JPH0439384A - Infrared visible conversion fluorescent substance - Google Patents

Infrared visible conversion fluorescent substance

Info

Publication number
JPH0439384A
JPH0439384A JP2144392A JP14439290A JPH0439384A JP H0439384 A JPH0439384 A JP H0439384A JP 2144392 A JP2144392 A JP 2144392A JP 14439290 A JP14439290 A JP 14439290A JP H0439384 A JPH0439384 A JP H0439384A
Authority
JP
Japan
Prior art keywords
infrared
phosphor
ppm
concentration
visible conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2144392A
Other languages
Japanese (ja)
Other versions
JP2631759B2 (en
Inventor
Yasuaki Tamura
保暁 田村
Atsushi Shibukawa
渋川 篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2144392A priority Critical patent/JP2631759B2/en
Publication of JPH0439384A publication Critical patent/JPH0439384A/en
Application granted granted Critical
Publication of JP2631759B2 publication Critical patent/JP2631759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Luminescent Compositions (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To obtain the subject fluorescent substance having a high speed of response especially to infrared input light by adding Eu or Ce and a specific amount of Sm to an alkaline earth metal chalcogenide. CONSTITUTION:The objective fluorescent substance is obtained by adding Eu or Ce and Sm at 300-5,000ppm weight ratio in the receptive forms of oxides, etc., to an alkaline earth metal chalcogenide, mixing the components and then burning the mixture in an inert gas atmosphere e.g. Ar at 1,500 deg.C for 2hr. An optical logical operation element having a high information processing speed can be realized by using the aforementioned fluorescent substance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は赤外可視変換蛍光体に係わり、特に、赤外入力
光に対する応答速度が速い赤外可視変換蛍光体に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an infrared-visible converting phosphor, and particularly relates to an infrared-visible converting phosphor that has a fast response speed to input infrared light.

〔従来の技術〕[Conventional technology]

赤外輝尽蛍光体とは、あらかし約短波長の光、あるいは
、X線、放射線等で励起した後、赤外光で刺激すると可
視域の発光を発生ずる蛍光体である。
An infrared stimulable phosphor is a phosphor that emits light in the visible range when excited with light of approximately short wavelength, X-rays, radiation, etc., and then stimulated with infrared light.

以後の記載事項に関する理解を深めるため、ここでは赤
外輝尽蛍光体の動作原理をCaS:Bu。
In order to deepen your understanding of the following items, we will explain the operating principle of the infrared stimulable phosphor using CaS:Bu.

Smを例にとり第1図に示したケラ−(Keller)
のモデルを用いて説明する。
Keller shown in Figure 1 taking Sm as an example.
This will be explained using the following model.

まず、■短波長の光を蛍光体に照射すると蛍光体が励起
され0uからSmに電子が移動する。次に、■赤外光を
照射すると、その刺激によりSmに蓄積されていた電子
が811に移動する。■Huに移動した電子はEuの基
底準位に媛和しその際に光を放出する。この時の発光を
赤外輝尽発光と呼んでいる。
First, (2) When the phosphor is irradiated with short wavelength light, the phosphor is excited and electrons move from 0u to Sm. Next, (2) When infrared light is irradiated, the electrons accumulated in Sm move to 811 due to the stimulation. (2) The electrons that have moved to Hu soften to the ground level of Eu and emit light at that time. The light emission at this time is called infrared stimulated light emission.

この赤外輝尽発光は赤外線を可視化する手段として注目
され、第二次世界大戦中日米両国で活発に研究され、そ
の結果、硫化カルシウム(CaS)や硫化ストロンチウ
ム(SrS)にユーロピウム(Bu)とサマリウム(S
m)、あるいはセリウム(Ce)とサマリウム(Sm)
などを添加した蛍光体が赤外可視変換効率の高い蛍光体
として開発された。
This infrared stimulated luminescence attracted attention as a means of visualizing infrared light, and was actively researched in both Japan and the United States during World War II. As a result, calcium sulfide (CaS), strontium sulfide (SrS), and europium (Bu) and samarium (S
m), or cerium (Ce) and samarium (Sm)
Phosphors doped with such compounds have been developed as phosphors with high infrared-visible conversion efficiency.

第二次大戦前後の研究により、赤外輝尽蛍光体中に添加
する添加物の最適濃度が明らかにされ、サマリウム濃度
に関しては、蛍光体全重量に対して重量比で50 pp
mから3 D Oppmの濃度範囲で添加すると最も赤
外可視変換効率の高い蛍光体が得られるこきが分かった
Research conducted before and after World War II revealed the optimal concentration of additives added to infrared stimulable phosphors, and the samarium concentration was set at 50 pp by weight relative to the total weight of the phosphor.
It has been found that a phosphor with the highest infrared-visible conversion efficiency can be obtained when added in a concentration range from m to 3D oppm.

