JPH0443755Y2 - - Google Patents

Info

Publication number
JPH0443755Y2
JPH0443755Y2 JP1984195419U JP19541984U JPH0443755Y2 JP H0443755 Y2 JPH0443755 Y2 JP H0443755Y2 JP 1984195419 U JP1984195419 U JP 1984195419U JP 19541984 U JP19541984 U JP 19541984U JP H0443755 Y2 JPH0443755 Y2 JP H0443755Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
passage
outlet
inlet
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984195419U
Other languages
Japanese (ja)
Other versions
JPS61110979U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984195419U priority Critical patent/JPH0443755Y2/ja
Publication of JPS61110979U publication Critical patent/JPS61110979U/ja
Application granted granted Critical
Publication of JPH0443755Y2 publication Critical patent/JPH0443755Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 この考案は熱交換器、特に熱交換器内部に生ず
る凝縮水を自動的に除去できる熱交換器に関連す
る。
[Detailed description of the invention] Industrial field of application The invention relates to a heat exchanger, particularly a heat exchanger that can automatically remove condensed water generated inside the heat exchanger.

従来の技術 従来の熱交換器を第4図及び第5図について説
明すると、熱交換器10は、排気ガス等の高温ガ
スが通過すると第1通路11と、水等の第2流体
が通過する第2通路12とを有する。第1通路1
1には、第1入口13と、該第1入口13に連絡
する多数の熱移動通路15と、熱移動通路15の
出口に連絡する第1出口17とが設けられる。第
1入口13には、その1部として徐々に拡大する
大きさを有しかつ熱移動通路15の入口に連絡す
る膨張室14が設けられ、また第1出口17に
は、その1部として、徐々に減少する大きさを有
しかつ熱移動通路15の出口に連絡する収縮室1
6が設けられる。これら膨張室14と収縮室16
は、通常、対称的形状を有し、熱交換器の形状又
は用途によつては設けなくてもよいが、この考案
の実施例ではこれらが含まれる例を説明する。上
記熱移動通路15は、一対の仕切板18,19に
固着された金属管で形成され、仕切板18,19
は、熱交換器10の側壁23に固着され、その間
に熱交換室20が形成される。熱交換室20に
は、上記第2通路12の第2入口21と第2出口
22が側壁23に形成される。
BACKGROUND TECHNOLOGY To explain a conventional heat exchanger with reference to FIGS. 4 and 5, a heat exchanger 10 has a first passage 11 through which high-temperature gas such as exhaust gas passes, and a second passage 11 through which a second fluid such as water passes. It has a second passage 12. 1st aisle 1
1 is provided with a first inlet 13 , a number of heat transfer passages 15 communicating with the first inlet 13 , and a first outlet 17 communicating with the outlet of the heat transfer passages 15 . The first inlet 13 is provided with an expansion chamber 14 having a gradually expanding size and communicating with the inlet of the heat transfer passage 15 as a part thereof, and the first outlet 17 is provided with an expansion chamber 14 as a part thereof. a contraction chamber 1 having a gradually decreasing size and communicating with the outlet of the heat transfer passage 15;
6 is provided. These expansion chambers 14 and contraction chambers 16
usually have a symmetrical shape and may not be provided depending on the shape of the heat exchanger or its use, but in the embodiment of this invention an example in which they are included will be described. The heat transfer passage 15 is formed of a metal tube fixed to a pair of partition plates 18 and 19.
is fixed to the side wall 23 of the heat exchanger 10, and a heat exchange chamber 20 is formed therebetween. A second inlet 21 and a second outlet 22 of the second passage 12 are formed in a side wall 23 of the heat exchange chamber 20 .

上記熱交換器10は、熱移動通路15を通る高
温ガスと熱交換室20を通る低温流体との間で熱
移動が行われる。第1通路11は、第4図に示さ
れる通り、触媒コンバータ24を通じてガスエン
ジン25の排気管に接続され、又、第2通路12
は、貯湯槽26に接続される。
In the heat exchanger 10, heat is transferred between high temperature gas passing through the heat transfer passage 15 and low temperature fluid passing through the heat exchange chamber 20. As shown in FIG. 4, the first passage 11 is connected to the exhaust pipe of a gas engine 25 through a catalytic converter 24, and the second passage 12
is connected to the hot water tank 26.

