JPH0440620B2 - - Google Patents

Info

Publication number
JPH0440620B2
JPH0440620B2 JP57012752A JP1275282A JPH0440620B2 JP H0440620 B2 JPH0440620 B2 JP H0440620B2 JP 57012752 A JP57012752 A JP 57012752A JP 1275282 A JP1275282 A JP 1275282A JP H0440620 B2 JPH0440620 B2 JP H0440620B2
Authority
JP
Japan
Prior art keywords
liquid flow
flow path
orifice
liquid
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57012752A
Other languages
Japanese (ja)
Other versions
JPS58131374A (en
Inventor
Akira Hibi
Yasuo Kita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP57012752A priority Critical patent/JPS58131374A/en
Publication of JPS58131374A publication Critical patent/JPS58131374A/en
Publication of JPH0440620B2 publication Critical patent/JPH0440620B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/22Wind motors characterised by the driven apparatus the apparatus producing heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

【発明の詳細な説明】 本発明、風力を利用した暖房システムや給湯シ
ステム等として使用される液圧式風力・熱変換装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydraulic wind power/thermal conversion device used as a heating system, hot water supply system, etc. that utilizes wind power.

近時、クリーンエネルギーの利用技術に関する
研究が盛んであり、その一環として、風のエネル
ギーを熱エネルギーに変換し、その熱エネルギー
を暖房その他に利用することができるようにした
油圧式の風力・熱交換装置が開発されている。
Recently, there has been a lot of research into clean energy utilization technology, and as part of this research, we are developing hydraulic wind/thermal systems that convert wind energy into thermal energy and use that thermal energy for heating and other purposes. A replacement device has been developed.

従来のこの種風力・熱変換装置としては、例え
ば第1図に示すように、タワーの頂部等に枢設さ
れ風力に付勢されて回転する風力タービンaとこ
の風力タービンaにより駆動される回転式の油圧
ポンプbと、この油圧ポンプbの吐出口cから逐
次吐出される油を熱交換器dに導くとともにこの
熱交換器dを通過した油を前記油圧ポンプbの吸
入口eに戻すための閉ループ状の油流通路fとこ
の油流通路fの始端近傍部に介挿され通過する油
の分子運動を加熱することにより油温の上昇を促
がす熱発生用のオリフイスgとを具備してなるも
のが知られている。すなわち、この装置は、前記
熱交換器dから熱の放散が行なわれるので、該熱
交換器dを温室内や家屋内に配設することによつ
て暖房システムとして使用することができ、ま
た、前記熱交換器dを貯湯槽内に配設することに
よつて給湯システムとして使用することができ
る。
For example, as shown in Fig. 1, this type of conventional wind power/thermal conversion device includes a wind turbine a that is pivotally installed at the top of a tower and rotates when energized by wind power, and a rotation driven by the wind turbine a. A hydraulic pump b of the type, and for guiding the oil sequentially discharged from the discharge port c of the hydraulic pump b to the heat exchanger d, and returning the oil that has passed through the heat exchanger d to the suction port e of the hydraulic pump b. A closed-loop oil flow passage f and a heat-generating orifice g inserted near the starting end of the oil flow passage f to heat the molecular motion of the oil passing through it to promote an increase in oil temperature. What happens is known. That is, since this device radiates heat from the heat exchanger d, it can be used as a heating system by placing the heat exchanger d inside a greenhouse or a house. By disposing the heat exchanger d in a hot water storage tank, it can be used as a hot water supply system.

ところが、この装置は、オリフイスg部分で昇
温させた油を油流通路fを通して循環させ、熱交
換器d部分において前記油が保有している熱エネ
ルギーを順次装置外に放散させるようにしたもの
であるため、前記熱交換器d以外の油流通部分つ
まり、前記オリフイスgを含む油流通路fや油圧
ポンプbの外周囲を完全に保温カバーhにより被
つて断熱保温しないと発生させた熱エネルギーを
有効に利用することができない。また、このよう
な構成のものでは、何らかの外因により熱交換器
dからの放熱が緩慢になつた場合には、温度の高
い油が油圧ポンプbを通して循環することになる
ので、該油圧ポンプが過熱されて焼付事故等を起
し易い。そのため、何らかの安全機構を設けてお
く必要がある。
However, in this device, the oil heated in the orifice g is circulated through the oil flow passage f, and the thermal energy held by the oil in the heat exchanger d is sequentially dissipated outside the device. Therefore, if the oil flow portions other than the heat exchanger d, that is, the oil flow path f including the orifice g, and the outer periphery of the hydraulic pump b are completely covered with a heat insulating cover h and kept insulated, the generated thermal energy will be reduced. cannot be used effectively. In addition, with such a configuration, if heat radiation from heat exchanger d becomes slow due to some external cause, high temperature oil will circulate through hydraulic pump b, so that the hydraulic pump will not overheat. It is easy to cause burn-out accidents, etc. Therefore, it is necessary to provide some kind of safety mechanism.