サマリウム添加濃度について記載した文献には、例えば
、1947年7月に頒布された「ジャーナル 才ブ ジ
 アメリカン ケミカルソサイエティ(Journal
 of the American Chea+1ca
l 5ociety)」第1725頁〜第1729頁所
載の「赤外光によって刺激される蛍光体の基本材料とし
てのセレン化ストロンチウムの製造方法とその特性(T
he Preparation of Stronti
umSelenide  and  its  Pro
perties  as  a  Ba5e  Mat
erial for Phosphors Stimu
lated by Infrared)Jと題する論文
があり、この論文の特に「B、セレン化ストロンチウム
蛍光体の作製法(B、Pre−paration of
 Strontium 5elenide Phosp
hors) 」の章にサマリウム濃度は200 ppm
と記載されている。また例えば、1958年9月に頒布
された「フィジカル レビ! −(Physical 
Review) J第111巻6号第1533頁〜第1
539頁所載の[赤外輝尽蛍光体に関するクエンチング
、刺激、消耗の研究(Quenching、 Stim
ulation。
Literature describing samarium additive concentrations includes, for example, the Journal of the American Chemical Society, published in July 1947.
of the American Chea+1ca
``Manufacturing method and properties of strontium selenide as a basic material for phosphors stimulated by infrared light (T
he Preparation of Stronti
umSelenide and its Pro
parties as a Ba5e Mat
Erial for Phosphors Stimu
There is a paper entitled "B. Pre-paration of strontium selenide phosphor".
Strontium 5elenide Phosp
hors), the samarium concentration is 200 ppm.
It is stated that. For example, “Physical Rev!
Review) J Vol. 111, No. 6, pp. 1533-1
[Quenching, Stimulation and Depletion Studies on Infrared Stimulated Phosphors] on page 539
ulation.

and Bxhaution 5tudies on 
Some InfraredStimulable P
hosphors) Jと題する論文では、蛍光体組成
にライてSrS、6%SrSO4,6%CaFz、0.
02%Bu、及び0.02%Smと記載しておりサマリ
ウム添加濃度をppm表記で示すとほぼ200 ppm
となる。以上例示したように従来の蛍光体ではサマリウ
ムの添加濃度は、蛍光体全重量に対してて重量比で5o
ppmから300 ppmの濃度範囲で添加されている
and Bxhaution 5tudies on
Some Infrared Stimulable P
phosphors) J, the phosphor composition is SrS, 6% SrSO4, 6% CaFz, 0.
It is written as 0.02%Bu and 0.02%Sm, and the concentration of samarium added is approximately 200 ppm when expressed in ppm.
becomes. As exemplified above, in conventional phosphors, the concentration of samarium added is 50% by weight based on the total weight of the phosphor.
It is added in a concentration range of ppm to 300 ppm.

また、赤外輝尽蛍光体に関する特許としては米国特許第
4842960号、第4839092号、第48308
75号、第4822520号、第48184 F4号、
第4812660号などがあるが、文献同様サマリウム
の添加濃度は、蛍光体全重量に対して重量比で50 p
pmから300 ppmの濃度範囲と記載されている。
In addition, patents related to infrared stimulable phosphors include U.S. Patent No. 4842960, U.S. Pat.
No. 75, No. 4822520, No. 48184 F4,
No. 4812660, etc., but as in the literature, the concentration of samarium added is 50 p by weight relative to the total weight of the phosphor.
It is stated that the concentration ranges from pm to 300 ppm.

例えば、米国特許第4830875号[蛍光体材料と作
製法及び赤外検知素子(Photoluminesce
nt materials and associat
ed process and +nf−rared 
sensing device) Jのクレームにはサ
マリウム濃度は蛍光体全重量に対して重量比で50pp
mから300 ppmと記載されている。この濃度領域
で添加する理由としては前記特許明細書第5コラム第6
2行に[前述の添加濃度の特定値は感度などの優れた特
性を与える(The 5pec+fic  value
s for portions which are 
givenabove provide highly
 5uperior character+st+cs
 5uch  as 5ensitivity) Jと
記載されているように、この濃度領域でSmを添加する
ことにより赤外可視変換効率が高くなるためである。
For example, U.S. Pat. No. 4,830,875 [Phosphor material and manufacturing method,
nt materials and associate
ed process and +nf-rared
(sensing device) J's claim states that the samarium concentration is 50pp by weight relative to the total weight of the phosphor.
It is described as 300 ppm from m. The reason for adding in this concentration range is as stated in column 6 of column 5 of the above patent specification.
In the second line, [The above-mentioned specific value of the additive concentration gives excellent characteristics such as sensitivity (The 5pec+fic value
s for portions which are
givenabove provide highly
5superior character+st+cs
This is because the infrared-visible conversion efficiency is increased by adding Sm in this concentration range, as described as 5uch as 5sensitivity) J.

