JPH0441965A - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine

Info

Publication number
JPH0441965A
JPH0441965A JP14851690A JP14851690A JPH0441965A JP H0441965 A JPH0441965 A JP H0441965A JP 14851690 A JP14851690 A JP 14851690A JP 14851690 A JP14851690 A JP 14851690A JP H0441965 A JPH0441965 A JP H0441965A
Authority
JP
Japan
Prior art keywords
valve
intake
control valve
deceleration
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14851690A
Other languages
Japanese (ja)
Other versions
JP2591258B2 (en
Inventor
Kozo Matsuura
松浦 幸三
Kenji Mori
賢二 森
Toshimi Kashiwakura
利美 柏倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2148516A priority Critical patent/JP2591258B2/en
Publication of JPH0441965A publication Critical patent/JPH0441965A/en
Application granted granted Critical
Publication of JP2591258B2 publication Critical patent/JP2591258B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To minimize the shock due to deceleration in decelerating an enigine along with the increased braking effect by gradually decreasing the opening time of a control valve for opening/closing a sub-intake valve adapted to communicate intake pipe portions on the upper and lower sides of a cut-off valve in a specified decelerating state of the engine, and full opening the control valve after an elapse of the predetermined time. CONSTITUTION:An intake cylinder 9 of each cylinder is provided with a cut-off valve 11 which serves as a throttle valve to continuously adjust the flow rate of an intake air flowing from the inside of a serging tank 10 to an intake port. Each cylinder is provided with sub-intake pipe 14 which forms such a bypass intake passage as communicating the intake port 14 with the serging tank 10 while bypassing the cut-off valve 11. A control valve 15 is provided in the midway of the bypass intake passage for intermitting an air flow therethrough. The control valve 15 is operated to be opened/closed by an electronic control unit(ECU) 16 based on detetced signals from an accelerator opening sensor 25. In this case, when the specified decelerating state is detected, the opening time of the control valve 15 is decreased in the specified manner, thereby controlling the control valve 15 to be full opened after an elapse of the predermined time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アイドリング等の低負荷時に各気筒の遮断弁
を閉じて、各遮断弁をバイパスする副吸気管に設けた制
御弁を開閉することにより遮断弁下流側の吸気管部分に
所定量の空気を供給する方法(以下吸気ボート充填法と
いう)を採用した内燃機関の吸気装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention closes the cutoff valve of each cylinder during low load such as idling, and opens and closes the control valve provided in the auxiliary intake pipe that bypasses each cutoff valve. The present invention relates to an intake system for an internal combustion engine that employs a method of supplying a predetermined amount of air to an intake pipe portion downstream of a shutoff valve (hereinafter referred to as the intake boat filling method).

〔従来の技術〕[Conventional technology]

一般にスロットル弁を有する内燃機関では、アイドリン
グ等の低負荷運転時には、スロットル弁が略全閉となる
ため、スロットル弁下流側の吸気管圧力は大きく負圧側
に移行する。このため吸気行程時のピストンにこの負圧
が作用することによりいわゆるポンピング損失が増大し
て機関効率が低下する原因となっていた。
Generally, in an internal combustion engine having a throttle valve, the throttle valve is substantially fully closed during low-load operation such as idling, so the intake pipe pressure downstream of the throttle valve largely shifts to the negative pressure side. For this reason, this negative pressure acts on the piston during the intake stroke, causing an increase in so-called pumping loss and a decrease in engine efficiency.

本願出願人は上記問題を解決するため、先に実願平1−
43976号において前述の吸気ボート充填法を用いた
内燃機関の吸気装置を提案している。
In order to solve the above problem, the applicant first filed the application
No. 43,976 proposes an intake system for an internal combustion engine using the above-mentioned intake boat filling method.