したがつて、このような装置は、構造が複雑で
大形なものになり易く、組立てや配管作業等に手
間がかかるという不都合がある。
Therefore, such a device tends to have a complicated structure and large size, and has the disadvantage that assembly, piping work, etc. are time-consuming.

本発明は、このような事情に着目してなされた
もので、往復動形のポンプ機構とアキユムレータ
との組合せによつて液体流通路内にに交流の液体
流を惹起させ、この液体流の有している運動エネ
ルギーをオリフイスにより熱エネルギーに変換し
この熱エネルギーをその場で放散させるようにす
ることによつて、液体流通路等を断熱保温したり
ポンプの過熱を防止するための安全機構を設ける
必要がなく、構造が簡単で実施が容易な液圧式風
力・熱変換装置を提供するものである。
The present invention has been made in view of these circumstances, and uses a combination of a reciprocating pump mechanism and an accumulator to induce an alternating current liquid flow in a liquid flow path, and to improve the property of this liquid flow. By using an orifice to convert the kinetic energy generated into thermal energy and dissipating this thermal energy on the spot, we can create a safety mechanism that insulates the liquid flow path and prevents the pump from overheating. The present invention provides a hydraulic wind power/thermal conversion device that does not require installation, has a simple structure, and is easy to implement.

以下、本発明の一実施例を第2図を参照して説
明する。
An embodiment of the present invention will be described below with reference to FIG.

図示しないタワー上に風力タービン1と、往復
動形のポンプ機構2とを設けている。風力タービ
ン1は、フライホイール3を有した支軸4の先端
に固設されており、前記支軸4はベアリング55
を介して前記タワー上に回転可能に支持されてい
る。一方、ポンプ機構2は、液圧シリンダ6のピ
ストンロツド6aの先端をコネクテイングロツド
7を介して前記支軸4に設けたクランク部4aに
連結してなるもので、前記風力タービン1が支軸
4とともに回転した場合に前記液圧シリンダ6の
ピストン6bが往復運動を行なつて該液圧シリン
ダ6内に形成されたポンプ室6cの容積が増減す
るようになつている。また、このピンプ室6cに
液体流通路8の基端を連通させるとともに、この
液体流通路8の先端部を前記タワーから離れた場
所に建設された温室9内にまで延出させ、その先
端にアキユムレータ11を設けている。そして、
前記液体流通路8の例えば、先端近傍部、つま
り、液体流通路8の前記温室9内に位置する部位
に発熱用のオリフイス12を介挿し、このオリフ
イス12の近傍を放熱部13としている。しかし
て、前記流体流通路8は、液体を循環させるため
のもではなく、その基端を前記ポンプ室6cに連
通させるとともに先端にアキユムレータ11を設
けることによつて、後述するようにその内部に周
期的に方向を変える交液流を惹起させ得るように
したものである。
A wind turbine 1 and a reciprocating pump mechanism 2 are provided on a tower (not shown). The wind turbine 1 is fixed to the tip of a support shaft 4 having a flywheel 3, and the support shaft 4 has a bearing 55.
is rotatably supported on the tower via. On the other hand, the pump mechanism 2 is constructed by connecting the tip of a piston rod 6a of a hydraulic cylinder 6 to a crank portion 4a provided on the support shaft 4 via a connecting rod 7, and the wind turbine 1 is connected to the support shaft 4. 4, the piston 6b of the hydraulic cylinder 6 performs reciprocating motion, and the volume of the pump chamber 6c formed within the hydraulic cylinder 6 increases or decreases. In addition, the base end of the liquid flow path 8 is communicated with the pimp chamber 6c, and the tip of the liquid flow path 8 is extended into a greenhouse 9 constructed at a location away from the tower. An accumulator 11 is provided. and,
For example, a heat generating orifice 12 is inserted in the vicinity of the tip of the liquid flow path 8, that is, a portion of the liquid flow path 8 located inside the greenhouse 9, and the vicinity of the orifice 12 is used as a heat radiation section 13. However, the fluid flow passage 8 is not for circulating liquid, but by having its proximal end communicate with the pump chamber 6c and providing an accumulator 11 at its distal end, the fluid flow passage 8 is configured to have an internal flow as described later. It is designed to induce an alternating liquid flow that periodically changes direction.

