JPH0443619A - Transformer equiped with tertiary winding - Google Patents

Transformer equiped with tertiary winding

Info

Publication number
JPH0443619A
JPH0443619A JP15209190A JP15209190A JPH0443619A JP H0443619 A JPH0443619 A JP H0443619A JP 15209190 A JP15209190 A JP 15209190A JP 15209190 A JP15209190 A JP 15209190A JP H0443619 A JPH0443619 A JP H0443619A
Authority
JP
Japan
Prior art keywords
winding
tertiary
primary
iron core
primary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15209190A
Other languages
Japanese (ja)
Inventor
Masashi Minamitani
南谷 昌志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15209190A priority Critical patent/JPH0443619A/en
Publication of JPH0443619A publication Critical patent/JPH0443619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To ensure a suitable impedance voltage between a primary winding and a tertiary winding, and prevent the change of a tertiary voltage only by equiping the primary winding with a single tap winding, by a method wherein a first and a second iron cores which are magnetically independent are installed, a primary winding and a tertiary winding are wound around the first iron core, and the primary winding and a secondary winding are wound around the second iron core which primary winding is connected with a connection lead wire led out from the middle part of the primary winding. CONSTITUTION:A first primary winding 3 connected with a primary terminal 2 and a tertiary winding 5 connected with a tertiary terminal 4 are wound around a first iron core 1. The first primary winding 3 has a single-winding structure wherein a connection lead wire 6 is led out from a middle part. A second primary winding 8 connected with the connection lead wire 6 and a secondary winding 9 connected with a secondary terminal 10 are wound around a second iron core 7 which is magnetically independent of a first iron core 1. As the result of the independence between the iron cores 1 and 7, the impedance voltage between the primary and the secondary windings is determined by the size of the iron core 7 and the shapes of the second primary winding 8 and the secondary winding 9. The impedance voltage between the primary and the tertiary windings is determined by the size of the iron core 1 and the shapes of the first primary winding 3 and the tertiary winding 5.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、−次電圧を二次電圧へ変成すると共に三次電
圧へも変成する三次巻線付変圧器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a transformer with a tertiary winding that transforms a negative voltage to a secondary voltage and also transforms it to a tertiary voltage.

(従来の技術) 変圧器は、電源側電圧である一次電圧を、負荷電圧であ
る二次電圧に変成するためのものであるが、時には2種
類の負荷電圧が必要な場合がある。この様な場合、一つ
の変圧器で二次電圧、三次電圧の2種類の変成電圧を得
ることができる三次巻線付変圧器を採用する場合がある
(Prior Art) A transformer is used to transform a primary voltage, which is a power supply voltage, into a secondary voltage, which is a load voltage, but sometimes two types of load voltages are required. In such cases, a transformer with a tertiary winding may be used, which can obtain two types of transformed voltages, a secondary voltage and a tertiary voltage, with one transformer.

三次巻線付変圧器の基本構成は、鉄心のまわりに一次巻
線、二次巻線及び三次巻線を同軸上に巻回し、−次巻線
には二次側負荷および三次側負荷の必要量の合計の巻線
容量をもたすようにしている。
The basic configuration of a transformer with a tertiary winding is that the primary, secondary, and tertiary windings are coaxially wound around an iron core, and the secondary winding requires a secondary load and a tertiary load. The total winding capacity is the same.

