a coating solution in which platinum is chloroplatinic acid and tantalum is tantalum pentachloride dissolved in a 4% aqueous solution of hydrochloric acid.This is applied to the expanded mesh base with a brush, and after drying at 40℃. , was heated at 500° C. for 10 minutes in a Matsufuru furnace, and this operation was repeated four times to form it. Next, using this as an anode, using a titanium plate as a cathode, and using a saturated solution of lead monoxide (PbO) in a 3.5N caustic soda aqueous solution as an electrolyte,
Electrolysis was carried out for 2 hours at a current density of 1 A/dm 2 at a temperature of 1 A/dm 2 to form an intermediate α-PbO 2 coating layer. The thickness of the intermediate layer was approximately 100 μm. Further, as a surface coating layer, a lead dioxide layer made of β-PbO 2 was formed by the following electrolytic method. That is,
Using a lead nitrate aqueous solution with a concentration of 30% by weight as the electrolyte, using a titanium plate as the cathode, and stirring the solution using a magnetic stirrer, the temperature was raised to 65~
Electricity was applied at 70° C. and 2 A/dm 2 for 2 hours. This resulted in an electrode with a β-PbO 2 coating layer approximately 200 μm thick. As contrast electrodes, one without the base layer of platinum-tantalum oxide (Comparative Example 1), one without the α-PbO 2 layer as the intermediate layer, (Comparative Example 2), and one with only the surface coating layer. (Comparative Example 3) was produced. These comparative example samples were manufactured using the same method as the example electrode except for the above conditions. These samples were subjected to an accelerated electrolytic test at 60° C. in a 150 g sulfuric acid aqueous solution as an anode at a current density of 200 A/dm 2 . The results are shown in Table 1. As can be seen from these tables, the samples without the underlayer (Comparative Example 1 and Comparative Example 3) became unable to conduct electricity within the first 3 to 5 hours, and the coating peeled off from the substrate. In addition, a product in which a surface coating layer is provided directly on the base layer without providing an intermediate layer (Comparative Example 2) has a certain lifespan, but the bonding between β-PbO 2 (coating layer) and the base layer Due to the poor quality, the coating layer soon peeled off during electrolysis. On the other hand, the electrode of this example showed no weight loss or peeling after more than 300 hours of electrolysis.
It was found that electrolysis could be carried out stably for a long time.

〔発明の効果〕〔Effect of the invention〕

本発明は、電極基体に非多孔質の金属材からな
る耐食性金属を用い白金及び/又はパラジウム酸
化物を含む酸素過電圧の大きい下地層、α−
PbO2よりなる中間層及びβ−PbO2よりなる被覆
層を順次被覆したので、多孔質金属基体を用いな
いでも基体に強固に付着した堅牢で耐久性のある
酸化鉛被覆電極が得られる。又、電極の不働態化
や抵抗増大が防止され、より高電流密度での電解
においても、本発明の電極は、長期間安定して使
用でき、高い耐食性や高酸素過電圧を必要とする
種々の電解用、或いは電解処理用の電極として極
めて有用である。
The present invention uses a corrosion-resistant metal made of a non-porous metal material for the electrode substrate, an underlayer containing platinum and/or palladium oxide, and a high oxygen overvoltage, α-
Since the intermediate layer made of PbO 2 and the coating layer made of β-PbO 2 are coated in sequence, a robust and durable lead oxide coated electrode that firmly adheres to the substrate can be obtained without using a porous metal substrate. In addition, the electrode of the present invention can be used stably for a long period of time even in electrolysis at higher current densities by preventing electrode passivation and resistance increase, and can be used in various applications that require high corrosion resistance and high oxygen overvoltage. It is extremely useful as an electrode for electrolysis or electrolytic treatment.