以上述べた様に赤外輝尽蛍光体は赤外可視変換機能を中
心として開発され、開発当初の1940年代の集中研究
により赤外可視変換効率の高い蛍光体が実現されたが、
戦後の半導体技術の飛躍的な進展により、シリコン光ダ
イオードなどの赤外線に対する感度の高い検出器が出現
し、赤外光検出器に際して予備励起が必要な赤外輝尽蛍
光体は赤外光検出器としての価値が低下し現在では半導
体レーザーやYAGレーザーなどの赤外光の発光検出や
光学系の調整などに用いられているにすぎない。
As mentioned above, infrared stimulable phosphors were developed mainly for their infrared-visible conversion function, and through intensive research in the 1940s when they were first developed, phosphors with high infrared-visible conversion efficiency were realized.
With the dramatic progress in semiconductor technology after the war, detectors with high sensitivity to infrared rays such as silicon photodiodes appeared, and infrared stimulable phosphors that required preliminary excitation were used as infrared photodetectors. Its value has declined, and now it is only used for detecting infrared light emission from semiconductor lasers, YAG lasers, etc., and for adjusting optical systems.

ところが、従来の電子計算機による情報処理能力に限界
が見えはじめ、多数の情報を並列的に処理できる光コン
ピュータの実現が望まれている現在、マカレー(Ala
ster D McAulay)により赤外輝尽蛍光体
を用いて光情報の論理演算が可能であることが示され光
論理演算処理素子媒体として赤外輝尽蛍光体が再び注目
されるに至った。光情報処理の観点から赤外輝尽蛍光体
に要求される特性は、従来の赤外可視変換効率のみでな
く、むしろ赤外入力光に対する高速応答特性が重要であ
る。ここで赤外輝尽蛍光体を用いた場合の応答時間とは
、赤外光を照射してから赤外輝尽発光出力が最大値とな
るまでの立上がり時間と、最大値となってから発光輝度
が最大値の2になるまでの時間を表す立下がり時間を加
えたものを応答時間と言うこととする。
However, the information processing capacity of conventional electronic computers is beginning to reach its limits, and optical computers that can process large amounts of information in parallel are now being desired.
ster D McAulay) showed that it was possible to perform logical operations on optical information using infrared stimulable phosphors, and infrared stimulable phosphors once again attracted attention as a medium for optical logic processing elements. From the viewpoint of optical information processing, the characteristics required of infrared stimulable phosphors are not only the conventional infrared-visible conversion efficiency, but also high-speed response characteristics to infrared input light. Here, the response time when using an infrared stimulable phosphor is the rise time from irradiation with infrared light until the infrared stimulable luminescence output reaches its maximum value, and the time it takes to emit light after reaching its maximum value. The response time is the addition of the fall time, which represents the time it takes for the brightness to reach its maximum value of 2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、前述したように赤外輝尽蛍光体は発光効率に主眼
があったため発光効率の報告例はあるが、応答時間につ
いての報告例はほとんど見当らない。
Conventionally, as mentioned above, the main focus of infrared stimulable phosphors has been on luminous efficiency, so although there are reports on luminous efficiency, there are almost no reports on response time.

本発明の目的は、赤外輝尽蛍光体において、改良された
特性をもつ赤外可視変換蛍光体を提供することにある。
An object of the present invention is to provide an infrared-visible converting phosphor with improved characteristics among infrared stimulable phosphors.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、本発明は赤外可視変換蛍光体に関
する発明であって、アルカリ土類金属カルコゲナイドに
ユーロピウムとサマリウム、あるいはセリウムとサマリ
ウムを添加した赤外可視変換蛍光体において、蛍光体全
重量に対して重量比で300 ppmを超え5000 
ppm以下のサマリウムを含有することを特徴きする。
To summarize the present invention, the present invention relates to an infrared-visible converting phosphor. Weight to weight ratio exceeding 300 ppm and 5000
It is characterized by containing less than ppm of samarium.