(発明が躬決しようとする課題) 三次側負荷容量は、二次側負荷容量に比べてかなり小さ
い場合か多い。このような場合、鉄心は、−次巻線容量
に対して適合する大きさに設定されるため、三次側負荷
容量に対しては相対的にかなり大きなものになり、その
ため、三次巻線は一次巻線容量によって決められた大き
さの鉄心の全長にわたり巻回される関係から巻回厚さが
小さく、従って、漏洩リアクタンスが小さくなる。その
結果、三次巻線容量に対し大きめの鉄心を採用すること
になり、−次と三次間のインピーダンス電圧は三次巻線
容量で適正な値にすることができず、非常に小さなもの
となる。このため、もし三次側負荷に短絡を生じた場合
、三次巻線には過大な短絡電流が流れ、それにより発生
する電磁機械力に耐えられなくなるおそれがある。また
、例えば二次側の電圧を変化させるために、−次巻線に
タップ巻線を設ける等価タップ切換方法を採用すると、
二次側電圧の変更と共に三次巻線電圧も変化してしまう
欠点がある。
(Problem to be solved by the invention) The tertiary side load capacity is often considerably smaller than the secondary side load capacity. In such a case, the iron core is sized to match the negative winding capacity, so it is relatively large relative to the tertiary load capacity, so the tertiary winding is sized to match the primary winding capacity. Since the iron core is wound over the entire length of the core determined by the winding capacity, the winding thickness is small, and therefore the leakage reactance is small. As a result, an iron core that is larger than the tertiary winding capacity is used, and the impedance voltage between the negative and tertiary windings cannot be set to an appropriate value by the tertiary winding capacity, and becomes very small. Therefore, if a short circuit occurs in the tertiary load, an excessive short circuit current will flow through the tertiary winding, and the tertiary winding may not be able to withstand the resulting electromagnetic mechanical force. Also, for example, if an equivalent tap switching method is adopted in which a tap winding is provided in the negative winding in order to change the voltage on the secondary side,
There is a drawback that the tertiary winding voltage also changes as the secondary side voltage changes.

この問題を解決するために、従来では磁気的に独立した
2種類の鉄心を使用し、その第1の鉄心は三次側負荷容
量に適合した大きさとし、第2の鉄心は、二次側負荷容
量に適合した大きさとし、第コの鉄心に三次巻線と三次
側負荷容量に適合する巻線容量を持つ第1の一次巻線と
を同軸上に巻回し、第2の鉄心には二次巻線と二次側負
荷容量に適合する巻線容量を持つ第2の一次巻線とを同
軸上に巻回することで第]及び第2の単位変圧器を構成
し、第1及び第2の一次巻線を並列に接続する構成とす
ることにより解決するようにしていた。しかしながら、
−次巻線の巻数を変えて一次側または二次側電圧を変更
させることが必要な場合、タップ巻線を第1及び第2の
一次巻線の両方に設けることが必要となり複雛な構造に
なる他、三次巻線電圧も変動する欠点があった。
In order to solve this problem, conventionally two types of magnetically independent cores are used, the first core is sized to match the tertiary load capacity, and the second core is sized to match the secondary load capacity. A tertiary winding and a first primary winding having a winding capacity matching the tertiary side load capacity are coaxially wound around the second core, and a secondary winding is wound around the second core. The first and second unit transformers are constructed by coaxially winding the wire and a second primary winding having a winding capacity that matches the secondary side load capacity, and the first and second The problem was solved by connecting the primary windings in parallel. however,
- If it is necessary to change the primary or secondary voltage by changing the number of turns of the secondary winding, it is necessary to provide tap windings on both the first and second primary windings, resulting in a multiple structure. In addition to this, there was a drawback that the tertiary winding voltage also fluctuated.

本発明は、上記事情に鑑みてなされたもので、その目的
は、−次及び二次巻線間、−次及び三次巻線間に夫々適
正なインピーダンス電圧を確保でき、また、−次側また
は二次側の電圧を変更する場合でも、−次巻線に単一の
タップ巻線を設けるのみで、三次電圧が不変となる三次
巻線付変圧器を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to ensure appropriate impedance voltage between the -next and secondary windings, and between the -next and tertiary windings, and to To provide a transformer with a tertiary winding in which the tertiary voltage remains unchanged even when the voltage on the secondary side is changed by simply providing a single tap winding in the negative winding.