この吸気装置ではアイドリング等の低負荷時には各吸気
管の遮断弁を全閉にして、遮断弁をバイパスする副吸気
管に設けた制御弁を所定時間開弁することより吸気弁閉
弁中の吸気ボートに空気を供給している。すなわち、各
制御弁は、各々の気筒の吸気弁が閉弁した後に開いて吸
気ボートに空気を充填し、吸気弁開弁前に閉弁するよう
にして、機関運転に必要な空気は遮断弁下流の吸気ボー
トに充填した空気量でまかなっている。この方法によれ
ば吸気弁閉弁中に吸気ボートに空気が充填されるため、
吸気弁が開き始約るときには吸気ボート圧力は大気圧付
近まで上昇しており、各気筒の吸気行程時のボンピング
損失は大幅に低減される。
In this intake system, when the load is low such as when idling, the cutoff valve of each intake pipe is fully closed, and the control valve installed in the auxiliary intake pipe that bypasses the cutoff valve is opened for a predetermined period of time. It supplies air to the boat. In other words, each control valve opens after the intake valve of each cylinder closes to fill the intake boat with air, and closes before the intake valve opens, and the air necessary for engine operation is supplied to the shutoff valve. This is covered by the amount of air filled in the downstream intake boat. According to this method, the intake boat is filled with air while the intake valve is closed, so
When the intake valve begins to open, the intake boat pressure has risen to near atmospheric pressure, and the pumping loss during the intake stroke of each cylinder is significantly reduced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように実願平1−43976号の吸気装置では低
負荷運転時に吸気ボート圧力を上昇させることによって
遮断弁全開の際のボンピング損失を低減させているため
、通常走行中にアクセルを戻してエンジンブレーキによ
り車両を減速するような場合に遮断弁が全開になっても
遮断弁下流の吸気ボート圧力は低くならず、通常のエン
ジンのようにボンピング損失が大きくならないことから
、エンジンブレーキの“効き”が悪いという問題が生じ
ていた。
As mentioned above, the intake system of Utility Application No. 1-43976 reduces the pumping loss when the shutoff valve is fully open by increasing the intake boat pressure during low-load operation, so it is possible to reduce the pumping loss when the shutoff valve is fully opened. When the vehicle is decelerated by engine braking, even if the isolation valve is fully opened, the intake boat pressure downstream of the isolation valve does not decrease, and the pumping loss does not become large as in a normal engine, so the "effectiveness" of engine braking is reduced. ``The problem was that it was bad.

この問題を解決するためには減速を検知して各制御弁を
全開にするようにして吸気ボート圧力を負圧に移行させ
れば良い。しかし各制御弁を単純に全開に切り換えると
吸気ボート圧力が急激に負圧になり、エンジンブレーキ
による減速トルクが急増し、大きな減速ショックが加わ
り、運転感覚の悪化を伴う問題があった。
In order to solve this problem, the intake boat pressure can be shifted to negative pressure by detecting deceleration and fully opening each control valve. However, simply switching each control valve fully open causes the intake boat pressure to suddenly become negative, causing a rapid increase in deceleration torque due to engine braking, resulting in a large deceleration shock and a problem with the deterioration of driving sensation.

本発明は上記問題を解決するため、機関減速時に減速シ
ョックを最小限に抑制し、しかも大きなエンジンブレー
キの効果を得ることができる内燃機関の吸気装置を提供
することを目的としている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, it is an object of the present invention to provide an intake system for an internal combustion engine that can minimize deceleration shock during engine deceleration and obtain a large engine braking effect.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、各気筒の吸気管毎に遮断弁と、該遮断
弁の上流側と下流側の吸気管部分を連通ずる副吸気管と
、該副吸気管を開閉する制御弁とを備えた内燃機関の吸
気装置において、 機関の所定減速状態を検知する減速検知手段と、該減速
検知手段により前記所定の減速状態が検知されたときに
前記制御弁の各々の開弁時間を所定の手順に従って減少
させ、所定時間経過後に各制御弁を全開にする減速制御
手段を設けたことを特徴とする内燃機関の吸気装置が提
供される。
According to the present invention, each intake pipe of each cylinder is provided with a cutoff valve, an auxiliary intake pipe that communicates the intake pipe portions upstream and downstream of the cutoff valve, and a control valve that opens and closes the auxiliary intake pipe. An intake system for an internal combustion engine, comprising: deceleration detecting means for detecting a predetermined deceleration state of the engine; and when the predetermined deceleration state is detected by the deceleration detecting means, opening times of each of the control valves are determined according to a predetermined procedure. There is provided an intake system for an internal combustion engine, characterized in that it is provided with a deceleration control means for fully opening each control valve after a predetermined period of time has elapsed.

