JPH04389A - Magnetic field generating device and dry process apparatus provided there with - Google Patents

Magnetic field generating device and dry process apparatus provided there with

Info

Publication number
JPH04389A
JPH04389A JP9968990A JP9968990A JPH04389A JP H04389 A JPH04389 A JP H04389A JP 9968990 A JP9968990 A JP 9968990A JP 9968990 A JP9968990 A JP 9968990A JP H04389 A JPH04389 A JP H04389A
Authority
JP
Japan
Prior art keywords
magnet
ring
magnetic field
permanent magnet
shaped permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9968990A
Other languages
Japanese (ja)
Inventor
Shuichi Noda
周一 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP9968990A priority Critical patent/JPH04389A/en
Publication of JPH04389A publication Critical patent/JPH04389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To improve the parallelism and uniformity of lines of magnetic force in the inner peripheral area by joining integrally an inner and an outer magnets mutually different in magnetic characteristics to constitute an annular permanent magnet, and recessing the boundary line of connection to the side of center axis. CONSTITUTION:The annular permanent magnet 10 used for the magnetic field generating device of the dry process apparatus utilizing magnetron discharge is formed by joining two kinds of magnets having different magnetic performances into one integrated structure. A 1st magnet 12 is disposed on the outer peripheral side of annular shape, and a 2nd magnet 14 on the side of the center axis O, and the connecting boundary line is preferably the ellipse in which the short diameter R3 is equal to the inner diameter (r) of the permanent magnet 10 and the long diameter R1 to the outer diameter R. The 1st magnet 12 is preferably made of the material of high coercive force and of low residual magnetic flux density, and the 2nd magnet 14 is preferably formed of low coercive force and of high residual magnetic flux density. By this method, uniform and parallel magnetic lines ar formed in the wide area contg. the inner peripheral part of the annular magnet. By using this magnetic field generating device, uniform dry process is realized.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、各種半導体電子部品の製造に使用するマグ
ネトロン放電を利用したドライプロセス装置のための磁
場発生装置およびこの磁場発生装Mを装備したドライプ
ロセス装置に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a magnetic field generator for a dry process device using magnetron discharge used in the manufacture of various semiconductor electronic components, and a magnetic field generator equipped with this magnetic field generator M. The present invention relates to dry process equipment.

(従来の技術) 従来、リング状永久磁石を磁場発生源とするドライプロ
セス装置、特にマグネトロンエツチング装置に用いるリ
ング状永久磁石には、文献= 「第36回応用物理字関
係連合講演会講演予稿集、第589頁、2a−L−6J
に開示されているものがある。
(Prior art) Conventionally, ring-shaped permanent magnets used in dry process equipment that uses a ring-shaped permanent magnet as a magnetic field generation source, especially magnetron etching equipment, have been described in the literature: ``Proceedings of the 36th Applied Physics Association Lecture Conference''. , p. 589, 2a-L-6J
There are some disclosed.

第2図(A)および(B)は、1種類の磁石材料で形成
した従来のリング状永久磁石の平面図および中央断面図
であり、菓3図(A)および(B)は、2種類の磁石材
料で形成した従来のリング状永久磁石の平面図および中
央断面図である。
Figures 2 (A) and (B) are a plan view and a central sectional view of a conventional ring-shaped permanent magnet made of one type of magnet material, and Figures 3 (A) and (B) are two types of permanent magnets. FIG. 2 is a plan view and a central cross-sectional view of a conventional ring-shaped permanent magnet made of magnetic material.

