JPH0440367A - Spherical separating agent - Google Patents

Spherical separating agent

Info

Publication number
JPH0440367A
JPH0440367A JP2145310A JP14531090A JPH0440367A JP H0440367 A JPH0440367 A JP H0440367A JP 2145310 A JP2145310 A JP 2145310A JP 14531090 A JP14531090 A JP 14531090A JP H0440367 A JPH0440367 A JP H0440367A
Authority
JP
Japan
Prior art keywords
carrier
separation
amino groups
spherical polymer
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2145310A
Other languages
Japanese (ja)
Inventor
Kohei Okawa
大川 浩平
Shiro Fujikake
藤掛 史朗
Kiyoshi Hidachi
日達 清
Hitoshi Yamashita
仁 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2145310A priority Critical patent/JPH0440367A/en
Publication of JPH0440367A publication Critical patent/JPH0440367A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve pressure resistance, mechanical strength, alkali resistance, separability, etc., by bonding a hydrophilic epoxy resin to a hydrophobic spherical polymer carrier introduced with an amino group, then immobilizing a ligand into the remaining epoxy group. CONSTITUTION:The hydrophobic spherical polymer carrier obtd. by allowing a perforating agent which is soluble in monomers but is insoluble in the formed polymers to coexist at 0.5 to 5 times the total weight of the monomers is treated with ammonia or is acted with a compd., such as aliphat. diamine or arom. diamine, having plural pieces of amino groups in one molecule, by which the amino groups are introduced into the carrier at the time of suspension polymerizing. One or more kinds of the hydrophilic epoxy resins are then brought into contact therewith and the carrier is heated for about 3 hours at about 80 to 100 deg.C, by which the epoxy groups and the amino groups are chemically bonded and the hydrophilic epoxy resin layer is formed on the surface of the hydrophobic spherical polymer. The unreacted epoxy groups remaining on the epoxy resin layer are immobilized by bringing the desired ligand into reaction. The separating agent having the sufficient pressure resistance, mechanical strength and separability is obtd. in this way.

Description

【発明の詳細な説明】 本発明はクロマトグラフィー分離に用いられる分離剤に
関し、さらに詳しくは水系でのクロマトグラフィー分離
に際し、耐圧性、機械的強度にすぐれ、高速分離操作が
可能で、かつ高分離能を有する球状分離剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a separating agent used in chromatographic separation, and more specifically, in aqueous chromatographic separation, it has excellent pressure resistance and mechanical strength, enables high-speed separation operation, and has high separation properties. The present invention relates to a spherical separating agent having the following properties.

従来水系でのクロマトグラフィー分離操作にはセルロー
ス、アガロース、デキストラン、キトサンなどの天然高
分子を架橋ゲル化させた球状粒子およびポリアクリルア
ミド(共)重合体、ポリビニルアルコール(共)重合体
、親水性ポリアクリル酸エステル(共)重合体などの合
成高分子系架橋球状ゲルが分離剤として用いられてきて
いる。
Conventionally, chromatographic separation operations in aqueous systems have been performed using spherical particles made by crosslinking gelatinized natural polymers such as cellulose, agarose, dextran, and chitosan, as well as polyacrylamide (co)polymers, polyvinyl alcohol (co)polymers, and hydrophilic polypolymers. Synthetic polymer-based crosslinked spherical gels such as acrylate (co)polymers have been used as separation agents.

これら親水性の強い分離剤は、水系での使用に際しては
分離対象物質(基質)と疎水的な相互作用を持たず、非
特異的な吸着を起こしにくいため、基質の回収率が良い
という利点を持っている。しかしながら上記分離剤は親
水性であるがために水による膨潤が激しく、水系での使
用の際、耐圧性、機械的強度が著しく低下してしまい、
高速クロマトグラフィー分離操作が困難になる欠点を有
している。ここで、かかる分離剤をクロマトグラフィー
による分離に使用する時は、通常、粒子の大きな分離剤
を使用し、溶離液流による圧損失をできるだけ小さく抑
え、カラム内に充填された分離剤の変形、破壊を防止し
て、クロマトグラフィー分動操作を可能にしている。し
かしながらクロマトグラフィー分離においては充填され
た分離剤の粒子径が小さくなればなるほど分離能が向上
するのが通常であるので、かかる観点からすると従来の
親水性の強い分離剤は耐圧性、機械的強度の制約から粒
子径を小さくはできず、必然的にその分離能も満足でき
る状態のものではないという欠点も持っている。
When these highly hydrophilic separation agents are used in an aqueous system, they do not have hydrophobic interactions with the substance to be separated (substrate) and are less likely to cause nonspecific adsorption, so they have the advantage of high substrate recovery. have. However, since the above-mentioned separating agent is hydrophilic, it swells rapidly with water, and when used in an aqueous system, its pressure resistance and mechanical strength are significantly reduced.
It has the disadvantage that high-speed chromatography separation operations are difficult. When such a separating agent is used for separation by chromatography, a separating agent with large particles is usually used to minimize pressure loss due to the eluent flow, and to prevent deformation of the separating agent packed in the column. This prevents destruction and enables chromatographic separation operations. However, in chromatographic separation, the separation ability usually improves as the particle size of the packed separation agent becomes smaller, so from this point of view, conventional separation agents with strong hydrophilic properties have high pressure resistance and mechanical strength. It also has the disadvantage that the particle size cannot be made smaller due to the limitations of , and its separation ability is inevitably not satisfactory.