(課題を解決するための手段) 本発明による三次巻線付変圧器は磁気的に独立した第〕
及び第2の鉄心を持ち、第1の鉄心に一次巻線と三次巻
線を巻回し、第2の鉄心に前記−次巻線の途中から引き
外された接続リード線に接続される一次巻線と二次巻線
とを巻回してなる。
(Means for Solving the Problems) A transformer with a tertiary winding according to the present invention has a magnetically independent secondary winding.
and a primary winding having a second iron core, a primary winding and a tertiary winding wound around the first iron core, and a primary winding connected to the second iron core to a connecting lead wire pulled out from the middle of the secondary winding. It is made by winding a wire and a secondary winding.

(作用) 第1の鉄心と第2の鉄心が磁気的に相互に独立している
ため、第1の鉄心は三次容量に適した大きさに、第2の
鉄心は二次巻線容量に適した大きさとすることができ、
−次及び二次巻線間。
(Function) Since the first core and the second core are magnetically independent from each other, the first core has a size suitable for the tertiary capacity, and the second core has a size suitable for the secondary winding capacity. The size can be
– between the primary and secondary windings;

次及び三次巻線間のインピーダンス電圧を夫々望ましい
値にすることができる。第1の鉄心に巻回された一次巻
線のみにタップ巻線を設け、このタップ巻線のタップを
適宜選択しても一次巻線電圧が一定となるので、この−
次巻線に電磁結合している三次巻線電圧を一定に保つこ
とができる。
The impedance voltage between the secondary and tertiary windings can be set to desired values, respectively. A tap winding is provided only on the primary winding wound around the first iron core, and the primary winding voltage remains constant even if the tap of this tap winding is selected appropriately.
The voltage of the tertiary winding, which is electromagnetically coupled to the secondary winding, can be kept constant.

(実施例) 本発明の一実施例について第1図乃至第4図を参照1.
て説明する。
(Example) Refer to FIGS. 1 to 4 for an example of the present invention.1.
I will explain.

第1図は巻線構造を示すものであるが、鉄心は1相の鉄
心脚のみを示し、巻線は1相のみ且つ縦断面の片側のみ
を示しているのに対して、第2図は三相分について結線
状態で示している。さて、第1の鉄心1には、−次端子
2に接続される第1の一次巻線3と、三次端子4に接続
される三次巻線5が巻回されている。第1の一次巻線3
は途中で接続リード線6が引き出された単巻巻線構造と
なっている。第1の鉄心1とは磁気的に独立している第
2の鉄心7には接続リード線6に接続される第2の一次
巻線8と、二次端子10に接続される二次巻線9が巻回
されている。第2の一次巻線8の発生電圧は接続リード
線6の引き出し位置により任意に決めることができる。
Figure 1 shows the winding structure, but the iron core shows only one phase of the core leg, and the winding shows only one phase and only one side of the vertical cross section, whereas Figure 2 shows only one phase of the winding. The wiring state is shown for three phases. Now, a first primary winding 3 connected to the negative terminal 2 and a tertiary winding 5 connected to the tertiary terminal 4 are wound around the first iron core 1. First primary winding 3
has a single winding structure in which the connecting lead wire 6 is pulled out in the middle. The second core 7, which is magnetically independent from the first core 1, has a second primary winding 8 connected to the connection lead wire 6 and a secondary winding connected to the secondary terminal 10. 9 is wound. The voltage generated by the second primary winding 8 can be arbitrarily determined by the position at which the connecting lead wire 6 is pulled out.

