JPH044055B2 - - Google Patents

Info

Publication number
JPH044055B2
JPH044055B2 JP56095482A JP9548281A JPH044055B2 JP H044055 B2 JPH044055 B2 JP H044055B2 JP 56095482 A JP56095482 A JP 56095482A JP 9548281 A JP9548281 A JP 9548281A JP H044055 B2 JPH044055 B2 JP H044055B2
Authority
JP
Japan
Prior art keywords
water
amount
sand
adjustment
compactability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56095482A
Other languages
Japanese (ja)
Other versions
JPS57209744A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9548281A priority Critical patent/JPS57209744A/en
Publication of JPS57209744A publication Critical patent/JPS57209744A/en
Publication of JPH044055B2 publication Critical patent/JPH044055B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/08Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by sprinkling, cooling, or drying

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鋳物砂の水分量を適宜に調整し、コ
ンパクタビリテイを所望指数値に保とうとする鋳
物砂のコンパクタビリテイ(以下C・Bという)
調整方法にある。 現在、主型に多用されている生型用の鋳物砂は
硅砂、ベントナイト、石炭粉および澱粉などの組
成物へ水を加えて共に混練し、所望指数値のC・
Bとなさしめて使用している。 ところが主な組成物である硅砂のほとんど(約
97〜99%重量)は、型ばらし後に回収した返り砂
であり、この返り砂へわずかな量(約1%重量)
の新砂を加えて硅砂組成物となしているのが現状
である。しかるに該硅砂粒子個々の表面温度や
各々が着有している水分量は、各種工程の作業環
境に影響されてその夫々の粒子で異なつており、
この温度や着有している水分量の差要因が鋳物砂
のC・B指数を不均一になしている原因なのであ
る。 さらに熟練者による鋳物砂の「にぎり」でC・
B指数を把握し、管理しているのが多くの鋳物工
場での現状であるが、係る人間の皮膚の感覚によ
る勘での判断は、個人差や測定時間および雰囲気
の変化などによつても微妙に変動し、正しいC・
B指数の測定が困難なのである。 このような欠点を解消する目的で開発されたと
している従来のモルタビリテイコントローラ(商
品名)は、米国で実績を積んでからの技術輸入に
もかかわらず国内に於いて普及しておらず、この
普及しない主な原因が機構の原理は兎も角として
調整された鋳物砂のC・B指数のバラツキ(基準
C・B±4の指数)にあると思われる。 本発明は、「にぎり」によるC・B指数のバラ
ツキがほぼ基準C・B±5の指数であるのに比べ
ると多少は改良されている上記モルタビリテイコ
ントローラの性能をさらに飛躍させるものであり
基準C・B±1.0の指数以内に調整することので
きる優れたするものであつて、その特徴とすると
ころは型ばらし後に回収する返り砂などの組成物
からなる鋳物砂を混練機へ投入し、これへ第1次
水を加え共に混練し該混練による前工程にてあら
かじめ水分の先行調整を行う粗調整が実施される
と共に、この調整後の鋳物砂のコンパクタビリテ
イ指数を物理的手段を介して測定し、該測定指数
値であるCB1を基準となして目標の指定指数値
CB2にするための必要な水分量の演算を粘土量の
大小に拘わらずほぼ一定の傾きをもつコンパクタ
ビリテイと水分量との関係曲線に基づいて演算手
段を用いて行い、該演算手段からの計算加水量に
相当する第2次水を更に加えながら目標の指定指
数値であるCB2となす混練による後工程にて水分
の後行調整を行う微調整が実施される鋳物砂のコ
ンパクタビリテイ調整方法にある。 次に図を用いて詳細な説明をする。 第1図は、出願人の研究に主要な役割を果たし
たC・B指数値と水分量の関係を活性粘土(或は
微粉)をパラメータにして図示したものである。
図において、鋳物砂への活性粘土含有量の増大は
当然ながら必要とする水分量を増加させる。しか
し、この図で重要なことは、含有量に差異がある
各粘土量でも鋳物砂のC・B指数値をCB1から
CB2へ調整せしめるに必要とする夫々の水分量△
W1、△W2、△W3、……は、ほぼ同じなのであ
り数式化すれば△W1=△W2=△W3=…なる近
似関係にあることの発見である。この発見は、出
願人の多くの資料からうらづけられて確認された
ものであり、鋳物砂の未発見分野に属していた特
性である。 従つて、このように鋳物砂の特性を利用すれば
次の試験例のようになして簡単に鋳物砂のC・B
指数を調整することができるのである。 試験例 1 ミキサ内混練物の総量は次の通りである。 新 砂 1% ベントナイト 0.7〜0.8% 石炭粉 0.1% 澱 粉 0.05% 加水量 2% 但し返り砂(1.8ton)を100%としたときの
これに加算する各組成分の重量を百分率で示し
てある。 2 サイクルタイムは次のようになす。 (1) ミキサ内の混練物へ推定される全加水量
(本例では2%)の70〜80%に相当する第1
次水を混練中に加えて共に2分間先高混練す
る。 (2) 2分経過後に混練途中の鋳物砂のC・B指
数値であるCB1を物理的手段を介して測定す
る。 (3) 測定したCB1の鋳物砂を指定指数値(目標
値)であるCB2となすための加水量△Wを表
−1の加水量テーブルから求めて、先に推定
した全加水量を補正する。そして該補正量に
あたる補充加水量を第2次水として更に加え
ながら後行混練を続ける。 (4) 3分間の後行混練時間が経過したらミキサ
の内部から混練完了した鋳物砂を排出してサ
イクルが完了する。
The present invention aims to improve the compactability of foundry sand (hereinafter referred to as C/B) by appropriately adjusting the moisture content of foundry sand to maintain the compactability at a desired index value.
It's in the adjustment method. Currently, foundry sand for green molds, which is often used for main molds, is made by adding water to a composition of silica sand, bentonite, coal powder, starch, etc. and kneading them together to achieve a desired index value of C.
It is used as B. However, most of the silica sand, which is the main composition (approximately
97-99% weight) is the returned sand recovered after demolding, and a small amount (approximately 1% weight) is added to this returned sand.
Currently, new sand is added to form a silica sand composition. However, the surface temperature of each silica sand particle and the amount of moisture attached to each particle vary depending on the working environment of various processes,
This difference in temperature and moisture content is the reason why the C and B indices of the foundry sand are non-uniform. Furthermore, C.
The current situation in many foundries is to understand and manage the B index, but this judgment is based on intuition based on human skin sensations, and is subject to individual differences, measurement time, changes in atmosphere, etc. The correct C・