これら親水性の強い分離剤の水系での耐圧性、機械的強
度を改善するには架橋密度をあげて、水による膨潤を抑
えてやればよいが、かかる親水性の強い分離剤を用いて
のクロマトグラフィー分離においては分離剤の架橋密度
と分離能のあいだには密接な関係があり、架橋密度が上
がり過ぎると逆に分離能が低下することが知られており
、耐圧性、機械的強度、分離能が同時に改善された分離
剤を得ることは、はなはだ困難であった。
In order to improve the pressure resistance and mechanical strength of these highly hydrophilic separating agents in an aqueous system, it is possible to increase the crosslinking density and suppress swelling due to water. In chromatographic separation, there is a close relationship between the crosslinking density of the separating agent and the separation ability, and it is known that if the crosslinking density increases too much, the separation ability will decrease, and pressure resistance, mechanical strength, It has been extremely difficult to obtain separating agents that have simultaneously improved resolution.

疏水性の強いポリスチレン(共)重合体、ポリアクリル
酸エステル(共)重合体を水系でのクロマトグラフィー
分離操作の分離剤として用いると、耐圧性、機械的強度
については問題はないが、基質との疎水的相互作用が強
く、基質を吸着してしまったり、基質の回収率が悪いな
どの問題がある。
When polystyrene (co)polymers and polyacrylic acid ester (co)polymers with strong hydrophobicity are used as separation agents in aqueous chromatography separation operations, there are no problems with pressure resistance or mechanical strength, but they may be difficult to bond with the substrate. have strong hydrophobic interactions, leading to problems such as adsorption of substrates and poor recovery of substrates.

シリカゲルのような無機分離剤は、耐圧性、機械的強度
が大きく、基質との非特異的な相互作用、吸着も起こり
にくいので水系で使用する分離剤として非常に優れたも
のであるが、アルカリ性領域での使用に際しては問題が
あり、広いpH範囲での使用可能性という面では、高分
子系の分離剤におとる欠点がある。
Inorganic separating agents such as silica gel are excellent as separating agents for use in aqueous systems because they have high pressure resistance and mechanical strength, and are resistant to nonspecific interaction with substrates and adsorption. There are problems when using the separation agent in a wide pH range, and it has a drawback compared to polymeric separation agents in terms of usability over a wide pH range.

以上述べた如く、従来の水系でのクロマトグラフィー分
離に使用された分離剤はそれぞれ一長一短があり、耐圧
性、機械的強度、耐アルカリ性、分離能などの分離とし
て要求される性能をすべてバランスよく満たすものは無
いといえる状況下、本発明は水系でのクロマトグラフィ
ー分離に適した、耐圧性、機械的強度、耐アルカリ性、
分離能などの諸性能が著しく改善された分離剤を提供す
るものである。
As mentioned above, the separation agents used in conventional aqueous chromatography separations each have their own advantages and disadvantages, and they meet all the performance requirements for separation in a well-balanced manner, such as pressure resistance, mechanical strength, alkali resistance, and separation ability. Under the circumstances where it can be said that there is no such thing, the present invention provides pressure resistance, mechanical strength, alkali resistance, and properties suitable for aqueous chromatographic separation.
The object of the present invention is to provide a separating agent with significantly improved performance such as separation ability.