本発明者らは、種々の添加濃度の赤外輝尽蛍光体につい
て応答速度を測定した。その結果、従来の濃度領域でS
rnを添加した蛍光体はその応答速度が150 n5e
cから200 n5ecと長いという欠点があることを
見出した。そして更に活性剤添加濃度と応答速度との関
係を詳細に検討した結果、■赤外入力光に対する応答速
度はS+vJ1度に依存すること■応答速度に関して最
適である濃度領域と赤外可視変換効率に関して最適であ
る濃度領域が異なることを見出した。
The present inventors measured the response speed of infrared stimulable phosphors with various additive concentrations. As a result, S
The response speed of the rn-doped phosphor is 150 n5e
It was found that it has the disadvantage of being long, from c to 200 n5ec. Furthermore, as a result of a detailed study of the relationship between the concentration of the activator added and the response speed, we found that: ■ The response speed to infrared input light depends on S + vJ 1 degree. ■ Regarding the optimal concentration range regarding the response speed and the infrared-visible conversion efficiency. It was found that the optimal concentration ranges are different.

本発明は既述の欠点にかんがみなされたものであり、赤
外光に対して高速応答をする濃度領域となるようSm添
加量を制御して蛍光体を製造することにより赤外入力光
に対する応答速度が速い赤外可視変換蛍光体を実現し、
高速情報処理を可能にしたものである。
The present invention was made in view of the above-mentioned drawbacks, and the response to infrared input light is improved by manufacturing a phosphor by controlling the amount of Sm added so as to have a concentration range that provides a high-speed response to infrared light. Achieving a fast infrared-visible conversion phosphor,
This enabled high-speed information processing.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第2図は赤外輝尽蛍光体に添加した活性剤濃度(ppm
 、横軸)と赤外可視変換効率(最大変換効率を100
とした、縦軸)との関係を示す図であり、第2図(a)
はユーロピウム濃度を500ppm一定とじSm濃度を
50ppm〜2000ppmと変化させた場合の赤外可
視変換効率を示す図であり、第2図ら)はセリウム濃度
を500 ppm −定としSm1i1度を50 pp
m 〜2 D 01) ppmと変化させた場合の赤外
可視変換効率を示す図である。
Figure 2 shows the concentration (ppm) of the activator added to the infrared stimulable phosphor.
, horizontal axis) and infrared-visible conversion efficiency (maximum conversion efficiency is 100
Fig. 2(a) is a diagram showing the relationship with the vertical axis).
Figure 2 shows the infrared-visible conversion efficiency when the europium concentration is constant at 500 ppm and the Sm concentration is varied from 50 ppm to 2000 ppm.
It is a figure which shows the infrared-visible conversion efficiency at the time of changing it to m~2D01) ppm.

最も高い変換効率に対して90%の変換効率を与える濃
度領域は従来報告されているように50 ppm〜30
0 ppmに存在している。
The concentration range that provides the highest conversion efficiency of 90% is 50 ppm to 30 ppm, as previously reported.
Present at 0 ppm.

一方、第3図は赤外輝尽蛍光体に添加した活性剤濃度(
ppm 、横軸)と赤外光に対する応答速度(n5ec
、縦軸)との関係を示す図であり、第3図(a)はユー
ロピウム濃度を500 ppm一定とじSm濃度を50
ppm 〜2000ppmと変化させた場合の応答速度
を示す図であり、第3図(b)はセリウム濃度を500
 ppm一定としSm1度を50ppm〜2000 p
pmと変化させた場合の応答速度を示す図である。第3
図(a)、(b)ともSma度が50ppm〜300 
ppmである領域では応答速度が100nsec以上で
あるのに対し300 PPmを超える領域では応答速度
が急激に速くなり100 n5ecから1. On5e
cへと高速化している。
On the other hand, Figure 3 shows the concentration of activator added to the infrared stimulable phosphor (
ppm (horizontal axis) and response speed to infrared light (n5ec
, vertical axis), and FIG. 3(a) shows the relationship between the europium concentration at 500 ppm and the Sm concentration at 50 ppm.
This is a diagram showing the response speed when changing the cerium concentration from ppm to 2000 ppm, and FIG. 3(b) shows the response speed when the cerium concentration is changed from 500 ppm to
Assuming that ppm is constant, Sm1 degree is 50 ppm to 2000 p
It is a figure which shows the response speed when changing with pm. Third
In both figures (a) and (b), the Sma degree is 50 ppm to 300
In the range of ppm, the response speed is 100 nsec or more, whereas in the range of over 300 ppm, the response speed rapidly increases from 100 n5ec to 1.5 sec. On5e
The speed has increased to c.

以上第2図と第3図を比較すれば明らかなように最も高
い赤外可視変換効率を与える濃度領域と100 n5e
cJJ下の高速応答を示す濃度領域とは異なり、I 0
0 n5ec以下の高速応答を示すSm濃度領域は30
0 ppmを超える領域である。
Comparing Figures 2 and 3 above, it is clear that the concentration range that provides the highest infrared-visible conversion efficiency is 100 n5e.
Unlike the concentration region showing fast response under cJJ, I 0
The Sm concentration region showing a high-speed response of 0 n5ec or less is 30
This is a region exceeding 0 ppm.