〔作 用〕[For production]

機関が所定の減速状態にあることが検知されると減速制
御手段は各制御弁の開弁時間を制御し、1サイクル当り
の全制御弁の開弁時間の総和が徐々に減少するようにし
て所定時間経過後に全部の制御弁が全開になるようにす
る。従って減速開始時の減速ショックが緩和されると共
に減速トルクが徐々に増大して、一定時間経過後には強
力なエンジンブレーキを得ることができる。
When it is detected that the engine is in a predetermined deceleration state, the deceleration control means controls the opening time of each control valve so that the sum of the opening times of all control valves per cycle gradually decreases. After a predetermined period of time, all control valves are fully opened. Therefore, the deceleration shock at the start of deceleration is alleviated, the deceleration torque gradually increases, and strong engine braking can be obtained after a certain period of time has elapsed.

〔実施例〕〔Example〕

第1図は本発明を実施する吸気ボート充填法による内燃
機関(吸気ボート充填機関)の空気供給装置の実施例を
示しており、図において、1はシリンダブロック、2は
シリンダヘッド、3はピストン、4は燃焼室、5は吸気
ボート、6は排気ボート、7は吸気弁、8は排気弁、9
は各気筒の主吸気通路を形成する吸気管、1oはサージ
タンクを示している。
FIG. 1 shows an embodiment of an air supply system for an internal combustion engine (intake boat filling engine) using the intake boat filling method according to the present invention. In the figure, 1 is a cylinder block, 2 is a cylinder head, and 3 is a piston. , 4 is a combustion chamber, 5 is an intake boat, 6 is an exhaust boat, 7 is an intake valve, 8 is an exhaust valve, 9
indicates an intake pipe forming the main intake passage of each cylinder, and 1o indicates a surge tank.

各気筒の吸気管9には遮断弁11が設けられるが、この
実施例では遮断弁11がスロットル弁を兼ねていて、低
・中負荷以上では運転者の操作するアクセルペダルによ
って要求量だけ開き、サージタンク10内から吸気ボー
ト5へ流れる吸気の流量を無段階に調節するようになる
が、アイドリング状態では、遮断弁11は全閉して実質
的に空気の流れを塞ぐようになっている。しがし別の実
施例としては、遮断弁11は単なる全開位置(低・中負
荷以上)と全閉位置(アイドリング状態)をとるだけの
ものとし、別に運転者の操作するスロットル弁を全気筒
共通の吸気管等に設けることもできる。なお、12は点
火栓、13は燃料噴射弁を示す。
A cutoff valve 11 is provided in the intake pipe 9 of each cylinder. In this embodiment, the cutoff valve 11 also serves as a throttle valve, and at low/medium loads or higher, it opens by the required amount by the accelerator pedal operated by the driver. The flow rate of intake air flowing from inside the surge tank 10 to the intake boat 5 is adjusted steplessly, but in an idling state, the shutoff valve 11 is fully closed to substantially block the flow of air. However, in another embodiment, the shutoff valve 11 is simply set to a fully open position (low/medium load or higher) and a fully closed position (idling state), and a throttle valve operated by the driver is separately operated to control all cylinders. It can also be provided in a common intake pipe or the like. Note that 12 represents a spark plug, and 13 represents a fuel injection valve.

14は遮断弁11をバイパスするように吸気ボート5と
サージタンク10を連絡してバイパス吸気通路を形成す
る副吸気管で、各気筒毎に設けられ、その通路の一部に
は本実施例では電磁弁からなる制御弁15が設けられて
、バイパス吸気通路を流れる空気流を断続するようにな
っている。制御弁15は電子制御装置(ECU) 16
によって開閉制御されるが、εCLI 16はデジタル
コンピュータからなり、双方向性バス17によって相互
に接続されるROM 18. RAM1g、 CPU 
20、入力ボート21、出力ボート22、制御弁15の
駆動回路23等を備えている。
Reference numeral 14 denotes an auxiliary intake pipe that connects the intake boat 5 and the surge tank 10 to form a bypass intake passage so as to bypass the cutoff valve 11, and is provided for each cylinder. A control valve 15 consisting of a solenoid valve is provided to cut off and cut off the airflow flowing through the bypass intake passage. The control valve 15 is an electronic control unit (ECU) 16
The εCLI 16 consists of a digital computer and a ROM 18. which is interconnected by a bidirectional bus 17. RAM1g, CPU
20, an input boat 21, an output boat 22, a drive circuit 23 for the control valve 15, and the like.