Claims (1)

【特許請求の範囲】 1 非多孔質の金属材からなる耐食性金属基体上
に、白金及び/又はパラジウム酸化物、又はこれ
らとチタン、タンタル、スズの酸化物の少なくと
も1種からなる酸素過電圧の大きい下地層、α−
PbO2よりなる中間層、及びβ−PbO2よりなる被
覆層を順次被覆してなることを特徴とする酸化鉛
被覆電解用電極。 2 耐食性金属基体が、チタン、ジルコニウ
ム、ニオブ、タンタル又はこれらの基合金である
特許請求の範囲第1項に記載の電極。 3 α−PbO2中間層の厚さが20〜500μmである
特許請求の範囲第1項に記載の電極。 4 非多孔質の金属材からなる耐食性金属基体上
に、白金及び/又はパラジウム酸化物、又はこれ
らとチタン、タンタル、スズの酸化物の少なくと
も1種からなる酸素過電圧の大きい下地層を形成
し、次にα−PbO2よりなる中間層を形成し、次
いでβ−PbO2よりなる被覆層を形成することを
特徴とする酸化鉛被覆電解用電極の製造方法。 5 耐食性金属基体の表面を予め、ブラスト処理
及び/又は酸洗し、次いで下地層を形成する特許
請求の範囲第4項に記載の電極の製造方法。 6 下地層金属成分の熱分解可能な塩を含む溶液
を耐食性金属基体上に塗布し、加熱処理して下地
層を形成する特許請求の範囲第4項に記載の電極
の製造方法。 7 鉛イオンを含むアルカリ性浴から電解的にα
−PbO2よりなる中間層を形成する特許請求の範
囲第4項に記載の電極の製造方法。 8 鉛イオンを含む酸性浴から電解的にβ−
PbO2よりなる被覆層を形成する特許請求の範囲
第4項に記載の電極の製造方法。
[Scope of Claims] 1. Platinum and/or palladium oxide, or at least one of these and titanium, tantalum, or tin oxide, with a high oxygen overvoltage, on a corrosion-resistant metal substrate made of a non-porous metal material. Base layer, α−
A lead oxide-coated electrode for electrolysis, characterized in that it is formed by successively covering an intermediate layer made of PbO 2 and a coating layer made of β-PbO 2 . 2. The electrode according to claim 1, wherein the corrosion-resistant metal substrate is titanium, zirconium, niobium, tantalum, or a base alloy thereof. 3. The electrode according to claim 1, wherein the α-PbO 2 intermediate layer has a thickness of 20 to 500 μm. 4. Forming a base layer with a high oxygen overvoltage consisting of platinum and/or palladium oxide, or at least one of these and titanium, tantalum, and tin oxides on a corrosion-resistant metal substrate made of a non-porous metal material, A method for manufacturing a lead oxide-coated electrode for electrolysis, characterized in that an intermediate layer made of α-PbO 2 is then formed, and then a coating layer made of β-PbO 2 is formed. 5. The method for manufacturing an electrode according to claim 4, wherein the surface of the corrosion-resistant metal substrate is previously blasted and/or pickled, and then a base layer is formed. 6. Base layer The method for manufacturing an electrode according to claim 4, wherein a solution containing a thermally decomposable salt of a metal component is applied onto a corrosion-resistant metal substrate and heat-treated to form a base layer. 7 Electrolytically remove α from an alkaline bath containing lead ions.
- The method for manufacturing an electrode according to claim 4, wherein an intermediate layer made of PbO2 is formed. 8 Electrolytically remove β- from an acidic bath containing lead ions.
5. The method for manufacturing an electrode according to claim 4, wherein a coating layer made of PbO 2 is formed.
JP61201287A 1986-08-29 1986-08-29 Lead oxide coated electrode for electrolysis and its production Granted JPS6357791A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP61201287A JPS6357791A (en) 1986-08-29 1986-08-29 Lead oxide coated electrode for electrolysis and its production
EP19870112001 EP0262369B1 (en) 1986-08-29 1987-08-18 Lead oxide-coated electrode for use in electrolysis and process for producing the same
DE8787112001T DE3774385D1 (en) 1986-08-29 1987-08-18 LEAD-OXIDE COATED ELECTRODE FOR ELECTROLYSIS AND THEIR PRODUCTION METHOD.
CA 544902 CA1321979C (en) 1986-08-29 1987-08-19 Lead oxide-coated electrode for use in electrolysis and process for producing the same
CN87106028A CN1015382B (en) 1986-08-29 1987-08-27 Lead oxide-coated electrode for use in electrolysis and process for production same
MYPI87001472A MY102525A (en) 1986-08-29 1987-08-28 Lead oxide-coated electrode for use in electrolysis and process for producing the same.
KR1019870009500A KR900001552B1 (en) 1986-08-29 1987-08-29 Lead oxide-coated electrode for use in electrolysis and process for producing the same
US07/091,148 US4822459A (en) 1986-08-29 1987-08-31 Lead oxide-coated electrode for use in electrolysis and process for producing the same
SG33392A SG33392G (en) 1986-08-29 1992-03-19 Lead oxide-coated electrode for use in electrolysis and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201287A JPS6357791A (en) 1986-08-29 1986-08-29 Lead oxide coated electrode for electrolysis and its production