また、Sm添加濃度を3009pmを超える濃度とする
と第2図から明らかなように赤外可視変換効率が低下し
、5000 ppmを超えると赤外可視変換効率は最大
効率を10%以下となり実用上問題となるため、500
0 ppm以下の濃度で添加することが望ましい。
Furthermore, when the Sm addition concentration exceeds 3009 pm, the infrared-visible conversion efficiency decreases as is clear from Figure 2, and when it exceeds 5000 ppm, the infrared-visible conversion efficiency becomes less than 10% of the maximum efficiency, which is a practical problem. Therefore, 500
It is desirable to add it at a concentration of 0 ppm or less.

以上述べたように、Sm濃度が300 ppmを超え5
000 ppm以下となるように添加することにより1
00 n5ec以下の高速で応答する赤外輝尽蛍光体が
得られる。
As mentioned above, when the Sm concentration exceeds 300 ppm5
1 by adding it to a level of 000 ppm or less.
An infrared stimulable phosphor that responds at a high speed of 00 n5ec or less can be obtained.

〔実施例〕〔Example〕

以下、本発明の赤外可視変換蛍光体について、実施例に
よって更に具体的に説明するが、本発明はこれら実施例
に限定されない。
EXAMPLES Hereinafter, the infrared-visible conversion phosphor of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例I 硫化カルシウムにユーロピウムとサマリウムを添加した
ことを特徴とする赤外可視変換蛍光体について説明する
Example I An infrared-visible conversion phosphor characterized by adding europium and samarium to calcium sulfide will be described.

上記蛍光体を作製するに当っては、硫化カルシウム10
0gに対しフッ化カルシウムを6g、酸化サマリウムを
0.15g、酸化ユーロピウムを0.05 g混合した
後、高温焼結炉中に混合粉末を設置し、1500℃で2
時間加熱焼結する。
In producing the above phosphor, calcium sulfide 10
After mixing 6g of calcium fluoride, 0.15g of samarium oxide, and 0.05g of europium oxide per 0g of powder, the mixed powder was placed in a high-temperature sintering furnace and heated at 1500℃ for 2 hours.
Heat and sinter for a time.

焼結の際蛍光体が酸化することを防ぐために八「などの
不活性ガスを導入することが望ましい。
In order to prevent the phosphor from oxidizing during sintering, it is desirable to introduce an inert gas such as 8'.

また不活性ガスに硫化水素を混合したガスや、硫化水素
ガスを導入して焼結すると焼結時の加熱により硫黄成分
が蒸発し蛍光体中に硫黄欠損が生じることを防止できる
ため更に高品質の蛍光体が得られる。
In addition, by sintering with a mixture of hydrogen sulfide in an inert gas or hydrogen sulfide gas, the sulfur component evaporates due to the heating during sintering, which prevents sulfur defects from occurring in the phosphor, resulting in even higher quality. of phosphor is obtained.

この様にして得られた蛍光体のSm濃度をICP分析に
より検査した結果Sm濃度は1500ppmで、赤外光
に対する応答速度は40 n5ecであり高速応答の赤
外可視変換蛍光体が得られた。
The Sm concentration of the thus obtained phosphor was examined by ICP analysis. As a result, the Sm concentration was 1500 ppm and the response speed to infrared light was 40 n5ec, indicating that an infrared-visible conversion phosphor with high speed response was obtained.

実施例2 硫化ストロンチウムにセリウムとサマリウムを添加した
ことを特徴とする赤外可視変換蛍光体について説明する
Example 2 An infrared-visible conversion phosphor characterized by adding cerium and samarium to strontium sulfide will be described.

上記蛍光体を作製するに当っては、硫化ストロンチウム
100gに対しフッ化リチウムを2g、酸化サマリウム
を0.1g、酸化セリウムを0.1g混合した後、高温
焼結炉中に混合粉末を設置し、1500℃で2時間加熱
焼結する。焼結の際蛍光体が酸化することを防ぐために
八rなどの不活性ガスを導入することが望ましい。また
不活性ガスに硫化水素を混合したガスや、硫化水素ガス
を導入して焼結すると焼結時の加熱により硫黄成分が蒸
発し蛍光体中に硫黄欠損が生じることを防止できるため
更に高品質の蛍光体が得られる。
To produce the above phosphor, 100 g of strontium sulfide was mixed with 2 g of lithium fluoride, 0.1 g of samarium oxide, and 0.1 g of cerium oxide, and then the mixed powder was placed in a high-temperature sintering furnace. , heat and sinter at 1500°C for 2 hours. In order to prevent the phosphor from being oxidized during sintering, it is desirable to introduce an inert gas such as 8R. In addition, by sintering with a mixture of hydrogen sulfide in an inert gas or hydrogen sulfide gas, the sulfur component evaporates due to the heating during sintering, which prevents sulfur defects from occurring in the phosphor, resulting in even higher quality. of phosphor is obtained.