また25は運転者によるアクセルペダル操作量を検知す
るためのアクセル開度センサである。
Further, 25 is an accelerator opening sensor for detecting the amount of accelerator pedal operation by the driver.

本実施例では制御弁15は実願平1−43976号と同
様な方法で制御されており各制御弁15は機関低負荷時
には第2図に示すようにそれぞれの吸気管の閉弁期間中
に所定の時間T。だけ開弁され、吸気弁が開く直前に閉
じるようにされている。以下の説明では、制御弁が第2
図に示したように1サイクル中に所定時間T。だけ開弁
する通常時の作動を便宜上「全開」状態と呼ぶことにす
る。
In this embodiment, the control valves 15 are controlled in the same manner as in Utility Application No. 1-43976, and each control valve 15 is controlled during the valve closing period of each intake pipe when the engine is under low load, as shown in FIG. Predetermined time T. The intake valve is opened just before the intake valve opens, and is closed just before the intake valve opens. In the following explanation, the control valve is
As shown in the figure, the predetermined time T during one cycle. For convenience, the normal operation in which the valve is opened only when the valve is opened will be referred to as the "fully open" state.

前述のように制御弁の全開状態では吸気ポート圧力が吸
気弁開弁直前に大気圧付近まで上昇しているため機関の
ボンピング損失が小さい反面エンジンブレーキの効果が
小さくなっている。従ってエンジンブレーキの制動力を
増大させるためには制御弁が全く開弁じない状態(全閉
状態)とすることが好ましい。しかし、減速開始と共に
全開状態の制御弁を全開にした場合、吸気ポート圧力が
急激に負圧になり、ボンピング損失の増加により大きな
制動力が生じるため減速ショックが大きくなる。
As mentioned above, when the control valve is fully open, the intake port pressure rises to near atmospheric pressure immediately before the intake valve opens, so the pumping loss of the engine is small, but the engine braking effect is also small. Therefore, in order to increase the braking force of the engine brake, it is preferable that the control valve is not opened at all (fully closed state). However, when the fully open control valve is fully opened at the start of deceleration, the intake port pressure suddenly becomes negative pressure, and a large braking force is generated due to an increase in pumping loss, resulting in a large deceleration shock.

本発明では、この減速ショックを回避するため、制御弁
の全開から全開への切り換えを徐々に行なうようにして
いる。
In the present invention, in order to avoid this deceleration shock, the control valve is gradually switched from fully open to fully open.

第3図は機関減速時におけるECU 16による制御弁
の減速制御動作の実施例を示している。
FIG. 3 shows an embodiment of the deceleration control operation of the control valve by the ECU 16 during engine deceleration.

この制御動作は各制御弁15の作動直前に行なわれ、例
えば4気筒機関であればクランク軸回転180度毎に実
行される。図においてステップ100でルーチンが開始
するとステップ110ではアクセル開度センサ25から
の人力信号を基にアクセルが全閉か否かが判定され、ア
クセルが全閉でない場合は機関減速状態でないと判断し
てステップ120で制御弁を前述の「全開状態」 (本
実施例では開弁時間T=10mS) にセットし、ステ
ップ130で開弁時間Tを制御弁15の駆動回路23に
出力してルーチンを終わる。
This control operation is performed immediately before each control valve 15 is activated, and for example, in a four-cylinder engine, it is performed every 180 degrees of crankshaft rotation. In the figure, when the routine starts at step 100, it is determined at step 110 whether the accelerator is fully closed based on the human power signal from the accelerator opening sensor 25, and if the accelerator is not fully closed, it is determined that the engine is not decelerating. In step 120, the control valve is set to the aforementioned "fully open state" (in this embodiment, valve opening time T = 10 mS), and in step 130, the valve opening time T is output to the drive circuit 23 of the control valve 15, and the routine ends. .

ステップ110でアクセルが全閉であった場合には次に
ステップ140でツユニルカット実行中か否かを判定す
る。
If the accelerator is fully closed in step 110, then in step 140 it is determined whether or not a twin wheel cut is being executed.