このような鉄心1.7の独立の結果、−次、二次間(巻
線8.9間)のインピーダンス電圧は鉄心7の大きさと
第2の一次巻線8.二次巻線9の形状により決まり、ま
た−次、三次間(巻線3.5間)のインピーダンス電圧
は鉄心1の犬へさと第1の一次巻線3、三次巻線5の形
状により決まる。鉄心1と鉄心7が互いに独立し、第2
の一次巻線8.二次巻線9と第1の一次巻線3.三次巻
線5とが互いに独立しているため、これら鉄心及び巻線
を任意の大きさ及び形状に決めることかでき、従って、
二次巻線容量と三次巻線容量がいかなる割合でも一次。
As a result of the independence of the iron core 1.7, the impedance voltage between the negative and secondary windings (between the windings 8.9 and 8.9) depends on the size of the iron core 7 and the second primary winding 8.9. It is determined by the shape of the secondary winding 9, and the impedance voltage between the negative and tertiary windings (between windings 3 and 5) is determined by the shape of the iron core 1, the first primary winding 3, and the tertiary winding 5. . Iron core 1 and iron core 7 are independent of each other, and
Primary winding 8. Secondary winding 9 and first primary winding 3. Since the tertiary winding 5 and the tertiary winding 5 are independent from each other, these iron cores and windings can be arbitrarily determined in size and shape.
The secondary winding capacity and the tertiary winding capacity are primary in any proportion.

二次間のインピーダンス電圧、−次、三次間のインピー
ダンス電圧を各々望ましい値にすることができる。
The impedance voltage between the secondary and the impedance voltages between the -order and the tertiary can be set to desired values.

第3図及び第4図には、−次側でタップ電圧を切換える
場合の結線例が示されている。
FIGS. 3 and 4 show examples of wiring when switching the tap voltage on the negative side.

即ち、第3図においては、第1の一次巻線3と一次端子
2との間にタップ巻線11を設け、このタップ巻線11
のタップを選択することにより、電源電圧の変動を吸収
するようにしたものである。
That is, in FIG. 3, a tap winding 11 is provided between the first primary winding 3 and the primary terminal 2, and this tap winding 11
By selecting the taps, fluctuations in the power supply voltage can be absorbed.

これにより、−次側電圧が一定となるので、この第1の
一次巻線3に電磁結合I7ている三次巻線の電圧も一定
となる。
As a result, the negative side voltage becomes constant, so the voltage of the tertiary winding that is electromagnetically coupled I7 to the first primary winding 3 also becomes constant.

第4図においては、−次巻線3にタップ巻線]2を設け
、このタップ巻線12のタップを接続リード線6で選択
することにより第2の一次巻線を介して二次巻線の電圧
を変化させるようにしたものであ。この場合においても
第1の一次巻線3の電圧は一定であるので三次巻線の電
圧も一定となる。
In FIG. 4, a tap winding] 2 is provided on the -order winding 3, and by selecting the tap of this tap winding 12 with the connecting lead wire 6, the secondary winding is connected via the second primary winding. It is designed to change the voltage of the Even in this case, since the voltage of the first primary winding 3 is constant, the voltage of the tertiary winding is also constant.

尚、上記実施例は、三相を例にしているが単相の場合に
も同様に適用できる。また各巻線の三相結線は任意の構
成を適用できる。
In addition, although the above-mentioned embodiment uses a three-phase system as an example, it can be similarly applied to a single-phase system. Moreover, any configuration can be applied to the three-phase connection of each winding.

[発明の効果] 本発明によれば一次、二次巻線間のインピーダンス電圧
及び−次、三次巻線のインピーダンス電圧を夫々望まし
い値にすることができる。又、−次側でタップ電圧を切
換える場合でもタップ巻線を複雑にして設ける必要がな
く、しかも三次尾筒1図及び第2図は本発明の一実施例
を示すもので、第1図は鉄心と巻線の配置関係を示す図
、第2図は結線図、第3図及び第4図はそれぞれ一次側
でタップ電圧を切換える場合の実施例を示す結線図であ
る。
[Effects of the Invention] According to the present invention, the impedance voltage between the primary and secondary windings and the impedance voltage of the negative and tertiary windings can be set to desirable values. In addition, even when switching the tap voltage on the negative side, there is no need to complicate the tap winding.Moreover, Figures 1 and 2 of the tertiary transition piece show one embodiment of the present invention, and Figure 1 shows an example of the present invention. FIG. 2 is a diagram showing the arrangement relationship between the iron core and the windings, FIG. 2 is a wiring diagram, and FIGS. 3 and 4 are wiring diagrams each showing an embodiment in which the tap voltage is switched on the primary side.