この様にして得られた蛍光体の5nrJ1度をTCP分
析により検査した結果5nra1度は1000 ppm
で、赤外光に対する応答速度は3 Q n5ecであり
高速応答の赤外可視変換蛍光体が得られた。
When 5nrJ1 degree of the phosphor obtained in this way was examined by TCP analysis, 5nra1 degree was 1000 ppm.
The response speed to infrared light was 3 Q n5ec, and an infrared-visible conversion phosphor with high-speed response was obtained.

実施例3 硫化ストロンチウムにセリウムとサマリウムを添加した
ことを特徴とする赤外可視変換蛍光体について説明する
Example 3 An infrared-visible conversion phosphor characterized by adding cerium and samarium to strontium sulfide will be described.

上記蛍光体を作製するに当っては、硫化ストロンチウム
100gに対しフッ化リチウムを2g、酸化サマリウム
を0.5g、酸化セリウムを0、1 g混合した後、高
温焼結炉中に混合粉末を設置し、1500℃で2時間加
熱焼結する。焼結の際蛍光体が酸化することを防ぐため
に八「などの不活性ガスを導入することが望ましい。ま
た不活性ガスに硫化水素を混合したガスや、硫化水素ガ
スを導入して焼結すると焼結時の加熱により硫黄成分が
蒸発し蛍光体中に硫黄欠損が生じることを防止できるた
め更に高品質の蛍光体が得られる。
To produce the above phosphor, 100 g of strontium sulfide was mixed with 2 g of lithium fluoride, 0.5 g of samarium oxide, and 0.1 g of cerium oxide, and then the mixed powder was placed in a high-temperature sintering furnace. Then, heat and sinter at 1500°C for 2 hours. In order to prevent the phosphor from oxidizing during sintering, it is desirable to introduce an inert gas such as 8".Also, if a mixture of inert gas and hydrogen sulfide or hydrogen sulfide gas is introduced during sintering, Since it is possible to prevent sulfur components from evaporating due to heating during sintering and sulfur defects from occurring in the phosphor, a phosphor of higher quality can be obtained.

この様にして得られた蛍光体のSm濃度をICP分析に
より検査した結果Sms度は5000 ppmで、赤外
光に対する応答速度は15 n5ecであり高速応答の
赤外可視変換蛍光体が得られた。
The Sm concentration of the thus obtained phosphor was examined by ICP analysis, and the Sms degree was 5000 ppm, and the response speed to infrared light was 15 n5ec, indicating that an infrared-visible conversion phosphor with high speed response was obtained. .

実施例4 セレン化カルシウムにユーロピウムとサマリウムを添加
したことを特徴とする赤外可視変換蛍光体について説明
する。
Example 4 An infrared-visible conversion phosphor characterized by adding europium and samarium to calcium selenide will be described.

」1記蛍光体を作製するに当っては、セレン化カルシウ
ム100gに対しフッ化カルシウムを6g、酸化サマリ
ウムを0.035g、酸化ユーロピウムを0.05 g
混合した後、高温焼結炉中に混合粉末を設置し、150
0℃で2時間加熱焼結する。焼結の際蛍光体が酸化する
ことを防ぐために八rなどの不活性ガスを導入すること
が望ましい。また不活性ガスにセレン化水素を混合した
ガスやセレン化水素ガスを導入して焼結すると焼結時の
加熱によりセレン成分が蒸発し蛍光体中にセレン欠損が
生じることを防止できるため更に高品質の蛍光体が得ら
れる。
``1. To prepare the phosphor, 6 g of calcium fluoride, 0.035 g of samarium oxide, and 0.05 g of europium oxide are added to 100 g of calcium selenide.
After mixing, the mixed powder was placed in a high-temperature sintering furnace and heated at 150
Heat and sinter at 0°C for 2 hours. In order to prevent the phosphor from being oxidized during sintering, it is desirable to introduce an inert gas such as 8R. In addition, if a gas containing hydrogen selenide mixed with an inert gas or hydrogen selenide gas is introduced for sintering, the selenium component will evaporate due to the heating during sintering, and selenium defects can be prevented from occurring in the phosphor. Quality phosphor can be obtained.

この様にして得られた蛍光体のSm濃度をICP分析に
より検査した結果Sm濃度は350 plumで、赤外
光に対する応答速度は90 n5ecであり高速応答の
赤外可視変換蛍光体が得られた。
The Sm concentration of the thus obtained phosphor was examined by ICP analysis, and the result was that the Sm concentration was 350 plum, and the response speed to infrared light was 90 n5ec, indicating that an infrared-visible conversion phosphor with high-speed response was obtained. .