これは機関が減速中かアイドリング中かを判定するため
でありツユニルカット実行の有無はEC[116により
別途行なわれている燃料噴射制御の結果を人力して判定
する。
This is to determine whether the engine is decelerating or idling, and whether or not the engine cut is to be executed is manually determined based on the results of fuel injection control that is separately performed by the EC [116].

ステップ140でツユニルカット実行中である場合には
ステップ150でツユニルカット実行中を表わすフラグ
FCを1に設定し、制御弁の開弁時間TをQ、1msだ
け短縮する(ステップ160)。次にステップ170で
ステップ160で短縮した時間が負になっていないかを
判定し負になっている場合にはT=0をセットする(ス
テップ180)ステップ150からステップ180は機
関減速中(ツユニルカット中)繰り返し実行され、制御
弁開弁時間は実行毎に0、Imsずつ短縮されて一定時
間経過後にはT=O1すなわち全閉状態になる。次にス
テップ140でツユニルカット実行中でないと判断した
場合はステップ190でフラグFCが1か否かを判定す
る。フラグFCは後述のように制御弁開弁時間Tが5m
s以上にならないとゼロにリセットされないためフラグ
FCが1であった場合はステップ200に進み制御弁開
弁時間Tを0,1msだけ増加させる。従ってアクセル
全開(ステップ110)でかつツユニルカット実行中で
ない状態(ステップ14o)ではステップ190から2
00により制御弁開弁時間は0.1msずつ増加し、T
>5.OmsとなったときにフラグFCはゼロにリセッ
トされる(ステップ210)。ステップ190でフラグ
FCキ1であった場合にはステップ230で通常のアイ
ドル回転フィードバックが行なわれ制御弁開弁時間Tは
設定アイドル回転数と実際の機関回転数との差に応じて
増減される。
If the twin cut is being executed in step 140, a flag FC indicating that the twin cut is in progress is set to 1 in step 150, and the control valve opening time T is shortened by Q, 1 ms (step 160). Next, in step 170, it is determined whether the time shortened in step 160 is negative, and if it is negative, T=0 is set (step 180). (Middle) The control valve is repeatedly executed, and the control valve opening time is shortened by 0 and Ims each time it is executed, and after a certain period of time has passed, the control valve becomes T=O1, that is, the fully closed state. Next, if it is determined in step 140 that the twin cut is not being executed, it is determined in step 190 whether the flag FC is 1 or not. The flag FC is set when the control valve opening time T is 5 m as described later.
Since the flag FC is not reset to zero unless it is equal to or greater than s, if the flag FC is 1, the process proceeds to step 200 and the control valve opening time T is increased by 0.1 ms. Therefore, when the accelerator is fully open (step 110) and the twin cut is not in progress (step 14o), steps 190 to 2
00, the control valve opening time increases by 0.1ms, and T
>5. When Oms is reached, the flag FC is reset to zero (step 210). If the flag is FC key 1 in step 190, normal idle rotation feedback is performed in step 230, and the control valve opening time T is increased or decreased according to the difference between the set idle rotation speed and the actual engine rotation speed. .

第4図A−Dは上記制御を行なった場合の減速時ノアク
セル開度、エンジン回転数、フ二エルカット状況と制御
弁の開弁時間との関係を示している。制御弁開弁時間(
第4図D)は機関減速開始(ツユニルカット開始)と共
に徐々に(本実施例では1回にQ、1msずつ)短縮さ
れて全開になるため、急激な減速ショックを伴わず一定
時間後には強力な制動力を得ることができる。また減速
が終了してツユニルカットが解除されると制御弁の開弁
時間を増加させてエンジンストールを防止するが、この
場合も制御弁開弁時間は1回に0,1msずつ増加する
ようにされるため制御弁の開弁時間の急変によるエンジ
ン回転数の急激な変化が生じる心配がない。
FIGS. 4A to 4D show the relationship between the no-acceleration opening during deceleration, the engine rotational speed, the fuel cut situation, and the opening time of the control valve when the above control is performed. Control valve opening time (
D) in Fig. 4 is gradually shortened (Q, 1 ms at a time in this example) as the engine decelerates (the start of the engine cut) and becomes fully open. You can get braking power. Furthermore, when the deceleration ends and the twin cut is released, the control valve opening time is increased to prevent engine stall, but in this case as well, the control valve opening time is increased by 0.1ms at a time. Therefore, there is no need to worry about sudden changes in engine speed due to sudden changes in the opening time of the control valve.