本発明者らは水系でのクロマトグラフィー分離において
分離剤に耐圧性、機械的強度、耐アルカリ性を付与する
には疏水性球状ポリマー担体が適していること、基質と
分離剤との疎水的な相互作用による吸着の制御、基質回
収率の向上には分離剤表面を親水性の化合物で覆ってや
れば良いこと、分離能を改善するには分離剤の粒子径を
小さくすると同時に、分離剤担体とリガンドの間に適当
な長さを持つスペーサーを導入してやれば良いことなど
を見出し、本発明を完成した。
The present inventors have discovered that a hydrophobic spherical polymer carrier is suitable for imparting pressure resistance, mechanical strength, and alkali resistance to a separating agent in aqueous chromatographic separation, and that the hydrophobic interaction between the substrate and the separating agent In order to control adsorption and improve the substrate recovery rate, it is sufficient to cover the surface of the separation agent with a hydrophilic compound. They discovered that a spacer of an appropriate length could be introduced between the ligands, and completed the present invention.

すなわち本発明は、アミノ基を導入した疏水性球状ポリ
マー担体に、親水性エポキシ樹脂を化学結合させ、しか
るのち残余のエポキシ基にリガンドを固定化させること
により得られる球状分離剤を提供するものであり、本発
明での球状分離剤は水系でのクロマトグラフィー分離操
作に使用する時、特に有効である。
That is, the present invention provides a spherical separation agent obtained by chemically bonding a hydrophilic epoxy resin to a hydrophobic spherical polymer carrier into which amino groups have been introduced, and then immobilizing a ligand on the remaining epoxy groups. The spherical separating agent of the present invention is particularly effective when used in aqueous chromatographic separation operations.

本発明で使用する疏水性球状ポリマー担体としては、ス
チレンを主成分としクロルメチル化スチレン、ジビニル
ベンゼンを共重合したもの、メチルメタアクリレートも
しくはスチレンを主成分とし、ジビニルベンゼン、グリ
シジルメタアクリレートを共重合したものなど、疏水性
の強いモノマーを使用して、懸濁重合で得られた球状ポ
リマー担体が例示されるが、なかんずく懸濁重合の際に
、七ツマー類には可溶であるが、生成するポリマーには
不熔解である物質、例えば、脂肪族炭化水素、高級脂肪
族アルコール、高級脂肪酸およびそのエステル、アミド
例えばジエチルベンゼン、ラウリル酸メチル等の多孔化
剤をモノマー類の総重量の0.5〜5倍重量、共存させ
て得られる多孔質の球状ポリマー担体が本発明に使用す
るのに最適である。なお、多孔化剤が0.5倍重量より
少ないと、強度的に強いものが得られるが、多孔質化が
不十分で比表面積が小さい担体となって仕舞う。
The hydrophobic spherical polymer carrier used in the present invention is a carrier mainly composed of styrene and copolymerized with chloromethylated styrene and divinylbenzene, or a carrier mainly composed of styrene and copolymerized with divinylbenzene and glycidyl methacrylate. Examples include spherical polymer carriers obtained by suspension polymerization using highly hydrophobic monomers such as monomers. Porosifying agents such as insoluble substances such as aliphatic hydrocarbons, higher aliphatic alcohols, higher fatty acids and their esters, amides such as diethylbenzene and methyl laurate are added to the polymer in an amount of 0.5 to 0.5 to 0.5 of the total weight of the monomers. A porous spherical polymer carrier obtained by coexisting 5 times the weight is optimal for use in the present invention. If the amount of the porosity-forming agent is less than 0.5 times the weight, a product with strong strength can be obtained, but the porosity is insufficient and the carrier ends up having a small specific surface area.

また、多孔化剤が5倍重量より大きいと、多孔化剤の使
用量の割には、比表面積が大きくならず、強度的に弱い
担体になって仕舞うのが、通常である。
Furthermore, if the porosity-forming agent is more than 5 times the weight, the specific surface area will not be large enough for the amount of porosity-forming agent used, and the carrier will usually end up with weak strength.

これら疏水性球状ポリマー担体にアミノ基導入するには
クロルメチル化スチレンを共重合した担体は、アンモニ
アで処理することによりアミノ基を導入でき、グリシジ
ルメタアクリレートを共重合して得られた球状ポリマー
担体にアミノ基を導入するには、これら担体に脂肪族ジ
アミン、芳香族ジアミンなどの1分子中に複数個のアミ
ノ基を有する化合物、例えばエチレンジアミン、プロピ
レンジアミン、1.4−ブチレンジアミン、1.’6−
へキサメチレンジアミン、キシリレンジアミンなどを作
用させると、担体上のオキシラン環との反応が容易に起
き、担体にアミノ基を導入できる。
To introduce amino groups into these hydrophobic spherical polymer carriers, the carrier copolymerized with chloromethylated styrene can be treated with ammonia to introduce amino groups into the spherical polymer carrier obtained by copolymerizing glycidyl methacrylate. In order to introduce amino groups into these carriers, compounds having a plurality of amino groups in one molecule such as aliphatic diamines and aromatic diamines, such as ethylene diamine, propylene diamine, 1,4-butylene diamine, 1. '6-
When hexamethylene diamine, xylylene diamine, etc. are reacted with the oxirane ring on the carrier, an amino group can be introduced into the carrier.