このような構成のものであれば、風力に付勢さ
れて風力タービン1が回転し、液圧シリンダ6の
ピストン6bが降下してポンプ室6cの容積が減
小すると、このポンプ室6c内に充満させてあつ
た液体が逐次液体流通路8へ流出して該液体流通
路8内に矢印X方向の流れが惹起される。そし
て、前記ポンプ室6cから流出した分に相当する
液体流通路8内の液体が前記アキユムレータ11
内に流入し貯留される。次いで、前記液圧シリン
ダ6のピストン6bが上昇してポンプ室6cの容
積が増大すると、前記アキユムレータ11内の液
体が逐次液体流通路8へ流出して該液体流通路8
内に矢印Y方向の流れが惹起される。そして、前
記アキユムレータ11から流出した分に相当する
液体流通路8内の液体が前記ポンプ室6c内に流
入する。
With such a configuration, when the wind turbine 1 is rotated by the wind force and the piston 6b of the hydraulic cylinder 6 is lowered to reduce the volume of the pump chamber 6c, the inside of the pump chamber 6c is The filled liquid sequentially flows out into the liquid flow path 8, and a flow in the direction of arrow X is induced in the liquid flow path 8. Then, the liquid in the liquid flow path 8 corresponding to the amount that has flowed out from the pump chamber 6c is transferred to the accumulator 11.
It flows into the interior and is stored. Next, when the piston 6b of the hydraulic cylinder 6 rises and the volume of the pump chamber 6c increases, the liquid in the accumulator 11 sequentially flows out into the liquid flow path 8.
A flow in the direction of arrow Y is induced inside. Then, the liquid in the liquid flow path 8 corresponding to the amount flowing out from the accumulator 11 flows into the pump chamber 6c.

このように本装置によれば、風力タービン1が
回転することによつて液体流通路8内に周期的に
方向を変える交液流が発生する。そのため、前記
液体流通路8にオリフイス12を介挿しておけば
この部分で液体同士の衝突・摩擦により分子運動
が加勢されて液体の温度が上昇する。したがつて
前記液体流通路8のオリフイス介挿部分を放熱部
13として温室9内に配置すれば、このオリフイ
ス12の近傍で発生した熱を温室9内の暖房に利
用することができる。
As described above, according to the present device, as the wind turbine 1 rotates, an alternating liquid flow whose direction changes periodically is generated in the liquid flow path 8. Therefore, if the orifice 12 is inserted into the liquid flow path 8, the molecular motion will be enhanced by the collision and friction between the liquids at this portion, and the temperature of the liquid will rise. Therefore, if the orifice inserted portion of the liquid flow path 8 is placed in the greenhouse 9 as a heat radiating section 13, the heat generated near the orifice 12 can be used for heating the greenhouse 9.