本実施例では各制御弁の開弁時間をそれぞれ一定量ずつ
で減少させて一定時間後に全部の制御弁を全開にする方
法をとっているが、各制御弁は中間の開弁時間を経ずに
全開から全開に切換えることとして各制御弁の作動時期
をずらすことによって急激な減速ショックを避けるよう
にしても良い。
In this embodiment, the opening time of each control valve is decreased by a certain amount, and all control valves are fully opened after a certain period of time. A sudden deceleration shock may be avoided by shifting the operating timing of each control valve by switching from fully open to fully open.

第5図はこの制御方法による制御弁の作動時期の例を示
す図である。
FIG. 5 is a diagram showing an example of the operation timing of the control valve according to this control method.

この例ではアクセル開度とフニエルカット状態から機関
減速状態にあることが判定されると、只今制御弁を全開
にして減速ショックを回避し、そのまま一定時間(本図
では1秒間)全開状態に保持した後、制御弁を1つずつ
一定の間隔で全開にする動作を行なう。制御弁を1つず
つ全閉とすることにより制動力が段階的に増加するため
、大きな減速ショックを伴うことなく一定時間後には最
大の制動力を得ることができる。減速終了後の制御弁開
弁動作は前述の実施例と同様に各制御弁の開弁時間を一
定量ずつ増加させる制御としても良いし閉弁時とは逆に
制御弁を1つずつ開弁じて行くようにしても良い。
In this example, when it is determined that the engine is decelerating from the accelerator opening and the fennel cut state, the control valve is now fully opened to avoid deceleration shock, and is held fully open for a certain period of time (1 second in this figure). After that, the control valves are fully opened one by one at regular intervals. Since the braking force is increased in stages by fully closing the control valves one by one, the maximum braking force can be obtained after a certain period of time without causing a large deceleration shock. The control valve opening operation after the end of deceleration may be controlled by increasing the opening time of each control valve by a fixed amount, as in the above-mentioned embodiment, or by opening the control valves one by one, contrary to the valve closing operation. You may as well go.

本実施例においては制御弁を全閉にする気筒は任意の順
番とすることができ、また、第6図に示すように2気筒
ずつの組にして動作させても良い。
In this embodiment, the cylinders whose control valves are fully closed can be set in any order, and the cylinders may be operated in groups of two cylinders as shown in FIG.

本実例によれば制御弁の開閉動作の制御が非常に簡単に
なり、確実な動作が得られる利点がある。
According to this example, the opening/closing operation of the control valve can be controlled very easily, and there is an advantage that reliable operation can be obtained.

〔発明の効果〕〔Effect of the invention〕

上述のように、本発明によれば、機関減速時に制御弁を
一定の手順に従って所定時間経過した後に全開とするこ
とにより、エンジンブレーキ時の急激な減速ショックを
回避しながら大きな制動力を得ることができる。
As described above, according to the present invention, by fully opening the control valve after a predetermined time according to a certain procedure when the engine is decelerating, it is possible to obtain a large braking force while avoiding sudden deceleration shock during engine braking. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す図、第2図は制
御弁と吸気弁の開弁タイミングを示す図、第3図は減速
時の制御弁の開閉制御動作を示すフローチャート、第4
図は減速時の制御弁動作どエンジン回転数等との関係を
示す図、第5図と第6図は減速時の制御弁動作の別の実
施例を示す図である。 5・・・吸気ポート、  7・・・吸気弁、11・・・
遮断弁、    14・・・副吸気管、15・・・制御
弁、    16・・・ECU0$]コ 5−吸気ボート 7・・吸気弁 ++−X断弁 14・副吸気管 15・制御弁 16 ・ECU ==:コ吸気弁開弁期間 ロ=:コ制御弁開弁期間 第 コ 第 回 減速開始 ↓ 第 回 減速開始 ↓ 第 回
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a diagram showing the opening timing of the control valve and the intake valve, and FIG. 3 is a flowchart showing the opening/closing control operation of the control valve during deceleration. Fourth
This figure shows the relationship between the control valve operation during deceleration and the engine rotational speed, and FIGS. 5 and 6 are diagrams showing another example of the control valve operation during deceleration. 5... Intake port, 7... Intake valve, 11...
Shutoff valve, 14...Sub-intake pipe, 15...Control valve, 16...ECU0$] Ko5-Intake boat 7...Intake valve++-X shutoff valve 14-Sub-intake pipe 15-Control valve 16・ECU ==: Intake valve opening period B =: Control valve opening period 1st deceleration start ↓ 1st deceleration start ↓ 1st