また担体にアミノ基を導入するには、アミノ基含有モノ
マー例えばビニルアミン、2−アミノエチルメタアクリ
レートなどを懸濁重合時に共重合させてもよい、また疏
水性球状ポリマー担体として、無孔質、多孔質いずれの
ものも使用することができる。担体へのアミノ基の導入
量は、アミノ基量が以後のりガントの固定化量を決定す
るので、できるだけアミノ基を多量に導入することが望
ましい、導入後の担体の強度、導入方法の容易さなどを
考慮した場合、0.01meq/gr〜5.Omeq/
grの導入量が実際的である。
In order to introduce amino groups into the carrier, amino group-containing monomers such as vinylamine, 2-aminoethyl methacrylate, etc. may be copolymerized during suspension polymerization. Any quality can be used. The amount of amino groups introduced into the carrier determines the amount of Gantt immobilized thereafter, so it is desirable to introduce as many amino groups as possible, the strength of the carrier after introduction, and the ease of the introduction method. When considering the following, 0.01meq/gr~5. Omeq/
The amount of gr introduced is practical.

アミノ基を導入した疏水性球状ポリマー担体と化学結合
させる親水性エポキシ樹脂として、ポリエチレングリコ
ールジグリシジルエーテル(なお、ポリエチレングリコ
ール単位の重合度は2〜30程度が望ましい、)ポリプ
ロピレングリコールジグリシジルエーテル(ポリプロピ
レングリコール単位の重合度は2〜30が望ましい、)
ポリグリセリンポリグリシジルエーテル、ソルビトール
ポリグリシジルエーテルが例示されるが、水溶性であり
、分子量に多孔質担体の孔内に拡散していくことができ
るエポキシ樹脂であればここに例示したちの以外のもの
も使用できる。
As the hydrophilic epoxy resin to be chemically bonded to the hydrophobic spherical polymer carrier into which amino groups have been introduced, polyethylene glycol diglycidyl ether (the degree of polymerization of the polyethylene glycol unit is preferably about 2 to 30), polypropylene glycol diglycidyl ether (polypropylene The degree of polymerization of glycol units is preferably 2 to 30.)
Examples include polyglycerin polyglycidyl ether and sorbitol polyglycidyl ether, but any epoxy resin other than those exemplified here may be used as long as it is water-soluble and has a molecular weight that allows it to diffuse into the pores of a porous carrier. You can also use things.

以上のごとく、親水性のエポキシ樹脂の一種類以上を、
アミノ基を導入した疏水性球状ポリマーと接触させ、8
0〜100℃で3時間程度加熱してやると、容易にエポ
キシ樹脂のエポキシ基と、担体上に導入されたアミノ基
との反応が起き、化学結合せしめることができ、疏水性
球状ポリマーの表面に親水性のエポキシ樹脂層を形成で
きる0通常、このエポキシ樹脂層には未反応のエポキシ
基が残っているので、このエポキシ基に所望のりガント
を反応させることにより、リガンドの固定化が可能であ
る。すなわち、このエポキシ基を用いて、アミノ基、カ
ルボキシル基、ヒドロキシル基などの活性水素を有する
官能基を持つリガンドを固定化できるのである。
As mentioned above, one or more types of hydrophilic epoxy resin,
Contact with a hydrophobic spherical polymer into which amino groups have been introduced, 8
When heated at 0 to 100°C for about 3 hours, the epoxy group of the epoxy resin easily reacts with the amino group introduced onto the carrier, creating a chemical bond, resulting in a hydrophilic surface on the surface of the hydrophobic spherical polymer. Normally, unreacted epoxy groups remain in this epoxy resin layer, so it is possible to immobilize the ligand by reacting the epoxy groups with a desired adhesive. That is, this epoxy group can be used to immobilize a ligand having a functional group containing active hydrogen, such as an amino group, a carboxyl group, or a hydroxyl group.

