JPH0443879B2 - - Google Patents

Info

Publication number
JPH0443879B2
JPH0443879B2 JP11315387A JP11315387A JPH0443879B2 JP H0443879 B2 JPH0443879 B2 JP H0443879B2 JP 11315387 A JP11315387 A JP 11315387A JP 11315387 A JP11315387 A JP 11315387A JP H0443879 B2 JPH0443879 B2 JP H0443879B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
silicon
growth
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11315387A
Other languages
Japanese (ja)
Other versions
JPS63277596A (en
Inventor
Masaki Furukawa
Akira Suzuki
Mitsuhiro Shigeta
Yoshihisa Fujii
Atsuko Uemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP11315387A priority Critical patent/JPS63277596A/en
Publication of JPS63277596A publication Critical patent/JPS63277596A/en
Publication of JPH0443879B2 publication Critical patent/JPH0443879B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 <技術分野> 本発明は炭化珪素単結晶の成長方法に関するも
のであり、特に成長用基板として独特の珪素単結
晶基板を用いた結晶成長技術に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a method for growing a silicon carbide single crystal, and particularly to a crystal growth technique using a unique silicon single crystal substrate as a growth substrate.

<従来技術> 炭化珪素半導体は広い禁制帯幅2.2〜3.3eVをも
ち、また熱的、化学的および機械的に極めて安定
で放射線損傷にも強いという特徴をもつている。
従つて、炭化珪素を用いた半導体素子は従来珪素
Si等の他の半導体では使用が困難な高温下、高出
力駆動、放射線照射下等の苛酷な条件下で使用で
きる素子材料として広範な分野での応用が期待さ
れる。しかしながら、炭化珪素半導体はこのよう
な多くの利点及び可能性を有する材料であるにも
かかわらず、実用化が阻まれているのは、生産性
を考慮した工業的規模での量産に必要な寸法・形
状を制御性良く規定した大面積かつ高品質の単結
晶を安定に供給し得る結晶成長技術が確立されて
いなかつたところに原因がある。
<Prior Art> Silicon carbide semiconductors have a wide forbidden band width of 2.2 to 3.3 eV, are extremely stable thermally, chemically and mechanically, and are resistant to radiation damage.
Therefore, semiconductor devices using silicon carbide are
It is expected to be applied in a wide range of fields as an element material that can be used under harsh conditions such as high temperatures, high-output drive, and radiation irradiation, which are difficult to use with other semiconductors such as Si. However, despite the fact that silicon carbide semiconductors are materials with many advantages and possibilities, practical application is hindered by the dimensions required for mass production on an industrial scale with productivity in mind. - The cause is that crystal growth technology that can stably supply large-area, high-quality single crystals with well-defined shapes has not been established.

従来、研究室規模では昇華再結晶法(レーリー
法とも称される)等で炭化珪素単結晶を成長させ
たり、このレーリー法で得られた単結晶片上に気
相成長法や液相成長法を用いてより大きな炭化珪
素単結晶をエピタキシヤル成長させることで炭化
珪素単結晶を得ている。しかしながら、これらの
単結晶は実用性の観点からはいまだ小面積であ
り、寸法や形状を高精度に制御することは困難で
ある。また炭化珪素に存在する結晶多形(ポリタ
イプ)および不純物濃度の制御も容易でない。
Conventionally, on a laboratory scale, silicon carbide single crystals have been grown by sublimation recrystallization method (also called Rayleigh method), and vapor phase growth method or liquid phase growth method has been grown on single crystal pieces obtained by this Rayleigh method. A silicon carbide single crystal is obtained by epitaxially growing a larger silicon carbide single crystal. However, from a practical point of view, these single crystals still have a small area, and it is difficult to control their dimensions and shapes with high precision. Furthermore, it is not easy to control the crystal polytypes and impurity concentrations present in silicon carbide.