Claims (1)

【特許請求の範囲】 1、各気筒の吸気管毎に遮断弁と、該遮断弁の上流側と
下流側の吸気管部分を連通する副吸気管と、該副吸気管
を開閉する制御弁とを備えた内燃機関の吸気装置におい
て、 機関の所定減速状態を検知する減速検知手段と、該減速
検知手段により前記所定の減速状態が検知されたときに
前記制御弁の各々の開弁時間を所定の手順に従って減少
させ、所定時間経過後に各制御弁を全閉にする減速制御
手段を設けたことを特徴とする内燃機関の吸気装置。
[Scope of Claims] 1. A cutoff valve for each intake pipe of each cylinder, a sub-intake pipe that communicates the intake pipe portions upstream and downstream of the cut-off valve, and a control valve that opens and closes the sub-intake pipe. An intake system for an internal combustion engine, comprising: deceleration detection means for detecting a predetermined deceleration state of the engine; and a predetermined opening time for each of the control valves when the predetermined deceleration state is detected by the deceleration detection means. 1. An intake system for an internal combustion engine, comprising: a deceleration control means for decreasing the air intake according to the procedure described in the following, and fully closing each control valve after a predetermined period of time has elapsed.
JP2148516A 1990-06-08 1990-06-08 Intake device for internal combustion engine Expired - Lifetime JP2591258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2148516A JP2591258B2 (en) 1990-06-08 1990-06-08 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2148516A JP2591258B2 (en) 1990-06-08 1990-06-08 Intake device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0441965A true JPH0441965A (en) 1992-02-12
JP2591258B2 JP2591258B2 (en) 1997-03-19

Family

ID=15454522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2148516A Expired - Lifetime JP2591258B2 (en) 1990-06-08 1990-06-08 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2591258B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928747A (en) * 1982-08-09 1984-02-15 Nippon Telegr & Teleph Corp <Ntt> Input and output managing system of message storage and exchange system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928747A (en) * 1982-08-09 1984-02-15 Nippon Telegr & Teleph Corp <Ntt> Input and output managing system of message storage and exchange system

Also Published As

Publication number Publication date
JP2591258B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
JP2843115B2 (en) Fluid coupling fastening force control system including engine output control
JP2001041078A (en) Outboard motor
JP3273174B2 (en) Engine control device
JPH0441965A (en) Intake device for internal combustion engine
JP4736485B2 (en) Control device for internal combustion engine
JPS595845A (en) Method of controlling restriction of intake air of diesel engine
JPH10196381A (en) Control device of internal combustion engine mounted with variable nozzle type turbocharger
JP2010116869A (en) Internal combustion engine for vehicle
JPH0612234Y2 (en) Electronic control unit for diesel engine
JP2002310046A (en) Supercharging pressure control device of internal combustion engine
JP2566233B2 (en) Engine fuel control device
JPH08189368A (en) Deceleration control device for engine
JPH0810679Y2 (en) Internal combustion engine intake system
JPH0396620A (en) Control device for engine with turbo-charger
JPS6217326A (en) Load detector of engine
JP2001130248A (en) Air-conditioner cut control method
JPH063177Y2 (en) Exhaust gas recirculation control device for diesel engine
JPS6161918A (en) Air intake device of internal-combustion engine
JPH11200928A (en) Idling speed controller of vehicle engine
JP3953991B2 (en) Intake air amount control device for internal combustion engine
JP2000110607A (en) Supercharging pressure control method
JPH01277625A (en) Supercharge pressure controller for engine
JPH0326304Y2 (en)
JPH03279626A (en) Supercharge pressure controller for two-cycle internal combustion engine
JPH0460268A (en) Coupling force control device of fluid coupling