第2図(A)および(B)は、高保磁力(15000e
)の材質(MI)のアルニコ製磁石を用いており、この
磁石は直径方向に平行着磁されているが、保磁力が高い
ため磁石の外周にNおよびS極が、内周にその反対極が
形成される四重極構造となっている。このような磁極構
造のため、磁石中空部では、磁石の厚さよりも厚い空間
領域で、均一でしかも平行な磁力線が形成可能となる。
Figure 2 (A) and (B) show high coercive force (15000e
) material (MI) is used, and this magnet is magnetized in parallel in the diameter direction, but because of its high coercive force, the outer circumference of the magnet has N and S poles, and the inner circumference has opposite poles. It has a quadrupole structure. Due to this magnetic pole structure, uniform and parallel lines of magnetic force can be formed in the hollow part of the magnet in a spatial region that is thicker than the thickness of the magnet.

しかし、この第2図(A)および(B)に示す従来の磁
石では、高保磁力の材質(MI)を使用しているため、
逆に残留磁束密度か低く、このため充分な磁束密/fを
得るためには、かなり大きな磁石を用いなければならな
い。
However, since the conventional magnets shown in Fig. 2 (A) and (B) use a material (MI) with high coercive force,
On the other hand, the residual magnetic flux density is low, and therefore, in order to obtain a sufficient magnetic flux density/f, a considerably large magnet must be used.

第3図(A)および(B)に示す従来の磁石は、形状と
大きざを第2図(A)および(8)と同じとしであるが
、NおよびS極の磁極部に高保磁力でしかも低残留磁束
2度の材質(MI)で作製した磁石を用い、その中間の
接合部に低保磁力でしかも高残留磁束2度の材質(Ml
l)で作製した磁石を用いたものである。この従来例の
磁石では、磁力線分布を大きく劣化させることなく磁石
中央部の磁束と度を高めることが可能となる。
The conventional magnets shown in Figures 3 (A) and (B) have the same shape and size as Figures 2 (A) and (8), but have high coercive force in the N and S poles. Furthermore, a magnet made of a material with a low residual magnetic flux of 2°C (MI) is used, and the joint in the middle is made of a material with a low coercive force and a high residual magnetic flux of 2°C (Ml).
This uses the magnet produced in step 1). In this conventional magnet, it is possible to increase the magnetic flux and strength at the center of the magnet without significantly deteriorating the distribution of lines of magnetic force.

(発明が解決しようとする課題) しかしながら、ドライプロセスを行なうに当り、被処理
体の上面の上側のプラズマ空間に形成する磁界の磁力線
分布はより均一でしかもより平行であることが要望され
ているが、上述した従来構成のリング状永久磁石では、
3次元的に見た場合、ドライプロセスを行なうのに充分
といえる程度に均一でしかも平行な磁力線分布がまだ得
られているとは言えない、特に磁石中央部へ載置する被
処理体の大きさが大きくなって磁石内径との寸法差が狭
まると、被処理体周辺部での不均一磁場がドライプロセ
スの結果に悪影響を及ぼす。
(Problem to be Solved by the Invention) However, when performing a dry process, it is desired that the distribution of magnetic lines of force of the magnetic field formed in the plasma space above the upper surface of the object to be processed be more uniform and more parallel. However, in the conventional ring-shaped permanent magnet described above,
From a three-dimensional perspective, it cannot be said that a magnetic field line distribution that is sufficiently uniform and parallel to perform a dry process has yet been obtained, especially due to the size of the object to be processed placed in the center of the magnet. When the diameter becomes large and the dimensional difference from the inner diameter of the magnet narrows, the non-uniform magnetic field around the periphery of the object to be processed adversely affects the results of the dry process.

この発明の目的は、不均一磁場、特にリング状永久磁石
の内周部近傍を含む広い3次元的領域で見た磁力線の平
行性と均一性とをさらに向上させることにより、被処理
体に対するドライプロセスを一層均一にすることが可能
な磁場発生装置およびこの磁場発生装置を装備したマグ
ネトロン放電利用のドライプロセス装Mを提供すること
にある。
An object of the present invention is to further improve the parallelism and uniformity of magnetic lines of force in a wide three-dimensional area including the vicinity of the inner periphery of a ring-shaped permanent magnet. The object of the present invention is to provide a magnetic field generating device capable of making the process more uniform, and a dry process device M using magnetron discharge equipped with this magnetic field generating device.