It is difficult to measure the B index. The conventional mortability controller (product name), which is said to have been developed to eliminate these drawbacks, has not been widely used in Japan despite the technology being imported after gaining a proven track record in the United States. The main reason for this lack of widespread use is thought to be the variation in the C and B indexes of the foundry sand (standard C and B ±4 indexes), which is the principle of the mechanism. The present invention further improves the performance of the above-mentioned mortability controller, in which the variation in the C and B index due to "nigiri" is slightly improved compared to the index of the standard C and B ±5. It is an excellent product that can be adjusted to within the index of standard C・B ±1.0, and its feature is that foundry sand made of a composition such as returned sand recovered after demolding is fed into a kneading machine. A rough adjustment is carried out by adding primary water and kneading together, pre-adjusting the water content in advance in the pre-kneading process, and the compactability index of the molding sand after this adjustment is determined by physical means. The specified index value of the target is measured using the measured index value CB 1 as a reference.
The amount of water required to make CB 2 is calculated using a calculation means based on the relationship curve between compactability and moisture content, which has an almost constant slope regardless of the amount of clay. The compactability of foundry sand is carried out by fine-tuning the water content in the post-process by kneading to achieve the target specified index value of CB 2 while adding secondary water equivalent to the calculated amount of added water. It's in the tie adjustment method. Next, a detailed explanation will be given using figures. FIG. 1 illustrates the relationship between the C/B index value and the water content, which played a major role in the applicant's research, using activated clay (or fine powder) as a parameter.
In the figure, increasing the active clay content in the foundry sand naturally increases the amount of water required. However, what is important in this diagram is that the C and B index values of foundry sand can be changed from CB 1 to CB 1 even if the clay content is different.
Required amount of water to adjust to CB 2
W 1 , △W 2 , △W 3 , . . . are almost the same, and when expressed mathematically, it is a discovery that they have an approximate relationship of △W 1 = △W 2 = △W 3 = . This discovery was confirmed based on the applicant's many materials, and is a property that belongs to an undiscovered field of foundry sand. Therefore, by utilizing the characteristics of foundry sand in this way, C and B of foundry sand can be easily determined as shown in the following test example.
The index can be adjusted. Test Example 1 The total amount of the kneaded material in the mixer is as follows. New sand 1% Bentonite 0.7-0.8% Coal powder 0.1% Starch 0.05% Water addition 2% However, when recycled sand (1.8 tons) is taken as 100%, the weight of each component added to this is shown as a percentage. . 2 The cycle time is as follows. (1) The first water equivalent to 70 to 80% of the estimated total amount of water added to the kneaded material in the mixer (2% in this example)
Next, add water during kneading and knead together for 2 minutes. (2) After 2 minutes, CB 1 , which is the C/B index value of the foundry sand during kneading, is measured by physical means. (3) Find the amount of water added △W to make the measured foundry sand of CB 1 to CB 2 , which is the specified index value (target value), from the water amount table in Table 1, and calculate the total amount of water added previously estimated. to correct. Then, the subsequent kneading is continued while further adding a supplementary water amount corresponding to the correction amount as secondary water. (4) After 3 minutes of backward kneading time has elapsed, the kneaded foundry sand is discharged from the mixer and the cycle is completed.