実施例5 硫化カルシウムにセリウムとサマリウムを添加した混合
粉末を原料とし物理的蒸着法により薄膜状の蛍光体を作
製した例について説明する。
Example 5 An example will be described in which a thin film phosphor was manufactured by physical vapor deposition using a mixed powder of calcium sulfide with cerium and samarium added as a raw material.

上記蛍光体を作製するに当っては、硫化カルシウム10
0gに対し酸化サマリウムを0.1g、酸化セリウムを
0.1g混合した粉末を、加圧形成し蒸着用原料ペレッ
トとする。この原料ベレットを電子ビーム加熱蒸着装置
内に設置し電子ビーム加熱により加熱蒸発させる。この
時同じ真空容器内にあらかじめ洗浄した25mmX25
mm角のガラス基板を設置しておき、ガラス基板上に蛍
光体薄膜を形成した。薄膜形成時の基板温度は500℃
であり、薄膜形成速度は 400 nm/minとした
。また、薄膜化により硫黄欠損が生じることを防ぐため
、薄膜形成時に硫化水素を放電によりプラズマ化させ基
板上に照射し硫黄欠損発生防止を図った。
In producing the above phosphor, calcium sulfide 10
A powder obtained by mixing 0.1 g of samarium oxide and 0.1 g of cerium oxide per 0 g is pressurized to form pellets of raw material for vapor deposition. This raw material pellet is placed in an electron beam heating evaporation device and is heated and evaporated by electron beam heating. At this time, in the same vacuum container, a 25mm x 25mm
A mm square glass substrate was set up, and a phosphor thin film was formed on the glass substrate. Substrate temperature during thin film formation is 500℃
The thin film formation rate was 400 nm/min. Additionally, in order to prevent sulfur vacancies from occurring due to thinning the film, hydrogen sulfide was turned into plasma by electrical discharge and irradiated onto the substrate during thin film formation to prevent the occurrence of sulfur vacancies.

この様にして得られた薄膜を二次イオン質量スペクトロ
スコピー(SIMS)法によって検査した結果、薄膜中
のサマリウム添加濃度は11000ppであり、赤外光
に対する応答速度は30 n5ecであり高速応答の赤
外可視変換蛍光体が得られた。
As a result of inspecting the thin film obtained in this way by secondary ion mass spectroscopy (SIMS), it was found that the concentration of samarium added in the thin film was 11,000 pp, and the response speed to infrared light was 30 n5ec, indicating that it is a fast-response red light. An external visible conversion phosphor was obtained.

また、この薄膜蛍光体の分解能は2001p/mmであ
り、基板面内で2500万画素の演算素子が実現された
。この薄膜蛍光体に緑色光で画像情報1と赤外光で画像
情報2を照射することによる2画像間の加算演算を行っ
たところ30nsecで2500万演算すなわち、約8
30Tbit/sec (テラビット毎秒)の高速演算
が実現され、従来の電子計算機での演算速度的106b
it/5ec(ギガビット毎秒)と比較して約8300
0倍の高速演算が実現された。
Furthermore, the resolution of this thin film phosphor was 2001 p/mm, and an arithmetic element with 25 million pixels was realized within the substrate surface. When this thin film phosphor was irradiated with image information 1 using green light and image information 2 using infrared light, an addition operation between the two images was performed, and 25 million operations were performed in 30 ns, that is, approximately 8
High-speed calculation of 30Tbit/sec (terabit per second) has been realized, which is faster than the calculation speed of 106b on conventional electronic computers.
Approximately 8300 compared to it/5ec (gigabits per second)
Achieved 0 times faster calculation.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、赤外可視変換蛍光体を本発明構成の
赤外可視変換蛍光体とすること、すなわち、蛍光体全重
量に対して重量比で300ppmを超え、5000 p
pm以下のサマリウムを含有することを特徴とする赤外
可視変換蛍光体とすること、によって、従来技術の有し
ていた課題を解決して、赤外入力光に対する応答速度が
早い赤外可視変換蛍光体をを提供することができ、ひい
ては情報処理速度の速い光論理演算素子の実現を可能に
した。
As described above, the infrared-visible converting phosphor is an infrared-visible converting phosphor having the structure of the present invention, that is, the weight ratio exceeds 300 ppm with respect to the total weight of the phosphor, and 5000 ppm is used.
By using an infrared-visible conversion phosphor characterized by containing samarium of pm or less, the problems of the conventional technology can be solved, and the infrared-visible conversion can have a fast response speed to infrared input light. This made it possible to provide a phosphor, which in turn made it possible to realize an optical logic operation element with a high information processing speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の赤外可視変換蛍光体の動作原理を示す
図、第2図はサマリウム(Sm)添加濃度と赤外可視変
換効率との関係を示す図、第3図はサマリウム(Sm)
添加濃度と赤外光に対する応答速度との関係を示す図で
ある。 特許出願人  日本電信電話株式会社 代  理  人     中  本      宏量 
       井  上      昭同      
  吉  嶺      桂第1図
Figure 1 is a diagram showing the operating principle of the infrared-visible conversion phosphor of the present invention, Figure 2 is a diagram showing the relationship between samarium (Sm) doping concentration and infrared-visible conversion efficiency, and Figure 3 is a diagram showing the relationship between samarium (Sm) doping concentration and infrared-visible conversion efficiency. )
FIG. 3 is a diagram showing the relationship between additive concentration and response speed to infrared light. Patent applicant: Nippon Telegraph and Telephone Corporation Representative: Hiroshi Nakamoto
Akito Inoue
Katsura Yoshimine Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1. アルカリ土類金属カルコゲナイドにユーロピウム
とサマリウム、あるいはセリウムとサマリウムを添加し
た赤外可視変換蛍光体において、蛍光体全重量に対して
重量比で300ppmを超え5000ppm以下のサマ
リウムを含有することを特徴とする赤外可視変換蛍光体
1. An infrared-visible conversion phosphor in which europium and samarium or cerium and samarium are added to alkaline earth metal chalcogenide, characterized by containing samarium in a weight ratio of more than 300 ppm and less than 5000 ppm based on the total weight of the phosphor. Infrared-visible conversion phosphor.
JP2144392A 1990-06-04 1990-06-04 Infrared-visible conversion phosphor Expired - Lifetime JP2631759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2144392A JP2631759B2 (en) 1990-06-04 1990-06-04 Infrared-visible conversion phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2144392A JP2631759B2 (en) 1990-06-04 1990-06-04 Infrared-visible conversion phosphor