ところで、ガスエンジン25は、都市ガス又は
LPG(液化石油ガス)が使用され、このようなガ
ス燃料の成分は、一般にSH基で構成されるメル
カプタンを含む炭化水素であるから、ガスエンジ
ン25の排気ガス中には多量の水蒸気と硫黄が含
まれる。上記メルカプタンは、燃焼時に水蒸気と
反応して硫酸を生じ、更に燃焼時に供給される空
気中には窒素が含まれ、この窒素は水蒸気と反応
して硝酸となる。
By the way, the gas engine 25 is powered by city gas or
LPG (liquefied petroleum gas) is used, and the components of such gas fuel are generally hydrocarbons containing mercaptans composed of SH groups, so there is a large amount of water vapor and sulfur in the exhaust gas of the gas engine 25. included. The mercaptan reacts with water vapor during combustion to produce sulfuric acid, and the air supplied during combustion contains nitrogen, and this nitrogen reacts with water vapor to form nitric acid.

ガスエンジン25の始動時には、その排気ガス
は触媒コンバータ24を通り第1通路11内に流
入する。このとき排気ガス温度が150°〜200℃の
ときは排気ガスは熱交換器内壁により露点以下の
温度に冷却される。この冷却により水蒸気圧が飽
和蒸気圧以下に低下し、水蒸気は熱交換器内壁に
凝結し、硫酸又は硝酸等の腐食性成分を含む凝縮
水27が生成される(第5図)。この凝縮水27
は、従来では特に始動時毎に比較的多量に生成さ
れ、熱交換器10の下部に滞留し、熱交換器内壁
の腐食及び熱移動通路15の目詰りによる圧力損
失の増加を招来し、従つて熱交換器の寿命の短期
化及び熱交換効率の低下の原因となつた。
When the gas engine 25 is started, its exhaust gas passes through the catalytic converter 24 and flows into the first passage 11 . At this time, when the exhaust gas temperature is 150° to 200°C, the exhaust gas is cooled to a temperature below the dew point by the inner wall of the heat exchanger. This cooling lowers the water vapor pressure to below the saturated vapor pressure, and the water vapor condenses on the inner wall of the heat exchanger, producing condensed water 27 containing corrosive components such as sulfuric acid or nitric acid (FIG. 5). This condensed water 27
Conventionally, a relatively large amount of heat is generated, especially at the time of startup, and it stays in the lower part of the heat exchanger 10, leading to corrosion of the inner wall of the heat exchanger and an increase in pressure loss due to clogging of the heat transfer passage 15. This resulted in a shortened lifespan of the heat exchanger and a decrease in heat exchange efficiency.

考案が解決しようとする問題 この考案は、熱交換器の下部に高温ガス用入口
及び出口とを連絡する乾燥通路を熱移動通路と平
行に設けることにより、凝縮水を自動的に除去
し、上記欠点のない熱交換器を提供することを目
的とする。
Problems to be Solved by the Invention This invention automatically removes condensed water by providing a drying passage connecting the hot gas inlet and outlet at the bottom of the heat exchanger in parallel with the heat transfer passage. The aim is to provide a heat exchanger without any drawbacks.