【表】 ここで試験例の個々についてさらに説明を加え
れば、CB1を測定するまでの先行混練時間および
第2次水を加えてからの後行混練時間は、ミキサ
型式の相違やその能力の差により多少変動するか
ら、トータルのサイクルタイム決定には、幾らか
の経験が必要である。 そして加水量テーブルは、表−1に例示したも
のよりもつと多くのデータを内蔵したものが実用
上使用されている。また表中の△W算出にあたつ
て出願人は、数多くの資料から経験式を導き出し
これを用いて計算しているのである。 そこで後述するような測定器を用いて自動的に
CB1が測定できるときは、前記した△W算出の計
算式を利用し、この式からCB2の鋳物砂となすた
めに必要な第2次水の加水量を演算器にて自動的
に演算すると共に、該演算器の演算結果からの指
令信号による制御で止水弁を開閉しながら加水量
を自動調整するようなして自動的なミキサ運転を
行うことも可能なのである。 この自動制御運転に際しては、出願人が発見し
ているもうひとつの鋳物砂特性を更に加えて活用
すると便利である。それは、第2図に示すように
鋳物砂のC・B指数値と鋳物砂の単位重量との関
係が一次式により解析できるという事実である。 この事実を活用すればC・B調整の完了した鋳
物砂は、組成物の構成割合などが変化していない
限り常に一定の重量値を示すのであるから、前述
した試験例や自動制御運転時におけるミキサ容器
の総重量を測定するなどして鋳物砂の単位重量を
監視するならば、さらに高精度のC・B調整が可
能となるのである。もし該単位重量のみでC・B
調整を行なうならば精度を別にしてこれが可能で
あることを出願人は、経験している。 本例のように鋳物砂の単位重量をも加味して
C・B調整を実施するときは、返り砂の砂温度が
少々高く、該砂を常温まで冷却させるために第1
次水の加水分が多少蒸発してしまうような場合で
あつて、しかもCB1指数が蒸発途中の測定数値で
あつたとしても、該測定値の誤差を発見し修正す
ることのできる点で優れている。 C・B指数を測定するための物理的手段の詳細
について以下に例をあげて説明する。 実施例 1 定容積の容器に入れて鋳物砂を一定容量の試料
となす。そして該試料の重量を測定し、該測定値
から換算C・B指数を判定する。自動運転のため
の信号には、前記重量値を用いる。 実施例 2 定寸法の筒へつめ込んで鋳物砂を一定圧力で押
圧し、該押圧力により圧縮された圧縮量から換算
C・B指数を判定する。自動運転のための信号に
は、前記圧縮量を用いる。 実施例 3 孔の穿設されたプレートを傾斜するなどして該
プレート上面を移動する鋳物砂の前記孔からの落
下する落下量を音波、電波、光波、…などの波形
変化で測定し、該測定値から換算C・B指数を判
定する。自動運転のための信号には、前記波形の
変化量を用いる。 叙上のようになしてC・B調整を行う本発明に
よれば、鋳物砂中の粘土分増減に左右されること
なく、また返り砂中に多少高温の砂が混在してい
てもよく、さらに自動運転によるラインのシステ
ム化が可能な優れたC・B調整方法なのである。
しかも調整された鋳物砂のC・B指数値の均一化
は、従来では得ることのできない高精度のものな
のである。
[Table] To further explain each test example, the preceding kneading time until measuring CB 1 and the subsequent kneading time after adding secondary water depend on the difference in mixer model and its capacity. Determining the total cycle time requires some experience, as it will vary somewhat depending on the difference. The water addition amount table that contains more data than the one illustrated in Table 1 is practically used. Furthermore, in calculating △W in the table, the applicant derives an empirical formula from a large number of materials and uses this for calculation. Therefore, using a measuring device such as the one described below,
When CB 1 can be measured, use the formula for calculating △W described above, and automatically calculate the amount of secondary water added to form CB 2 foundry sand using a calculator. At the same time, it is also possible to automatically operate the mixer by automatically adjusting the amount of water added while opening and closing the water stop valve under control based on command signals from the calculation results of the calculation unit. In this automatically controlled operation, it is convenient to further utilize another characteristic of foundry sand discovered by the applicant. This is the fact that, as shown in FIG. 2, the relationship between the C and B index values of foundry sand and the unit weight of foundry sand can be analyzed using a linear equation. If we take advantage of this fact, foundry sand that has undergone C/B adjustment will always show a constant weight value as long as the composition ratio etc. do not change. If the unit weight of the foundry sand is monitored by measuring the total weight of the mixer container, even more accurate C/B adjustment becomes possible. If only the unit weight is C・B
Applicant has experienced that this is possible, apart from accuracy, if adjustments are made. When carrying out C/B adjustment taking into consideration the unit weight of foundry sand as in this example, the sand temperature of the returned sand is a little high, and in order to cool the sand to room temperature,
Even if the hydrolysis of the secondary water evaporates to some extent, and even if the CB 1 index is a measured value in the middle of evaporation, it is excellent in that it can detect and correct errors in the measured value. ing. The details of the physical means for measuring the C.B index will be explained below by giving an example. Example 1 A constant volume sample of foundry sand is placed in a constant volume container. Then, the weight of the sample is measured, and the converted C/B index is determined from the measured value. The weight value is used as a signal for automatic operation. Example 2 Foundry sand is packed into a cylinder of a fixed size and pressed with a constant pressure, and the converted C/B index is determined from the amount of compression caused by the pressing force. The compression amount is used as a signal for automatic operation. Example 3 A plate with holes is tilted, and the amount of falling molding sand that moves on the top surface of the plate from the holes is measured using waveform changes such as sound waves, radio waves, light waves, etc. Determine the converted C/B index from the measured value. The amount of change in the waveform is used as a signal for automatic driving. According to the present invention, which performs C/B adjustment as described above, it is not affected by the increase or decrease of the clay content in the foundry sand, and even if some high-temperature sand is mixed in the returned sand, Furthermore, it is an excellent C/B adjustment method that allows automatic line systemization.
Moreover, the uniformity of the C and B index values of the adjusted foundry sand is highly accurate, which cannot be obtained conventionally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、C・B指数値と水分量との関係を粘
土をパラメーターにして図示したものであり、第
2図は、C・B指数値と鋳物砂の単位重量との関
係を図示したものである。
Figure 1 illustrates the relationship between C and B index values and water content using clay as a parameter, and Figure 2 illustrates the relationship between C and B index values and unit weight of foundry sand. It is something.