しかして、このようなものであれば、液体流通
路8の途中で発生させた熱をその場で放散させて
暖房等に利用することができるので、従来のもの
のように発生させた熱を液体とともに所要位置に
まで運搬する必要がなく、したがつて、ポンプ室
6cから室温9に至る液体流通路8を保温カバー
等を用いて遮熱保温することが全く不用となる。
また、この装置では、オリフイス12を往復して
流れる液体、つまり液体流通路8のオリフイス介
挿部分に存在する液体の温度のみが上昇すること
になるので、ポンプ機構2に過熱を防止するため
の安全機構を設ける必要がない。さらに、このも
のは、液体流通路8を閉ループ状に設けなくても
よいので、該液体流通路8の長さを従来のものに
比べて半分にすることができる。
However, with this kind of device, the heat generated in the middle of the liquid flow path 8 can be dissipated on the spot and used for heating etc. At the same time, there is no need to transport it to a required position, and therefore, there is no need to insulate and heat the liquid flow path 8 from the pump chamber 6c to the room temperature 9 using a heat insulating cover or the like.
In addition, in this device, only the temperature of the liquid flowing back and forth through the orifice 12, that is, the liquid existing in the orifice inserted portion of the liquid flow path 8, increases. There is no need to provide a safety mechanism. Furthermore, since the liquid flow path 8 does not need to be provided in a closed loop, the length of the liquid flow path 8 can be halved compared to the conventional one.

なお、ポンプ機構の構成は図示実施例のものに
限られないのは勿論であり、例えば、風力タービ
ンによつてカムを回転させ、このカムによつて液
圧シリンダのピストンを往復動作させるような構
成のものにしてもよい。
Note that the configuration of the pump mechanism is of course not limited to that of the illustrated embodiment; for example, a cam may be rotated by a wind turbine, and this cam may cause a piston of a hydraulic cylinder to reciprocate. It may be configured.

また、風力タービンも図示のようなプロペラ形
のものに限られず、他の形式のものであつてもよ
い。
Further, the wind turbine is not limited to the propeller type shown, but may be of other types.

さらに、前記実施例では、本発明を温室の暖房
システムに適用した場合について説明したが、家
屋の暖房や給湯システム等にも同様に適用が可能
である。
Further, in the embodiments described above, the present invention is applied to a heating system for a greenhouse, but it can be similarly applied to a heating system for a house, a hot water supply system, and the like.

以上、説明したように、本発明は、往復動形の
ポンプ機構とアキユムレータとの組合せによつて
液体流通路内に交液流を惹起させ、この液体流の
有している運動エネルギーをオリフイスにより熱
エネルギーに変換するとともに、その熱エネルギ
ーをその場で放散させて暖房等に利用し得るよう
にしている。そのため、液体を循環させて、発生
させた熱エネルギーを所要個所まで運搬するよう
にした従来の装置のように液体流通路をカバーで
被つて断熱保温する必要がない。また、オリフイ
ス部分で加熱された液体が循環してポンプ機構に
運ばれることがないので、多少放熱が不十分な状
況が続いても、その熱がポンプ機構に伝達され難
い。そのため、ポンプ機構の過熱を防止するため
の対策も不要となる。したがつて、従来のものに
比べて構造が簡単で組立てや配管作業に要する手
間を大幅に削減することができる液圧式風力・熱
交換装置を提供できるものである。
As explained above, the present invention induces an alternating liquid flow in a liquid flow passage by a combination of a reciprocating pump mechanism and an accumulator, and uses an orifice to utilize the kinetic energy of this liquid flow. In addition to converting it into thermal energy, the thermal energy is dissipated on the spot so that it can be used for heating, etc. Therefore, there is no need to cover the liquid flow path with a cover to insulate it and keep it warm, unlike conventional devices that circulate the liquid and transport the generated thermal energy to the required location. Further, since the liquid heated in the orifice portion is not circulated and carried to the pump mechanism, even if heat dissipation is insufficient to some extent, the heat is difficult to be transferred to the pump mechanism. Therefore, there is no need to take measures to prevent the pump mechanism from overheating. Therefore, it is possible to provide a hydraulic wind power/heat exchange device that has a simpler structure than conventional ones and can significantly reduce the labor required for assembly and piping work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す回路説明図、第2図は本
発明の一実施例を示す回路説明図である。 1……風力タービン、2……ポンプ機構、6c
……ポンプ室、8……液体流通路、11……アキ
ユムレータ、12……オリフイス。
FIG. 1 is a circuit explanatory diagram showing a conventional example, and FIG. 2 is a circuit explanatory diagram showing an embodiment of the present invention. 1...Wind turbine, 2...Pump mechanism, 6c
... Pump chamber, 8 ... Liquid flow passage, 11 ... Accumulator, 12 ... Orifice.