水系の溶離液を用い、クロマトグラフィー分離を行う例
として配位子交換クロマトグラフィー法があるが、これ
に用いられる分離剤としてアミノ酸とくにL−プロリン
(もしくはD−プロリン)を担体に固定化したものが用
いられている。従来の当該分離法に用いられてきた分離
剤は前述したように耐圧性、機械的強度、耐アルカリ性
、非特異的吸着性などクロマトグラフィー分離剤として
要求される諸性能に一長一短があり、必ずしも満足のい
くものでは無かった0本発明に従って製造した配位子交
換クロマトグラフィー用分離剤は、従来の当該分離法に
用いられた分離剤と比較して、基質の担体に対する非特
異的な吸着が起こりにくくなっていること、親水性のエ
ポキシ樹脂が適当な長さのスペーサーになっていること
、水系での使用でも十分な耐圧性、機械的強度を持って
いるため溶離液流による圧力損失での分離剤の変形、破
壊が起きないなどの理由により、優れた分離能を持って
いる。
An example of chromatographic separation using an aqueous eluent is the ligand exchange chromatography method, and the separation agent used in this method is one in which an amino acid, particularly L-proline (or D-proline), is immobilized on a carrier. is used. As mentioned above, the separation agents used in conventional separation methods have advantages and disadvantages in the various performances required as chromatography separation agents, such as pressure resistance, mechanical strength, alkali resistance, and nonspecific adsorption properties, and they are not always satisfactory. The separation agent for ligand exchange chromatography produced in accordance with the present invention does not cause non-specific adsorption of the substrate to the carrier, compared to the separation agent used in the conventional separation method. The hydrophilic epoxy resin is used as a spacer of an appropriate length, and it has sufficient pressure resistance and mechanical strength even when used in an aqueous system, so it does not suffer from pressure loss due to eluent flow. It has excellent separation ability because the separating agent does not deform or break.

また水系の溶離液を用いるクロマトグラフィーとして、
蛋白質などの分離、精製が代表的であるが、これに用い
る分離剤としても、本発明による分離剤は、蛋白質と分
離剤間の疏水性相互作用に基づく非特異的吸着が少なく
、かつスペーサー効果によると考えられる分離能の向上
も達成されており、優れたものになっている。
In addition, as chromatography using an aqueous eluent,
The separating agent of the present invention is typically used for separation and purification of proteins, etc., and the separating agent of the present invention has little non-specific adsorption due to hydrophobic interaction between the protein and the separating agent, and has a spacer effect. The improvement in resolution, which is thought to be due to this, has also been achieved, making it excellent.

以下、実施例により、本発明をさらに具体的に説明する
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples.

[疎水性球状ポリマー担体の合成] (1)メチルメタアクリレート40重量部、ジビニルヘ
ンガフ40重量部、グリシジルメタアクリレート20重
量部、ベンゾイルパーオキシド1.0重量部、多孔化剤
としてラウリル酸メチル100重量部からなる原料溶液
を、ポリビニルアルコール1.5重量%水溶液500重
量部に分散させた。攪拌下85°Cで8時間重合を行っ
た後、球状ポリマーを濾過により分離し、よく水洗した
。多孔化剤をアセトンで抽出し、多孔質の疎水性球状ポ
リマー担体を得た。
[Synthesis of hydrophobic spherical polymer carrier] (1) 40 parts by weight of methyl methacrylate, 40 parts by weight of divinyl methacrylate, 20 parts by weight of glycidyl methacrylate, 1.0 parts by weight of benzoyl peroxide, 100 parts by weight of methyl laurate as a porosity agent. The raw material solution consisting of was dispersed in 500 parts by weight of a 1.5% by weight aqueous solution of polyvinyl alcohol. After polymerization was carried out at 85° C. for 8 hours with stirring, the spherical polymer was separated by filtration and thoroughly washed with water. The pore-forming agent was extracted with acetone to obtain a porous hydrophobic spherical polymer carrier.

(以後、担体lと称する。) (2)スチレン40重量部、ジビニルベンゼン40!量
部、グリシジルメタアクリレート20重量部、ベンゾイ
ルパーオキシド1.0重量部、多孔化剤としてジエチル
ベンゼン70重量部、イソオクタン30重量部からなる
原料溶液を、ポリビニルアルコール1.5重量%水溶液
500重量部に分散させた。攪拌下85℃で12時間重
合を行った後、球状ポリマーを濾過により分離し、良く
水洗した。多孔化剤をアセトンで抽出し、多孔質の疎水
性球状ポリマー担体を得た。(以後、担体2と称する。
(Hereinafter referred to as carrier l.) (2) 40 parts by weight of styrene, 40 parts by weight of divinylbenzene! A raw material solution consisting of 20 parts by weight of glycidyl methacrylate, 1.0 parts by weight of benzoyl peroxide, 70 parts by weight of diethylbenzene as a pore-forming agent, and 30 parts by weight of isooctane was mixed with 500 parts by weight of a 1.5% by weight aqueous solution of polyvinyl alcohol. Dispersed. After polymerization was carried out at 85° C. for 12 hours with stirring, the spherical polymer was separated by filtration and thoroughly washed with water. The porosity-forming agent was extracted with acetone to obtain a porous hydrophobic spherical polymer carrier. (Hereinafter, referred to as carrier 2.