一方、最近本発明者らによつて珪素単結晶基板
上に気相成長法(CVD法)で良質かつ大面積の
3c型炭化珪素単結晶を成長させる方法が提案さ
れている(特願昭58−76842号)。この方法は安価
で入手の容易な珪素単結晶基板上に結晶多形、不
純物濃度、寸法・形状等を制御した大面積で高品
質の炭化珪素単結晶を成長形成できる方法であ
る。また珪素単結晶基板の表面を炭化水素ガス雰
囲気下で加熱し炭化することが炭化珪素の薄膜を
表面に形成し、この薄膜上にCVD法により炭化
珪素単結晶を成長させる方法も開発されている。
しかしながら、これらの方法を用いても、珪素単
結晶基板と得られた炭化珪素単結晶の間の格子定
数の相違にともなう内部応力は完全には除去する
ことができず、反り、クラツクを生じ、素子作製
段階では問題が生じる。
On the other hand, the present inventors have recently proposed a method of growing a high-quality, large-area 3C type silicon carbide single crystal on a silicon single-crystal substrate by vapor phase growth (CVD) (Patent Application No. 58) −76842). This method is a method by which a large-area, high-quality silicon carbide single crystal can be grown on a silicon single-crystal substrate, which is inexpensive and easily available, with controlled crystal polymorphism, impurity concentration, size, shape, etc. A method has also been developed in which a thin film of silicon carbide is formed on the surface by heating and carbonizing the surface of a silicon single crystal substrate in a hydrocarbon gas atmosphere, and a silicon carbide single crystal is grown on this thin film by CVD. .
However, even if these methods are used, internal stress due to the difference in lattice constant between the silicon single crystal substrate and the obtained silicon carbide single crystal cannot be completely removed, causing warping, cracking, and Problems arise at the element fabrication stage.

<発明が解決しようとする課題> 本発明は上述の問題点に鑑み、成長層内の内部
応力を低減して結晶性の良い炭化珪素単結晶を作
製することができる結晶成長方法を提供すること
を目的とする。
<Problems to be Solved by the Invention> In view of the above-mentioned problems, the present invention provides a crystal growth method that can reduce internal stress in the growth layer and produce a silicon carbide single crystal with good crystallinity. With the goal.

<課題を解決するための手段> 本発明の炭化珪素単結晶の成長方法は、珪素単
結晶基板の結晶成長面に部分的に粗面を形成し、
該粗面領域で上記結晶成長面を複数の成長領域に
区画し、この珪素単結晶基板を成長用基板として
用いて炭化珪素単結晶をエピタキシヤル成長させ
ることを特徴とする。
<Means for Solving the Problems> The method for growing a silicon carbide single crystal of the present invention includes forming a partially rough surface on the crystal growth surface of a silicon single crystal substrate,
The method is characterized in that the crystal growth surface is divided into a plurality of growth regions in the rough surface region, and a silicon carbide single crystal is epitaxially grown using this silicon single crystal substrate as a growth substrate.

炭化珪素単結晶のエピタキシヤル成長の方法と
しては、CVD法や分子線エピタキシヤル法等を
用いることができる。
As a method for epitaxial growth of silicon carbide single crystal, CVD method, molecular beam epitaxial method, etc. can be used.

<作用> 部分的に粗面の形成された珪素単結晶基板の上
に炭化珪素単結晶をエピタキシヤル成長させる
と、粗面上には多結晶の炭化珪素が、粗面の形成
されていない平坦面上には単結晶の炭化珪素が成
長する。このため、単結晶の炭化珪素成長領域が
粗面により分割されることになり、また、多結晶
の炭化珪素膜が、単結晶の炭化珪素膜相互間に位
置して、単結晶炭化珪素膜の内部応力を緩和する
緩衝材として働く。
<Function> When a silicon carbide single crystal is epitaxially grown on a silicon single crystal substrate with a partially rough surface, polycrystalline silicon carbide is grown on the rough surface on a flat surface without a rough surface. Single crystal silicon carbide grows on the surface. Therefore, the single-crystal silicon carbide growth region is divided by the rough surface, and the polycrystalline silicon carbide film is located between the single-crystal silicon carbide films. Acts as a buffer to relieve internal stress.

<実施例 1> 第1図は本発明の1実施例の説明に供する炭化
珪素単結晶の製作工程図である。第2図は結晶成
長に用いる成長装置の1例を示す構成図である。
<Example 1> FIG. 1 is a manufacturing process diagram of a silicon carbide single crystal for explaining one example of the present invention. FIG. 2 is a configuration diagram showing an example of a growth apparatus used for crystal growth.