Claims (1)

【特許請求の範囲】 1 型ばらし後に回収する返り砂などの組成物か
らなる鋳物砂を混練機へ投入し、これへ第1次水
を加え共に混練し該混練による前工程にてあらか
じめ水分の先行調整を行う粗調整が実施されると
共に、この調整後の鋳物砂のコンパクタビリテイ
指数を物理的手段を介して測定し、該測定指数値
であるCB1を基準となして目標の指定指数値CB2
にするための必要な水分量の演算を粘土量の大小
に拘わらずほぼ一定の傾きをもつコンパクタビリ
テイと水分量との関係曲線に基づいて演算手段を
用いて行い、該演算手段からの計算加水量に相当
する第2次水を更に加えながら目標の指定指数値
であるCB2となす混練による後工程にて水分の後
行調整を行う微調整が実施される鋳物砂のコンパ
クタビリテイ調整方法。 2 測定指数値であるCB1を入力信号となして演
算手段を作動せしめると共に該演算手段からの計
算加水量を入力信号となして水供給手段の止水弁
を開放せしめ、前記加水量に相当する第2次水の
供給を行いながら目標の指定指数値であるCB2
なす混練を実施して自動的に鋳物砂の水分調整が
行われるようなされている特許請求の範囲第1項
記載の鋳物砂のコンパクタビリテイ調整方法。 3 鋳物砂の単位重量を加味しつつ水分調整を行
うようにした特許請求の範囲第1または2項に記
載の鋳物砂のコンパクタビリテイ調整方法。
[Scope of Claims] 1. Foundry sand made of a composition such as returned sand recovered after demolding is charged into a kneader, primary water is added to it, and the mixture is kneaded together, and in the previous step of the kneading, moisture is removed in advance. A rough adjustment is carried out as a preliminary adjustment, and the compactability index of the molding sand after this adjustment is measured through physical means, and the target specified index is determined based on the measured index value CB 1 . Value CB 2
Calculation of the amount of water required to achieve this is performed using a calculation means based on the relationship curve between compactability and moisture content, which has an almost constant slope regardless of the size of the clay amount, and the calculation from the calculation means is performed. Compactability adjustment of foundry sand where secondary water equivalent to the amount of water added is further added to achieve the target specified index value of CB 2.Fine adjustment is carried out to adjust the moisture content in the subsequent process by kneading. Method. 2. The measurement index value CB 1 is used as an input signal to operate the calculation means, and the calculated amount of water added from the calculation means is used as an input signal to open the water shutoff valve of the water supply means, and the amount of water corresponding to the amount of water added is opened. According to claim 1, the water content of the foundry sand is automatically adjusted by kneading the molding sand to a target designated index value of CB 2 while supplying secondary water. Method for adjusting compactability of foundry sand. 3. The compactability adjustment method for molding sand according to claim 1 or 2, wherein the moisture content is adjusted while taking into account the unit weight of the molding sand.
JP9548281A 1981-06-19 1981-06-19 Adjusting method for compactability of molding sand Granted JPS57209744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9548281A JPS57209744A (en) 1981-06-19 1981-06-19 Adjusting method for compactability of molding sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9548281A JPS57209744A (en) 1981-06-19 1981-06-19 Adjusting method for compactability of molding sand