(課題を解決するための手段) この目的の達成を図るため、この発明の磁場発生装置に
よれば、 リング状永久磁石を磁気特性の異なる、第1および第2
の2種類の磁石を接合して単一体構造としで形成し、こ
の第1の磁石をリング状永久磁石が形成するリングの外
周側に配設しおよび第2の磁石をリングの中心軸側に配
設してあり、リングの中心軸に直交する面内における第
1および第2の磁石の接合の境界線が中心軸側に向けて
凹となる曲線であることを特徴とする特 この発明の実施に当り、好ましくは、接合の境界線を楕
円とするのが良い。
(Means for Solving the Problems) In order to achieve this object, according to the magnetic field generator of the present invention, a ring-shaped permanent magnet is connected to a first magnet and a second magnet having different magnetic properties.
Two types of magnets are joined to form a single body structure, and the first magnet is arranged on the outer circumferential side of the ring formed by the ring-shaped permanent magnet, and the second magnet is placed on the central axis side of the ring. Particularly, the present invention is characterized in that the boundary line of the joining of the first and second magnets in a plane perpendicular to the central axis of the ring is a curved line that is concave toward the central axis. In practice, preferably, the boundary line of the junction is an ellipse.

ざらに、この発明の実施に当り、好ましくは、この楕円
の短径をリング状永久磁石の内径と一致させるのが良い
In general, in carrying out the present invention, it is preferable that the minor axis of this ellipse coincides with the inner diameter of the ring-shaped permanent magnet.

ざらに、この発明の実施に邑り、好ましくは、この楕円
の長径をリング状永久磁石の外径と一致させるのが良い
Generally speaking, in order to carry out the present invention, it is preferable that the major axis of this ellipse coincides with the outer diameter of the ring-shaped permanent magnet.

また、この発明の他の好適実施例によれば、第1の磁石
を高保磁力で低残留磁束密度の材質で形成しおよび第2
の磁石を低保磁力で高残留磁束密度の材質で形成するの
か良い。
According to another preferred embodiment of the present invention, the first magnet is made of a material with high coercive force and low residual magnetic flux density, and the second magnet is made of a material with high coercive force and low residual magnetic flux density.
It would be better if the magnet was made of a material with low coercive force and high residual magnetic flux density.

また、この発明のドライプロセス装置によれば、内部に
被処理体が設置される真空容器の外周に、上述したこの
発明の磁場発生装置のリング状永久磁石を設けるのか良
い。ざらに、この場合、リング状永久磁石を、好ましく
は、被処理体のドライプロセスが行なわれる上面の上側
のマグネトロン放電空間に、この上面と平行となる方向
の磁場を形成すると共に、真空容器の外周に沿って回転
可能に構成するのが良い。
Further, according to the dry process apparatus of the present invention, the ring-shaped permanent magnet of the above-described magnetic field generator of the present invention may be provided around the outer periphery of the vacuum container in which the object to be processed is placed. Roughly speaking, in this case, a ring-shaped permanent magnet is preferably used to form a magnetic field in a direction parallel to the upper surface of the magnetron discharge space above the upper surface where the dry process of the object to be processed is performed, and to generate a magnetic field in the direction parallel to the upper surface of the vacuum vessel. It is preferable to configure it so that it can rotate along the outer periphery.

(作用) 上述した磁場発生装置の構造によれば、後述する笑験結
果からも明らかとなるか、単一のリング状の永久磁石を
構成する菓1および第2の磁石か、それぞれの磁気特性
に基づいて、その接合部近傍の領域での不連続磁場を減
少きせるので、この不連続磁場の減少に対応した分だけ
、リングの中空部はもとより、その周辺領域での磁力線
分布が一層均一かつ平行となり、従って、これらの均牲
および平行性は従来と同程度がそれ以上良好な状態とな
る。
(Function) According to the structure of the magnetic field generator described above, it is clear from the experimental results described later that the magnetic properties of the first and second magnets that constitute a single ring-shaped permanent magnet are different from each other. Based on this, the discontinuous magnetic field in the region near the joint can be reduced, so the magnetic field line distribution not only in the hollow part of the ring but also in the surrounding area becomes more uniform by the corresponding reduction in the discontinuous magnetic field. Therefore, these uniformity and parallelism are at the same level as before or even better.