第1図Aに示す如く結晶成長される面が111
に設定された結晶成長用支持基板として珪素単結
晶基板15を用いる。この結晶成長用面にアルミ
ニウムAlをマスク16として第1図Bに示す如
く並設した後、この結晶成長用面をフロンガス
CF4と酸素ガスO2を用いたリアクテイブイオンエ
ツチングRIE法によりエツチングし、その後マス
ク16を除去して第1図Cに示すようにマスクさ
れていた面を平滑面としエツチング面を粗面形状
とした炭化珪素単結晶成長用基板14を得る。
Alのマスク16は0.1乃至10mm角(径)程度とす
る。この平滑な表面をもちかつ局部的に半月面形
状が形成された珪素単結晶基板14を第2図に示
す成長装置の試料台2上に載置する。次に第2図
の成長装置について説明する。水冷式横型二重石
英管1内に黒鉛製試料台2が載置された石英製支
持台3を設置し、反応管1の外胴部に巻回された
ワークコイル4に高周波電流を流してこの試料台
2を誘導加熱する。試料台2は水平に設置しても
よく、適当に傾斜させてもよい。反応管1の片端
にはガス流入口となる枝管5が設けられ、二重石
英管1の外側の石英管には枝管6,7を介して冷
却水が供給される。反応管1の他端1の他端はス
テンレス製フランジ8で閉塞されかつフランジ周
縁に配設された止め板9,ボルト10,ナツト1
1,O−リング12にてシールされている。フラ
ンジ8の中央にはガス出口となる枝管13が設け
られている。この成長装置を用いて以下の如く結
晶成長を行なう。キヤリアガスとして水素H2
スを毎分10、また表面の炭化用としてプロパン
C3H8ガスを毎分1.0c.c.程度流し、ワークコイル4
に高周波電流を供給して黒鉛試料台2を誘導加熱
し、珪素単結晶基板14の温度を約1350℃まで昇
温する。この温度で珪素単結晶基板14の表面は
炭化され、表面には、炭化珪素単結晶の極く薄い
膜が形成される。次にこの温度を保持した状態で
炭化珪素単結晶薄膜上に珪素原料のモノシラン
SiH4ガスと炭素原料のプロパンC3H8ガスを共に
毎分0.9c.c.の流量で供給しキヤリアガスとして水
素ガスを10/分の流量で流すことにより第1図
Dに示す如く炭化珪素単結晶膜17をCVD法に
より成長させる。この工程でエツチングされた粗
面領域の珪素単結晶基板14上とエツチングされ
ていない平滑面領域の珪素単結晶基板14上にと
もに炭化珪素膜が成長する。平滑面領域に成長さ
れた炭化珪素膜は炭化珪素単結晶膜17となり、
一方粗面領域に成長された炭化珪素膜は粒径の不
均一な炭化珪素多結晶膜18となる。これらは反
射電子線回折の結果より判明した。1時間の成長
で厚さ約2μmの炭化珪素単結晶膜17が平滑面領
域に対応して分割された膜として得られ、この膜
には反り、クラツクは存在しない。即ち得られた
炭化珪素単結晶膜17は珪素単結晶基板14上で
分断されて成長するので熱歪等に起因する内部応
力が抑制され、良質の単結晶が得られる。炭化珪
素多結晶膜18は炭化珪素単結晶膜17相互間で
歪を緩和する緩衝材として作用し、成長完了後は
除去されるものである。
As shown in Figure 1A, the crystal growth plane is 111
A silicon single crystal substrate 15 is used as a support substrate for crystal growth. After aligning aluminum Al as a mask 16 on this crystal growth surface as shown in FIG.
Etching is performed by reactive ion etching RIE method using CF 4 and oxygen gas O 2 , and then the mask 16 is removed to make the masked surface smooth and the etched surface rough as shown in Figure 1C. A silicon carbide single crystal growth substrate 14 is obtained.
The Al mask 16 is approximately 0.1 to 10 mm square (diameter). This silicon single crystal substrate 14, which has a smooth surface and has a partially semicircular shape, is placed on the sample stage 2 of the growth apparatus shown in FIG. Next, the growth apparatus shown in FIG. 2 will be explained. A quartz support stand 3 on which a graphite sample stand 2 is placed is installed inside a water-cooled horizontal double quartz tube 1, and a high-frequency current is passed through a work coil 4 wound around the outer body of the reaction tube 1. This sample stage 2 is heated by induction. The sample stage 2 may be installed horizontally or may be appropriately inclined. A branch pipe 5 serving as a gas inlet is provided at one end of the reaction tube 1, and cooling water is supplied to the quartz tube outside the double quartz tube 1 via branch pipes 6 and 7. The other end of the other end 1 of the reaction tube 1 is closed with a stainless steel flange 8, and a stop plate 9, bolts 10, and nuts 1 are arranged around the flange.
1. Sealed with O-ring 12. A branch pipe 13 serving as a gas outlet is provided at the center of the flange 8. Using this growth apparatus, crystal growth is performed as follows. 10/min of hydrogen H2 gas as a carrier gas and propane for surface carbonization.
Flow C 3 H 8 gas at about 1.0 cc per minute and connect the work coil 4.
A high frequency current is supplied to inductively heat the graphite sample stage 2, and the temperature of the silicon single crystal substrate 14 is raised to about 1350°C. At this temperature, the surface of silicon single crystal substrate 14 is carbonized, and an extremely thin film of silicon carbide single crystal is formed on the surface. Next, while maintaining this temperature, monosilane, which is a silicon raw material, is coated on the silicon carbide single crystal thin film.
By supplying both SiH 4 gas and propane C 3 H 8 gas as a carbon raw material at a flow rate of 0.9 cc/min, and flowing hydrogen gas as a carrier gas at a flow rate of 10/min, a silicon carbide single crystal film is formed as shown in Fig. 1D. 17 is grown by CVD method. In this step, a silicon carbide film is grown both on the silicon single crystal substrate 14 in the etched rough surface area and on the silicon single crystal substrate 14 in the unetched smooth surface area. The silicon carbide film grown on the smooth surface region becomes a silicon carbide single crystal film 17,
On the other hand, the silicon carbide film grown on the rough surface region becomes a polycrystalline silicon carbide film 18 with non-uniform grain sizes. These were revealed from the results of reflection electron beam diffraction. After one hour of growth, a silicon carbide single crystal film 17 with a thickness of about 2 μm is obtained as a film divided into regions corresponding to smooth surfaces, and this film has no warpage or cracks. That is, since the obtained silicon carbide single crystal film 17 is grown in pieces on the silicon single crystal substrate 14, internal stress caused by thermal strain etc. is suppressed, and a high quality single crystal can be obtained. Silicon carbide polycrystalline film 18 acts as a buffer material to relieve strain between silicon carbide single crystalline films 17, and is removed after growth is completed.