問題点を解決するための手段 この考案による熱交換器は、高温の排気ガスが
通過する第1通路と低温流体が通過する第2通路
とを有する。第1通路は、順次連絡する第1入
口、複数の熱移動通路及び第1出口を有する。第
2通路は、順次連絡する第2入口、熱移動通路に
隣接する熱交換室及び第2出口を有する。第1入
口及び第1出口はそれぞれ前記熱移動通路の両端
部に配置された仕切板及び外壁により形成された
膨張室及び収縮室を含む。膨張室及び収縮室の少
なくとも一方の内部に凝縮水が滞留する。第1入
口と第1出口とを連絡するようにかつ他の熱移動
通路と平行となるように熱交換室の最下部に乾燥
通路が設けられる。乾燥通路の一部は熱交換器の
外壁によつて形成されかつその上部は熱交換室に
隣接する。乾燥通路は第1入口及び第1出口より
低い位置に設けられかつ弧面と弦面で形成され
る。
Means for Solving the Problems The heat exchanger according to this invention has a first passage through which high-temperature exhaust gas passes and a second passage through which low-temperature fluid passes. The first passage has a first inlet, a plurality of heat transfer passages, and a first outlet that communicate in sequence. The second passageway has a second inlet, a heat exchange chamber adjacent to the heat transfer passageway, and a second outlet in sequential communication. The first inlet and the first outlet each include an expansion chamber and a contraction chamber formed by a partition plate and an outer wall disposed at both ends of the heat transfer path. Condensed water remains inside at least one of the expansion chamber and the contraction chamber. A drying passage is provided at the bottom of the heat exchange chamber so as to communicate the first inlet and the first outlet and to be parallel to the other heat transfer passages. A part of the drying passage is formed by the outer wall of the heat exchanger and its upper part adjoins the heat exchange chamber. The drying passage is provided at a position lower than the first inlet and the first outlet, and is formed by an arc surface and a chord surface.

作 用 膨張室及び収縮室の下部はそれぞれ第1入口及
び第1出口より低く、凝縮水は仕切板及び外壁に
より形成される膨張室及び収縮室の下部に捕集さ
れる。捕集された凝縮水は乾燥通路に流入して、
排気ガスとの接触面積が大きくなる。このため、
高温の排気ガスと接触する凝縮水は完全に蒸発さ
れ又は飛散され、熱交換器の腐食及び熱交換効率
低下を防止することができる。
Operation The lower parts of the expansion chamber and the contraction chamber are lower than the first inlet and the first outlet, respectively, and condensed water is collected in the lower part of the expansion chamber and the contraction chamber formed by the partition plate and the outer wall. The collected condensed water flows into the drying passage,
The contact area with exhaust gas increases. For this reason,
Condensed water that comes into contact with high-temperature exhaust gas is completely evaporated or scattered, thereby preventing corrosion of the heat exchanger and reduction in heat exchange efficiency.

実施例 以下この考案の実施例を図面について説明す
る。第1図ないし第3図に示される通り、この考
案の熱交換器30は基本的には第5図に示される
従来の熱交換器10と同じ構造を有するので、同
一部分についは説明を省略する。熱交換器30
は、膨張室14と収縮室16とを連絡するように
かつ熱移動通路15と平行となるように熱交換室
20の最下部に乾燥通路31が設けられる。膨張
室14と収縮室16が形成されない熱交換器で
は、乾燥通路31は、第1入口13と第1出口1
7とを直接連絡する。乾燥通路31の下部は熱交
換器30の外壁32によつて形成されその上部は
熱交換室20に隣接される。第2図から明らかな
通り、乾燥通路31は弧面33と弦面34とで形
成され、弧面33は円筒状外壁32の内面であ
り、弦面34はこの内面に固着された平板35で
形成される。
Embodiments Hereinafter, embodiments of this invention will be described with reference to the drawings. As shown in FIGS. 1 to 3, the heat exchanger 30 of this invention basically has the same structure as the conventional heat exchanger 10 shown in FIG. 5, so explanations of the same parts will be omitted. do. heat exchanger 30
A drying passage 31 is provided at the bottom of the heat exchange chamber 20 so as to communicate the expansion chamber 14 and the contraction chamber 16 and to be parallel to the heat transfer passage 15. In a heat exchanger in which an expansion chamber 14 and a contraction chamber 16 are not formed, the drying passage 31 has a first inlet 13 and a first outlet 1.
Contact 7 directly. The lower part of the drying passage 31 is formed by the outer wall 32 of the heat exchanger 30, and the upper part thereof is adjacent to the heat exchange chamber 20. As is clear from FIG. 2, the drying passage 31 is formed by an arc surface 33 and a chord surface 34, the arc surface 33 being the inner surface of the cylindrical outer wall 32, and the chord surface 34 being a flat plate 35 fixed to this inner surface. It is formed.