)[疎水性球状ポリマー担体へのアミノ基の導入](1
) 100d共栓付き三角フラスコに、担体1をl。
) [Introduction of amino groups into hydrophobic spherical polymer carrier] (1
) Transfer 1 l of carrier 1 to a 100 d Erlenmeyer flask with a stopper.

g、テトラヒドロフラン20d、エチレンジアミン10
gを秤取し、マグネチックスクーラーでの攪拌下、60
°Cで8時間の反応を行った0反応終了後、濾過、洗浄
を行い、アミノ基の導入された疎水性球状ポリマー担体
を得た。アミノ基が0.7seq/ g導入されていた
(これを担体3とする)。
g, tetrahydrofuran 20d, ethylenediamine 10
Weigh out 60 g and stir with a magnetic cooler.
After the reaction was completed for 8 hours at °C, filtration and washing were performed to obtain a hydrophobic spherical polymer carrier into which amino groups were introduced. Amino groups were introduced at 0.7 seq/g (this will be referred to as carrier 3).

(2)担体2についても、 (1)と同様にしてエチレ
ンジアミンを反応させ、アミノ基の導入された疎水性球
状ポリマー担体を得た。アミノ基が0.8■eq/g導
入されていた(これを担体4とする)。
(2) Regarding carrier 2, ethylenediamine was reacted in the same manner as in (1) to obtain a hydrophobic spherical polymer carrier into which amino groups were introduced. Amino groups were introduced at 0.8 ■eq/g (this will be referred to as carrier 4).

[親水性エポキシ樹脂とアミノ基を導入した疎水性ポリ
マー担体との化学結合法] ブナコールEX830(ポリエチレングリコールジグリ
シジルエーテル)5gを、水10−に溶解し、しかる後
アミノ基の導入された疎水性球状ポリマー5g(担体3
)を加え、80°Cで5時間反応させた0反応後、ポリ
マー担体を濾過でとりだし、洗浄を行い、未反応の親水
性エポキシ樹脂などを洗い出した。担体上に0.6se
q/grのエポキシ基が導入されていた。
[Chemical bonding method of hydrophilic epoxy resin and hydrophobic polymer carrier into which amino groups have been introduced] 5 g of Bunacol EX830 (polyethylene glycol diglycidyl ether) is dissolved in 10- of water, and then the hydrophobic polymer carrier into which amino groups have been introduced is dissolved. 5 g of spherical polymer (carrier 3
) and reacted at 80°C for 5 hours. After the reaction, the polymer carrier was filtered out and washed to wash out unreacted hydrophilic epoxy resin and the like. 0.6se on the carrier
Epoxy groups of q/gr were introduced.

実施例1 前述した工程を経て得られた親水性エポキシ樹脂が化学
結合で固定化されている担体3を2g、共栓付き三角フ
ラスコにとり、これにし−プロリン0.5g、)リエチ
ルアミン0.5g、水10Jdを加え、マグネチシクス
クーラーの攪拌下60°Cで3時間反応を行った。充分
な洗浄後、固定化されていたL−プロリンを測定したと
ころ、0.4seq/grのL−プロリン(リガンド)
が担体上に固定化されており、配位子交換クロマトグラ
フィー用の球状分M割が得られた。
Example 1 2 g of the carrier 3 on which the hydrophilic epoxy resin obtained through the above-mentioned process is immobilized by chemical bonding is placed in an Erlenmeyer flask with a stopper, and this is mixed with 0.5 g of proline and 0.5 g of ethylamine. , 10 Jd of water was added, and the reaction was carried out at 60°C for 3 hours with stirring using a magnetic cooler. After thorough washing, the immobilized L-proline was measured and found to be 0.4 seq/gr of L-proline (ligand).
was immobilized on the carrier, and a spherical fraction M for ligand exchange chromatography was obtained.

実施例2 親水性エポキシ樹脂が化学結合で固定化されている担体
4についても、実施例1と同じ反応条件でL−プロリン
をリガンドとして固定化し、配位子交換クロマトグラフ
ィー用の球状分離剤を得た。
Example 2 Regarding carrier 4, on which a hydrophilic epoxy resin is immobilized by chemical bonds, L-proline was immobilized as a ligand under the same reaction conditions as in Example 1, and a spherical separation agent for ligand exchange chromatography was used. Obtained.