上記各実施例においては珪素基板の粗面加工に
リアクテイブイオンエツチングを用いたが他のエ
ツチング法やイオン照射法、機械的表面処理技術
その他を用いてもよい。分断された個々の炭化珪
素単結晶膜は素子を形成するためのウエハーとし
ては充分な面積を有するように成長されるので量
産性は阻害されない。
In each of the above embodiments, reactive ion etching was used to roughen the surface of the silicon substrate, but other etching methods, ion irradiation methods, mechanical surface treatment techniques, etc. may also be used. Since each divided silicon carbide single crystal film is grown to have a sufficient area as a wafer for forming elements, mass productivity is not hindered.

<発明の効果> 本発明によれば、珪素単結晶基板上に内部応力
の少ない良質の炭化珪素単結晶膜を成長させるこ
とができ、量産形態に適するため、炭化珪素単結
晶を用いた半導体素子を工業的規模で実用化させ
ることが可能となる。
<Effects of the Invention> According to the present invention, a high-quality silicon carbide single crystal film with low internal stress can be grown on a silicon single crystal substrate and is suitable for mass production, so that semiconductor devices using silicon carbide single crystals can be grown. It becomes possible to put it into practical use on an industrial scale.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示す炭化珪素単結
晶の製造工程図である。第2図は第1図に示す実
施例に用いられる成長装置の構成図である。 1……反応管、2……試料台、3……支持台、
4……ワークコイル、5,6,7,13……枝
管、8……フランジ、14……珪素単結晶基板、
16……アルミニウムマスク、17……炭化珪素
単結晶膜、18……炭化珪素多結晶膜。
FIG. 1 is a process diagram for manufacturing a silicon carbide single crystal showing one embodiment of the present invention. FIG. 2 is a block diagram of a growth apparatus used in the embodiment shown in FIG. 1. 1...Reaction tube, 2...Sample stand, 3...Support stand,
4... Work coil, 5, 6, 7, 13... Branch pipe, 8... Flange, 14... Silicon single crystal substrate,
16... Aluminum mask, 17... Silicon carbide single crystal film, 18... Silicon carbide polycrystal film.