Claims (1)

【特許請求の範囲】[Claims] 1 風力に付勢されて回転する風力タービンと、
液体を充満させたポンプ室を有し前記風力タービ
ンの回転力を利用して前記ポンプ室の容積を増減
させるポンプ機構と、このポンプ機構のポンプ室
に基端を連通させた液体流通路と、この液体流通
路の先端に設けたアキユムレータと、前記液体流
通路の先端近傍部に介挿した発熱用のオリフイス
とを具備してなり、前記ポンプ機構と前記アキユ
ムレータ間の前記液体流通路内で交液流を惹起さ
せるとともに前記オリフイスの近傍を放熱部とし
たことを特徴とする液圧式風力・熱変換装置。
1 A wind turbine that rotates due to the force of wind power,
a pump mechanism that has a pump chamber filled with liquid and increases or decreases the volume of the pump chamber using the rotational force of the wind turbine; a liquid flow passage whose base end communicates with the pump chamber of the pump mechanism; The liquid flow path includes an accumulator provided at the tip of the liquid flow path, and an orifice for heat generation inserted in the vicinity of the tip of the liquid flow path. A hydraulic wind power/thermal conversion device characterized in that a liquid flow is induced and the vicinity of the orifice is used as a heat radiation section.
JP57012752A 1982-01-28 1982-01-28 Conversion device of hydraulic wind power to heat Granted JPS58131374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012752A JPS58131374A (en) 1982-01-28 1982-01-28 Conversion device of hydraulic wind power to heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012752A JPS58131374A (en) 1982-01-28 1982-01-28 Conversion device of hydraulic wind power to heat

Publications (2)

Publication Number Publication Date
JPS58131374A JPS58131374A (en) 1983-08-05
JPH0440620B2 true JPH0440620B2 (en) 1992-07-03

Family

ID=11814139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012752A Granted JPS58131374A (en) 1982-01-28 1982-01-28 Conversion device of hydraulic wind power to heat

Country Status (1)

Country Link
JP (1) JPS58131374A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721991B2 (en) * 2010-10-01 2015-05-20 櫻護謨株式会社 Hydraulic system
WO2015092912A1 (en) * 2013-12-20 2015-06-25 株式会社日立製作所 Electric power generation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121120A (en) * 1975-04-15 1976-10-22 Susumu Sarutani Wind force power generator
JPS5591773A (en) * 1979-08-13 1980-07-11 Shimadzu Corp Windmill turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279398U (en) * 1975-12-11 1977-06-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121120A (en) * 1975-04-15 1976-10-22 Susumu Sarutani Wind force power generator
JPS5591773A (en) * 1979-08-13 1980-07-11 Shimadzu Corp Windmill turbine

Also Published As

Publication number Publication date
JPS58131374A (en) 1983-08-05

Similar Documents

Publication Publication Date Title
US4335578A (en) Solar power converter with pool boiling receiver and integral heat exchanger
US3901036A (en) Two fluid solar boiler
US6064047A (en) Microwave hot water boiler heating system
US4967052A (en) Microwave heat pipe heating system
US4022024A (en) Thermosiphon engine and method
JPH0440620B2 (en)
KR102587588B1 (en) Coolant heater
CN106196245A (en) A kind of speed acting electric heating device
US4231720A (en) Pump for fluid media having different temperatures
US10280752B2 (en) Energy harvesting heat engine and actuator
CN211406660U (en) Water-cooling heat dissipation structure and power unit and quadruped robot using same
CN103471062B (en) Heat engine phase-change radiator
JPS58129161A (en) Hydraulic wind force-heat conversion device
CN201687865U (en) Flange connection type sliding bearing cooling structure
US20110127253A1 (en) Electric Heating Systems and Associated Methods
CN108692453A (en) A kind of phase-change accumulation energy magnetic energy water heater
CN109115016A (en) A kind of device for realizing enhancing heat transfer
KR100306369B1 (en) Circulation system of a compact floor-heating boiler
CN210537202U (en) Bottom layer driving device convenient for heat dissipation
CN106196249A (en) A kind of fin
CN205783275U (en) A kind of high hot anti-scald electric heater
JPH049441Y2 (en)
KR920002387Y1 (en) Radiator with heat pipes consist of both of mainpipe and distribution pipe
KR20010069385A (en) Generator water heater
JPS6012996Y2 (en) solar heat collector