そして、第1および第2の磁石の磁気特性、形状および
接合形状の設定の仕方によって、ドライプロセスに対し
より適した、磁力線分布の均一性と平行性とを得ること
ができる。
By setting the magnetic properties, shapes, and bonding shapes of the first and second magnets, it is possible to obtain uniformity and parallelism of the magnetic field line distribution, which are more suitable for dry processes.

このように、磁力線分布が均一で平行なリング状永久磁
石をドライプロセス装置に装備すれば、被処理体の上面
の上側のプラズマ発生空間に、被処理体の上面と平行で
しがも均一な磁場を形成することができる。
In this way, if a dry process equipment is equipped with a ring-shaped permanent magnet with a uniform and parallel magnetic field line distribution, a uniform magnetic field parallel to the top surface of the workpiece can be placed in the plasma generation space above the top surface of the workpiece. A magnetic field can be created.

(実施例) 以下、図面%9照して、この発明の実施例につき説明す
る。
(Examples) Examples of the present invention will be described below with reference to the drawings.

尚、以下、誉照する図面は、この発明を理解出来る程度
にその構成成分の形状、大きざおよび配置関係を概略的
に示しであるにすぎない、また、以下の実施例で説明す
る諸条件は、単なる好適条件であるので、この発明はこ
れらの条件にのみ限定されるものではない。
It should be noted that the drawings referred to below are merely illustrative of the shapes, sizes, and arrangement relationships of the constituent components to the extent that the present invention can be understood. Since these are merely preferable conditions, the present invention is not limited only to these conditions.

第1図(A)および(B)は、この発明に係る単一のリ
ング状永久磁石の一実施例を概略的に示す平面図および
磁力線方向に平行なリングの直径で2分した断面図であ
る。
FIGS. 1(A) and 1(B) are a plan view schematically showing an embodiment of a single ring-shaped permanent magnet according to the present invention, and a cross-sectional view parallel to the magnetic field line direction and divided into two by the diameter of the ring. be.

この実施例ては、リング状永久磁石1oは、アルニコ(
Aρ−N 1−Go)製て高保磁力で低残留磁束密度の
材質(M I )から成る第1の磁石12および低保磁
力で高残留磁束密度の材質(MID)から成る第2の磁
石14を接合して単一体構造として形成しである。この
場合、両磁石12および14の接合の境界線は、リング
の中心軸に直交する面内で中心軸側に向けて凹の曲線と
する。リングの中心軸を○とし、中心軸○に直交する面
内での、リング状磁石]0の外径をBおよび内径をrと
する。
In this embodiment, the ring-shaped permanent magnet 1o is made of alnico (
A first magnet 12 made of a material (M I ) with a high coercive force and a low residual magnetic flux density, and a second magnet 14 made of a material with a low coercive force and a high residual magnetic flux density (MID). The two are joined together to form a single structure. In this case, the boundary line between the two magnets 12 and 14 is a curved line that is concave toward the center axis in a plane perpendicular to the center axis of the ring. Let the central axis of the ring be ○, and let the outer diameter of the ring-shaped magnet] 0 be B and the inner diameter r in a plane perpendicular to the central axis ○.