図中、lは第1の鉄心、3は第二の一次巻線、5は三次
巻線、6は接続リード、7は第二の鉄心、8は第2の一
次巻線、9は二次巻線である。
In the figure, l is the first core, 3 is the second primary winding, 5 is the tertiary winding, 6 is the connection lead, 7 is the second core, 8 is the second primary winding, 9 is the secondary It is a winding.

出願人  株式会社  東  芝Applicant: Toshiba Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1.磁気的に独立された第1及び第2の鉄心と、この第
1の鉄心に巻回された第1の一次巻線及び三次巻線と、
第2の鉄心に巻回され前記第1の一次巻線の途中から引
き出された接続リード線に接続される第2の一次巻線及
び二次巻線とからなる三次巻線付変圧器。
1. magnetically independent first and second cores; a first primary winding and a tertiary winding wound around the first core;
A transformer with a tertiary winding comprising a second primary winding and a secondary winding wound around a second iron core and connected to a connecting lead wire drawn out from the middle of the first primary winding.
JP15209190A 1990-06-11 1990-06-11 Transformer equiped with tertiary winding Pending JPH0443619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15209190A JPH0443619A (en) 1990-06-11 1990-06-11 Transformer equiped with tertiary winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15209190A JPH0443619A (en) 1990-06-11 1990-06-11 Transformer equiped with tertiary winding

Publications (1)

Publication Number Publication Date
JPH0443619A true JPH0443619A (en) 1992-02-13

Family

ID=15532853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15209190A Pending JPH0443619A (en) 1990-06-11 1990-06-11 Transformer equiped with tertiary winding

Country Status (1)

Country Link
JP (1) JPH0443619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891000A (en) * 2011-07-18 2013-01-23 尤大千 Lightning protection and resonance elimination reactive power compensation capacity transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891000A (en) * 2011-07-18 2013-01-23 尤大千 Lightning protection and resonance elimination reactive power compensation capacity transformer

Similar Documents

Publication Publication Date Title
US7432699B2 (en) Transformer with protection against direct current magnetization caused by zero sequence current
US5481238A (en) Compound inductors for use in switching regulators
US4837497A (en) Variable transformer, reactor and method of their control
CA2409377C (en) Magnetic controlled current or voltage regulator and transformer
CN103282981B (en) AC power regulation circuit
US4445082A (en) Variable ratio transformer and static balance compensator
JPH11243019A (en) Transformer
US4500829A (en) Advance and retard phase-shift transformer
CN213519516U (en) Three-phase magnetic assembly and integrated core
JPH0443619A (en) Transformer equiped with tertiary winding
KR20190125118A (en) Smart hybrid transformer with enhanced harmonic attenuation and large current phase recovery
US5117214A (en) Integrated magnetic power converter core
JP2023506524A (en) Power electronics on-load tap changer with reduced number of taps
US20230353059A1 (en) Phase shifting transformers comprising a single coil for two exciting windings for voltage regulation and for phase shift angle regulation
KR100253691B1 (en) Transformer(reactor) with damping coil
JP2723322B2 (en) Transformer for cyclo converter
JPH06310350A (en) Heterocapacitance load three-phase scott connection transformer
TW202211266A (en) Multi-phase voltage transforming device capable of generating special phase angles
JPH0751782Y2 (en) Shunt reactor
CN115910566A (en) Magnetic integration hybrid distribution transformer
CN116825518A (en) Novel magnetic control reactor optimization method integrating voltage regulation function
JPS6326527B2 (en)
TWM606145U (en) Wire-switchable type three phase transformer device
JPS5934983Y2 (en) scott wiring transformer
JPS6228736Y2 (en)