Claims (1)

【特許請求の範囲】 1 珪素単結晶基板の結晶成長面を粗面領域で複
数の成長領域に区画し、該結晶成長面上に炭化珪
素単結晶をエピタキシヤル成長させることを特徴
とする炭化珪素単結晶の成長方法。 2 粗面領域をリアクテイブイオンエツチング法
により形成する特許請求の範囲第1項記載の炭化
珪素単結晶の成長方法。 3 珪素単結晶基板面として111面を用いる特
許請求の範囲第1項記載の炭化珪素単結晶の成長
方法。
[Claims] 1. A silicon carbide method, characterized in that the crystal growth surface of a silicon single crystal substrate is divided into a plurality of growth regions by rough surface regions, and a silicon carbide single crystal is epitaxially grown on the crystal growth surface. How to grow single crystals. 2. The method for growing a silicon carbide single crystal according to claim 1, wherein the rough surface region is formed by a reactive ion etching method. 3. The method for growing a silicon carbide single crystal according to claim 1, in which the 111 plane is used as the silicon single crystal substrate plane.
JP11315387A 1987-05-07 1987-05-07 Growth of silicon carbide single crystal Granted JPS63277596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11315387A JPS63277596A (en) 1987-05-07 1987-05-07 Growth of silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11315387A JPS63277596A (en) 1987-05-07 1987-05-07 Growth of silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JPS63277596A JPS63277596A (en) 1988-11-15
JPH0443879B2 true JPH0443879B2 (en) 1992-07-17

Family

ID=14604910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11315387A Granted JPS63277596A (en) 1987-05-07 1987-05-07 Growth of silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPS63277596A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2854641B1 (en) * 2003-05-05 2005-08-05 Centre Nat Rech Scient PROCESS FOR FORMING A SILICON CARBIDE LAYER ON A SILICON WAFER
JP2011258768A (en) * 2010-06-09 2011-12-22 Sumitomo Electric Ind Ltd Silicon carbide substrate, substrate with epitaxial layer, semiconductor device and method of manufacturing silicon carbide substrate
JPWO2012127748A1 (en) * 2011-03-22 2014-07-24 住友電気工業株式会社 Silicon carbide substrate
CN105442038A (en) * 2015-12-17 2016-03-30 中国电子科技集团公司第二研究所 Crucible rotating-type silicon carbide single crystal growth method

Also Published As

Publication number Publication date
JPS63277596A (en) 1988-11-15

Similar Documents

Publication Publication Date Title
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
JPH06316499A (en) Production of sic single crystal
JPS5838399B2 (en) Method for manufacturing silicon carbide crystal layer
JP4654030B2 (en) SiC wafer and manufacturing method thereof
JPH1045499A (en) Production of silicon carbide single crystal and seed crystal used therefor
JPH11157988A (en) Device for growing crystal and growth of crystal
JPH0443879B2 (en)
JPH0443878B2 (en)
JPS6120514B2 (en)
TWI767309B (en) Manufacturing method for silicon carbide ingot and system for manufacturing silicon carbide ingot
JPH02180796A (en) Production of silicon carbide single crystal
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same
JPH0416597A (en) Production of silicon carbide single crystal
JPS6045159B2 (en) Method for manufacturing silicon carbide crystal layer
JPS5838400B2 (en) Method for manufacturing silicon carbide crystal layer
JPS63252997A (en) Production of diamond single crystal
JPH0637355B2 (en) Method for producing silicon carbide single crystal film
JPH0455155B2 (en)
JPS6230699A (en) Production of silicon carbide single crystal substrate
JPH0324439B2 (en)
JPS6152119B2 (en)
JP2539427B2 (en) Method for manufacturing silicon carbide semiconductor device
JPH0327515B2 (en)
JPH0364480B2 (en)
JPS63303896A (en) Production of silicon carbide single crystal film