Publications (2)

Publication Number Publication Date
JPS6357791A JPS6357791A (en) 1988-03-12
JPH0443986B2 true JPH0443986B2 (en) 1992-07-20

Family

ID=16438473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201287A Granted JPS6357791A (en) 1986-08-29 1986-08-29 Lead oxide coated electrode for electrolysis and its production

Country Status (1)

Country Link
JP (1) JPS6357791A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294494A (en) * 1989-05-10 1990-12-05 Japan Carlit Co Ltd:The Anode for generating oxygen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934235A (en) * 1982-08-23 1984-02-24 松下電器産業株式会社 Electromotive grator
JPS61201288A (en) * 1985-03-05 1986-09-05 三井東圧化学株式会社 Temperature indication label

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934235A (en) * 1982-08-23 1984-02-24 松下電器産業株式会社 Electromotive grator
JPS61201288A (en) * 1985-03-05 1986-09-05 三井東圧化学株式会社 Temperature indication label

Also Published As

Publication number Publication date
JPS6357791A (en) 1988-03-12

Similar Documents

Publication Publication Date Title
EP1616046B1 (en) Electrocatalytic coating with platinium group metals and electrode made therefrom
US4797182A (en) Electrode with a platinum metal catalyst in surface film and its use
US7247229B2 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
GB2239260A (en) Oxygen-generating electrolysis electrode and method for the preparation thereof
JP2003503598A (en) Copper foil manufacturing method
US4039400A (en) Method of forming electrodes
EP0262369B1 (en) Lead oxide-coated electrode for use in electrolysis and process for producing the same
JPS6022074B2 (en) Durable electrolytic electrode and its manufacturing method
JPH025830B2 (en)
US6368489B1 (en) Copper electrowinning
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
KR860001050B1 (en) Metal electrode for use in electrolytic process
EP0046449B1 (en) Dimensionally stable coated electrode for electrolytic process, comprising protective oxide interface on valve metal base, and process for its manufacture
JP2596807B2 (en) Anode for oxygen generation and its production method
US4435313A (en) Electrode with outer coating for effecting an electrolytic process and protective intermediate coating on a conductive base, and method of making same
JP2768904B2 (en) Oxygen generating electrode
US5665218A (en) Method of producing an oxygen generating electrode
JPH02179891A (en) Anode for generate oxygen and production thereof
JPH0443986B2 (en)
GB2083837A (en) Manufacture of electrode with manganese dioxide coating, valve metal base, intermediate semiconducting layer
JPH0246674B2 (en)
JPH06248484A (en) Electrode and its production
JPS5827353B2 (en) Anode for electrolysis

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term