固定化されたし一プロリンは、0.34seq/grで
あった。
The immobilized monoproline was 0.34 seq/gr.

比較例1 I旦体lにも、グリシジルメタアクリレートにもとづく
エポキシ基が残っているので、これをそのまま用いてL
−プロリンの固定化を試みた。L−プロリンの固定化反
応条件は実施例と同じにした、得られた配位子交換クロ
マトグラフィー用の球状分離剤は、L−プロリンの固定
化反応が実施例1はと進まず、実施例1の1/3程度の
量のし−プロリンが固定されたにすぎなかった。
Comparative Example 1 Since the epoxy group based on glycidyl methacrylate remains in I-tan body L, this is used as it is to form L.
-An attempt was made to immobilize proline. The immobilization reaction conditions for L-proline were the same as those in Example 1. In the obtained spherical separation agent for ligand exchange chromatography, the immobilization reaction of L-proline did not proceed as fast as in Example 1, and was similar to that in Example 1. Only about 1/3 of the amount of silica-proline was fixed.

比較例2 市販されている配位子交換クロマトグラフィー用分離剤
(m品名二CHIRO3OLVE  JPS  CHI
MIE社製)を入手し、実施例との比較試料とした。こ
れはアクリルアミド、N−メナロール化アクリルアミド
、架橋性上ツマ−を共重合し、さらにL−プロリンを固
定化した親水性球状ゲルである。
Comparative Example 2 Commercially available separation agent for ligand exchange chromatography (Product name 2 CHIRO3OLVE JPS CHI
(manufactured by MIE) was obtained and used as a comparative sample with the examples. This is a hydrophilic spherical gel made by copolymerizing acrylamide, N-menalolated acrylamide, and a crosslinkable ester, and further immobilizing L-proline.

[評価結果] 各配位子交換クロマトグラフィー用分離剤を下表の項目
について評価を行った。
[Evaluation Results] Each separation agent for ligand exchange chromatography was evaluated on the items in the table below.

第1表 *耐圧性は霧ffi/sinで表示した。Table 1 *Pressure resistance is expressed in fog ffi/sin.

(評価結果説明 ) 耐圧性:比較例2の従来品は、溶離液量を0.5@1/
win以上にすると、それによる液圧の為押し潰され、
カラムの閉塞が起きる。
(Explanation of evaluation results) Pressure resistance: The conventional product of Comparative Example 2 has an eluent volume of 0.5@1/
If it exceeds win, it will be crushed due to the hydraulic pressure,
Column blockage occurs.

実施例1.2の本発明は、溶離液流量を10m1/wi
n以上にしても、カラムの閉塞は起きず高速クロマト分
離が可能である。
The present invention of Example 1.2 has an eluent flow rate of 10 m1/wi.
Even when the number is n or more, column clogging does not occur and high-speed chromatographic separation is possible.

分離能;比較例2の従来品は、カラム内で充填剤が変形
しているためか、分離能が悪い。
Separation ability: The conventional product of Comparative Example 2 had poor separation ability, probably because the packing material was deformed within the column.

なお、比較例1は、担体に直接リガンドの固定化が十分
進まず、リガンド固定化量が少ない、そのため、分離能
は実施例1.2の本発明品より迩かに劣っているのであ
る。
In addition, in Comparative Example 1, the immobilization of the ligand directly to the carrier did not proceed sufficiently, and the amount of immobilized ligand was small. Therefore, the separation ability was significantly inferior to the product of the present invention of Example 1.2.

評価方法: 耐圧性評価法:上記カラムにスラリー法にて各分離剤を
充填する時、分離剤が液圧 で押し潰され、カラムの閉塞が起 きる時の液流量。
Evaluation method: Pressure resistance evaluation method: When filling each separation agent into the above column using the slurry method, the liquid flow rate when the separation agent is crushed by liquid pressure and the column is clogged.

(単位:ff1I!/s+in、、) 〉10は10d/+iin以上のwL流量でも、分離剤
は押し潰されずカラム の閉塞が起きないことを示す。
(Units: ff1I!/s+in, .) >10 indicates that the separation agent is not crushed and the column is not clogged even at a wL flow rate of 10d/+iin or more.

分離能評価法: 液体クロマトグラフィーによる、D。Separation performance evaluation method: D by liquid chromatography.