第3図はこの考案の他の実施例を示す。即ち弧
面33は外壁32に固定された円弧板36で形成
され、弦面34は扁平円形断面を有する外壁32
の扁平外面で形成される。上記平板35及び円弧
板36は、溶接又はろう接により外壁32に固着
される。乾燥通路31は、これを含む熱移動通路
の全断面積の5〜50%の断面積とするのがよい
が、この比率は発生する凝縮水の量によつて決定
される。
FIG. 3 shows another embodiment of this invention. That is, the arc surface 33 is formed by a circular arc plate 36 fixed to the outer wall 32, and the chord surface 34 is formed by the outer wall 32 having a flat circular cross section.
It is formed with a flat outer surface. The flat plate 35 and the arc plate 36 are fixed to the outer wall 32 by welding or brazing. The cross-sectional area of the drying passage 31 is preferably 5 to 50% of the total cross-sectional area of the heat transfer passage including it, but this ratio is determined by the amount of condensed water generated.

考案の効果 上記の通り、この考案の熱交換器は、熱交換室
の下部に第1入口と第1出口とを連絡する乾燥通
路を設け、乾燥通路の一部を熱交換器の外壁によ
つて形成すると共にその上部は熱交換室に隣接す
る構造を有するので、乾燥通路内に溜つた凝縮水
は、定常運転後にそこを通過する高温かつ高速の
排気ガスにより完全に蒸発され又は飛散される。
このため凝縮水が自動的に除去され、熱交換器の
腐食及び熱交換率低下の問題を充分に解決するこ
とができる。
Effects of the invention As mentioned above, the heat exchanger of this invention has a drying passage connecting the first inlet and the first outlet in the lower part of the heat exchange chamber, and a part of the drying passage is covered with the outer wall of the heat exchanger. Since the upper part of the drying passage is adjacent to the heat exchange chamber, the condensed water accumulated in the drying passage is completely evaporated or scattered by the high-temperature and high-speed exhaust gas passing through it after steady operation. .
Therefore, condensed water is automatically removed, and the problems of corrosion of the heat exchanger and reduction in the heat exchange rate can be satisfactorily solved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案による熱交換器の断面図;第
2図は第1図のA−A線断面図;第3図は、第2
図と同様の他の実施例を示す断面図;第4図は、
従来の熱交換器を使用するブロツク図で;第5図
は従来の熱交換器の断面図である。 11……第1通路、12……第2通路、14…
…膨張室、16……収縮室、20……熱交換室、
31……熱移動通路、32……外壁、33……弧
面、34……弦面、35……平板、36……円弧
板。
Figure 1 is a sectional view of the heat exchanger according to this invention; Figure 2 is a sectional view taken along line A-A in Figure 1; Figure 3 is a sectional view of the heat exchanger according to this invention;
A sectional view showing another embodiment similar to the figure; FIG.
FIG. 5 is a block diagram of the use of a conventional heat exchanger; FIG. 5 is a cross-sectional view of a conventional heat exchanger. 11...first passage, 12...second passage, 14...
...expansion chamber, 16...contraction chamber, 20...heat exchange chamber,
31... Heat transfer passage, 32... Outer wall, 33... Arc surface, 34... Chord surface, 35... Flat plate, 36... Arc plate.

Claims (1)