Publications (2)

Publication Number Publication Date
JPH0439384A true JPH0439384A (en) 1992-02-10
JP2631759B2 JP2631759B2 (en) 1997-07-16

Family

ID=15361085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2144392A Expired - Lifetime JP2631759B2 (en) 1990-06-04 1990-06-04 Infrared-visible conversion phosphor

Country Status (1)

Country Link
JP (1) JP2631759B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236296A (en) * 1988-04-21 1990-02-06 Quantex Corp Thin-film photoluminescent article and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236296A (en) * 1988-04-21 1990-02-06 Quantex Corp Thin-film photoluminescent article and its manufacture

Also Published As

Publication number Publication date
JP2631759B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
Liu et al. Towards bright and fast Lu3Al5O12: Ce, Mg optical ceramics scintillators
Johnson et al. The interpretation of the dependence of luminescent efficiency on activator concentration
NL1027265C2 (en) Terbium or lutetium-containing scintillator compositions with improved resistance to radiation damage.
RU2350579C2 (en) Fluorescent ceramics
CN108884387A (en) Crystalline ceramics garnet scintillator detector for positron emission tomography
Vink et al. Photon cascade emission in SrAlF5: Pr3+
JP2019210191A (en) Method of preparation of formamidinium halogenated lead perovskite quantum dot
US20060022170A1 (en) Compositions comprising high light-output yellow phosphors and their methods of preparation
De Leeuw et al. Kinetics of photostimulated luminescence in BaFBr: Eu
Nakamura Improvements in the X‐ray characteristics of Gd2O2S: Pr ceramic scintillators
Abdelrehman et al. Luminescence properties and cathodoluminescence degradation of Bi doped SrO powder
Rezende et al. The effect of the host composition on the lifetime decay properties of barium/strontium aluminates compounds
Bimberg et al. CeP5O14, a new ultrafast scintillator
Li et al. Ultraviolet emission and Fano resonance in doped nano-alumina
JPH0439385A (en) Infrared visible conversion fluorescent substance
JPH0439384A (en) Infrared visible conversion fluorescent substance
Haranath et al. Luminescence enhancement of (Ca, Zn) TiO3: Pr3+ phosphor using nanosized silica powder
EP0972816B1 (en) High efficiency polycrystalline phosphors and method of making same
US2628201A (en) Zinc-magnesium oxide luminescent materials and methods of making same
JPH0379693A (en) High-performance luminiscent material for conversion to increased optical intensity and its manufacture
US6623661B2 (en) Method for producing photostimulable phosphor
Huang et al. Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5
Batentschuk et al. Radiation stability of CsBr: Eu needle image plates
Mikhailin Inorganic Scintillators and their Applications
JP2633749B2 (en) Infrared-visible conversion phosphor and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14