L−ジヒドロキシフェニルアラニン (通称DOPA )の光学分割を行い、各分離剤の分離
能を比較した。クロマ グラフィーのピークは第1図に示した ごとくである。
Optical resolution of L-dihydroxyphenylalanine (commonly known as DOPA) was performed, and the separation ability of each separation agent was compared. The chromatographic peaks are as shown in FIG.

カラム: 4.6wΦ×150111Lステンレスカラ
ム分離剤径:37〜74μ謝 溶離液:(15mM酢酸+0.6mM酢酸w4)/L溶
液 分離能 RL  j RL  ” tB/ t□Rh  : (
h++ ht  2 hv)/(h++h* )R8:
分離度 Rs =2(t 、t  L *1)/(w+
+Wt) (なお、W6、W、はそれぞれ 0体、L体のピーク中を示す) 結果を第1表に示した。
Column: 4.6 wΦ
h++ ht 2 hv)/(h++h*)R8:
Separation degree Rs = 2 (t, t L *1)/(w+
+Wt) (W6 and W indicate the peaks of 0-isomer and L-isomer, respectively) The results are shown in Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例における0DPA分離のクロマトチャー
トを示す。 図面 箪1図 [
FIG. 1 shows a chromatographic chart of 0DPA separation in Examples. Drawing cabinet 1 [

Claims (1)

【特許請求の範囲】[Claims] (1)アミノ基を導入した疏水性球状ポリマー担体に、
親水性エポキシ樹脂を化学結合させ、しかるのち残余の
エポキシ基にリガンドを固定化させることにより得られ
る球状分離剤。
(1) Hydrophobic spherical polymer carrier into which amino groups have been introduced,
A spherical separation agent obtained by chemically bonding a hydrophilic epoxy resin and then immobilizing a ligand on the remaining epoxy group.
JP2145310A 1990-06-05 1990-06-05 Spherical separating agent Pending JPH0440367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2145310A JPH0440367A (en) 1990-06-05 1990-06-05 Spherical separating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2145310A JPH0440367A (en) 1990-06-05 1990-06-05 Spherical separating agent

Publications (1)

Publication Number Publication Date
JPH0440367A true JPH0440367A (en) 1992-02-10

Family

ID=15382199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2145310A Pending JPH0440367A (en) 1990-06-05 1990-06-05 Spherical separating agent

Country Status (1)

Country Link
JP (1) JPH0440367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004081555A1 (en) * 2003-03-14 2006-06-15 日本電気株式会社 Mass spectrometry system and analysis method
WO2012115081A1 (en) * 2011-02-21 2012-08-30 東洋紡績株式会社 Organic solvent dehydrating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004081555A1 (en) * 2003-03-14 2006-06-15 日本電気株式会社 Mass spectrometry system and analysis method
US7586091B2 (en) 2003-03-14 2009-09-08 Nec Corporation Mass spectrometric system and mass spectrometry
WO2012115081A1 (en) * 2011-02-21 2012-08-30 東洋紡績株式会社 Organic solvent dehydrating device
JP5207014B2 (en) * 2011-02-21 2013-06-12 東洋紡株式会社 Organic solvent dehydrator

Similar Documents

Publication Publication Date Title
US4336161A (en) Composite materials comprising deformable xerogel within the pores of particulate rigid supports useful in chromatography
EP0172579B1 (en) Modified siliceous supports
US4663163A (en) Modified polysaccharide supports
EP0117478B1 (en) Modified polysaccharide supports
US4517241A (en) Chromatographic support material
JP5250985B2 (en) New filler for packed bed and its use
US8092682B2 (en) Matrix for separation of polyethers and method of separation
CN101516496A (en) Solid support
US4687820A (en) Modified polypeptide supports
JPS5858026B2 (en) Packing material for chromatography and its manufacturing method
JP4433617B2 (en) Anion exchanger, method for producing the same, and use thereof
US11364480B2 (en) Chromatography medium with bound microglobules and method for the preparation thereof
JPH01254247A (en) Complex separation agent and manufacture thereof
JPH0440367A (en) Spherical separating agent
EP0172580B1 (en) Chromatographic separation processes using modified polypeptide supports
JPS6361618B2 (en)
AU597568B2 (en) Method for producing high-active biologically efficient compounds immobilized on a carrier
JPH0564748A (en) Ion exchanger
JPS5812656A (en) Adsorbing material for treating recirculation
GB1600241A (en) Ampholytic materials
JPS6392627A (en) Hydrophilic porous particle
GB1574414A (en) Composite materials
JPH02251251A (en) Hydrophilic anion exchange resin and preparation thereof
JPH01254248A (en) Complex separation agent and manufacture thereof
JPH0580923B2 (en)