【実用新案登録請求の範囲】 (1) 高温の排気ガスが通過する第1通路と低温液
体が通過する第2通路とを有し、該第1通路
は、順次連絡する第1入口、複数の熱移動通路
及び第1出口を有し、前記第2通路は、順次連
絡する第2入口、前記熱移動通路に隣接する熱
交換室及び第2出口を有し、前記第1入口及び
第1出口がそれぞれ前記熱移動通路の両端部に
配置された仕切板及び外壁により形成された膨
張室及び収縮室を含み、膨張室及び収縮室の少
なくとも一方の内部に凝縮水が滞留する熱交換
器において、前記第1入口と第1出口とを連絡
するようにかつ他の熱移動通路と平行となるよ
うに熱交換室の最下部に乾燥通路が設けられ、
該乾燥通路の一部は熱交換器の外壁によつて形
成されかつその上部は前記熱交換室に隣接し、
前記乾燥通路は前記第1入口及び第1出口より
低い位置に設けられかつ弧面と弦面で形成され
ることを特徴とする熱交換器。 (2) 前記弧面は、熱交換器の円筒状外壁の内面で
あり、前記弦面は、該円筒状本体の内面に固着
された平板である実用新案登録請求の範囲第1
項記載の熱交換器。 (3) 前記弧面は、熱交換器の外壁に固定された円
弧板で形成され、前記弦面は、扁平円形断面を
有する外壁の扁平外面である実用新案登録請求
の範囲第1項記載の熱交換器。
[Claims for Utility Model Registration] (1) It has a first passage through which high-temperature exhaust gas passes and a second passage through which low-temperature liquid passes, and the first passage has a first inlet connected to the a heat transfer passageway and a first outlet, the second passageway having a second inlet in sequence, a heat exchange chamber adjacent to the heat transfer passageway, and a second outlet; the first inlet and the first outlet; a heat exchanger including an expansion chamber and a contraction chamber each formed by a partition plate and an outer wall disposed at both ends of the heat transfer passage, and in which condensed water remains in at least one of the expansion chamber and the contraction chamber, A drying passage is provided at the lowest part of the heat exchange chamber so as to communicate the first inlet and the first outlet and to be parallel to the other heat transfer passages,
a part of the drying passage is formed by the outer wall of the heat exchanger and its upper part is adjacent to the heat exchange chamber;
The heat exchanger characterized in that the drying passage is provided at a position lower than the first inlet and the first outlet and is formed by an arc surface and a chord surface. (2) The arc surface is the inner surface of the cylindrical outer wall of the heat exchanger, and the chord surface is a flat plate fixed to the inner surface of the cylindrical body.
Heat exchanger as described in section. (3) The utility model according to claim 1, wherein the arc surface is formed by an arc plate fixed to the outer wall of the heat exchanger, and the chord surface is a flat outer surface of the outer wall having a flat circular cross section. Heat exchanger.
JP1984195419U 1984-12-25 1984-12-25 Expired JPH0443755Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984195419U JPH0443755Y2 (en) 1984-12-25 1984-12-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984195419U JPH0443755Y2 (en) 1984-12-25 1984-12-25

Publications (2)

Publication Number Publication Date
JPS61110979U JPS61110979U (en) 1986-07-14
JPH0443755Y2 true JPH0443755Y2 (en) 1992-10-15

Family

ID=30752974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984195419U Expired JPH0443755Y2 (en) 1984-12-25 1984-12-25

Country Status (1)

Country Link
JP (1) JPH0443755Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923886B2 (en) * 2011-07-20 2016-05-25 株式会社デンソー Exhaust cooling device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113498U (en) * 1974-07-18 1976-01-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113498U (en) * 1974-07-18 1976-01-31

Also Published As

Publication number Publication date
JPS61110979U (en) 1986-07-14

Similar Documents

Publication Publication Date Title
RU2227883C2 (en) Two-phase heat-exchanger with liquid cooling (variants)
CN101358771B (en) Plate heat exchanger for condensing gas water heater
JP3091860B1 (en) Absorber
JPH0443755Y2 (en)
JPS61119957A (en) Device for supplying absorption refrigeration system with heat
EP2220452B1 (en) Heat pipe, exhaust heat recoverer provided therewith
JPS6142194B2 (en)
JPH11183062A (en) Double piped heat exchanger
KR100256515B1 (en) An egr gas cooling device
KR100213303B1 (en) Waste gas regenerating heat exchanger using water flowing layer
CN106123657A (en) Heat medium water tubular type flue gas heat-exchange unit
JPS6142072Y2 (en)
JPH0227348Y2 (en)
JP2001208487A (en) Evaporator integrated with combustion catalyst
CN219841553U (en) Flue gas treatment system and boiler system with same
JP3059123B2 (en) Condenser for mixed media
JPS6237318B2 (en)
JPS5953474B2 (en) Heat exchanger
SU830109A1 (en) Multipass heat exchanger
JPS59112197A (en) Heat exchanger
JPS5886388A (en) Heat exchanger
JP3086097B2 (en) Heat transfer tube for double heating type low temperature regenerator
JPS593273Y2 (en) Heat exchanger
JPS61295496A (en) Low-temperature air preheater
SU883642A1 (en) Heat pipe