Publications (2)

Publication Number Publication Date
JPS57209744A JPS57209744A (en) 1982-12-23
JPH044055B2 true JPH044055B2 (en) 1992-01-27

Family

ID=14138827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9548281A Granted JPS57209744A (en) 1981-06-19 1981-06-19 Adjusting method for compactability of molding sand

Country Status (1)

Country Link
JP (1) JPS57209744A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3220662A1 (en) * 1982-06-02 1983-12-08 Hubert Eirich METHOD FOR AUTOMATICALLY REGULATING FOUNDRY SAND PREPARATION PLANTS
JPS6064747A (en) * 1983-09-16 1985-04-13 Sintokogio Ltd Treatment of molding sand
JPH07106423B2 (en) * 1984-06-06 1995-11-15 株式会社北川鉄工所 Method for adjusting compactability of foundry sand
JPS6114044A (en) * 1984-06-29 1986-01-22 Sintokogio Ltd Device for controlled rate of supplying moisture to molding sand mill
CN104220189B (en) * 2012-06-13 2017-02-22 新东工业株式会社 Mixing and adjusting method for foundry sand

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120165A (en) * 1974-08-09 1976-02-18 Mitsui Mining & Smelting Co Haisuino jokahoho
JPS5684147A (en) * 1979-12-13 1981-07-09 Sintokogio Ltd Treatment of recovered casting sand

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120165A (en) * 1974-08-09 1976-02-18 Mitsui Mining & Smelting Co Haisuino jokahoho
JPS5684147A (en) * 1979-12-13 1981-07-09 Sintokogio Ltd Treatment of recovered casting sand

Also Published As

Publication number Publication date
JPS57209744A (en) 1982-12-23

Similar Documents

Publication Publication Date Title
JPS59163537A (en) Method and device for manufacturing test piece of mold material mixture used for measuring various characteristic
CN111983967B (en) Intelligent system and control method for controlling quality of molding sand in foundry
JPH044055B2 (en)
US4291379A (en) Method and an installation for regenerating molding sands
US2672669A (en) Control system for concrete block machines
CN106368103B (en) Aggregate secondary measurement method based on crucial sieve
US4413967A (en) Apparatus for producing uniform density and weight briquettes
JP3161682B2 (en) Method for determining optimum compactability of molding sand, method for adjusting molding sand using the same, and apparatus therefor
US3338563A (en) Method of mixing high-strength concrete
JP4353596B2 (en) Casting sand kneading adjustment method
JPS60261640A (en) Method for adjusting compactability of molding sand
JPS59166342A (en) Method for controlling compactability of molding sand
US5980794A (en) Method of controlling compacting by measuring hydraulic fluid
JP6635192B2 (en) Kneading sand property adjustment system and property adjustment method
JPS6114044A (en) Device for controlled rate of supplying moisture to molding sand mill
CN210269565U (en) Device for rapidly measuring compressibility of material
CN116901519A (en) Powder feeding error control method and powder pressing system
JP2658416B2 (en) Press speed control method
JPH08322382A (en) High-accuracy filling apparatus for mushroom-cultivation medium
JPH06154954A (en) Temperature controller for model board
JPS59220245A (en) Device for measuring compactability value of molding sand
JPH04266448A (en) Controller for supplied quality of molding sand for molding machine
SU1098801A1 (en) Apparatus for controlling the filling of injection dies
GB785663A (en) Improvements in and relating to the measurement of loose material
JP2000005841A (en) Method and device for setting target value at compactability adjusting time