このリング状磁石1oは、第1の磁石12(MI)!リ
ングの外周側に配設し、第2の磁石14(Mll)をこ
の中心軸○側に配設して互いに接合させて構成しである
。従って、この実施例では、中心軸0に直交する面内で
考えたとき、磁石]○の内周側には、長径を日、および
短径を日。
This ring-shaped magnet 1o is the first magnet 12 (MI)! The second magnet 14 (Mll) is arranged on the outer circumferential side of the ring, and the second magnet 14 (Mll) is arranged on the side of the central axis and joined to each other. Therefore, in this embodiment, when considered in a plane perpendicular to the central axis 0, the inner circumferential side of the magnet [○] has a long axis of 1 and a short axis of 1 and 2.

とする楕円となる形で第2の磁石14が配設され、これ
を除いた外周側には第1の磁石12が配設された構造と
なっている0着磁方向は、例えば第1図(A)および(
B)に示すように、第1の磁石12をNおよびS極とす
る方向である。また、第2の磁石14の短径日、は磁石
内径rと等しくする。
The second magnet 14 is arranged in the shape of an ellipse, and the first magnet 12 is arranged on the outer circumferential side excluding this.The zero magnetization direction is, for example, as shown in Fig. 1. (A) and (
As shown in B), this is the direction in which the first magnet 12 has N and S poles. Further, the minor axis of the second magnet 14 is made equal to the magnet inner diameter r.

このようなリング状永久磁石の構造とすることにより、
磁気特性の異なる材質(MI)および(MII)の、2
つの磁石12および14の接合部近傍での不連続磁場を
少なくし、この不連続磁場が減少した分に対応して磁石
中空部およびその近傍領域に形成される磁力線分布を一
層均一化し、しかも平行にすることができる。
By having such a ring-shaped permanent magnet structure,
2 of materials (MI) and (MII) with different magnetic properties
The discontinuous magnetic field near the junction of the two magnets 12 and 14 is reduced, and the distribution of magnetic lines of force formed in the hollow part of the magnet and its neighboring area is made more uniform and more parallel to the reduced discontinuous magnetic field. It can be done.

ところで、この第1図(A)で示した第2の磁石]4の
長径R1を、リング状磁石1oの外径Rと等しくなしで
あるが、この長径日□は、リング状磁石10の形状や材
質により、その最適値が異なる。これについての詳細を
以下に示す。
By the way, the major axis R1 of the second magnet shown in FIG. The optimum value differs depending on the material and material. Details about this are shown below.

最初に、リング状永久磁石の一般的特性について説明す
る。
First, general characteristics of ring-shaped permanent magnets will be explained.

第4図(A)は、高保磁力で低残留磁束密度の材質(M
I)で、および第4図(B)は、低保磁力で高残留磁束
密度の材質(MII)でそれぞれ作製したリング状永久
磁石16および18の、中心軸Oを含む断面より見た磁
力線分布の様子を示す0両磁石の形状および寸法は全く
同じものとする。菓4図(A)に示す材質MIの磁石1
6の場合、磁石中空部では、矢印aで代表して示すよう
に、均一で平行な磁場が形成されるが、このとき、中心
部の磁束密度は比較的小ざい、また、第4図(B)に示
す材質MI[の磁石18の場合、矢印すで示すように、
磁力線は中心軸○に沿う方向にふくらんでしまうが、中
心部の磁束密度は比較的大きい。
Figure 4 (A) shows a material with high coercive force and low residual magnetic flux density (M
I) and FIG. 4(B) show the magnetic field line distributions of ring-shaped permanent magnets 16 and 18 made of a material (MII) with low coercive force and high residual magnetic flux density, respectively, as seen from a cross section including the central axis O. It is assumed that the shapes and dimensions of both magnets are exactly the same. Magnet 1 of material MI shown in Figure 4 (A)
6, a uniform and parallel magnetic field is formed in the hollow part of the magnet, as represented by arrow a, but at this time, the magnetic flux density at the center is relatively small, and as shown in Fig. 4 ( In the case of the magnet 18 made of material MI shown in B), as shown by the arrow,
The lines of magnetic force swell in the direction along the central axis ○, but the magnetic flux density at the center is relatively large.

以上の事案より互いに反対の磁気特性をもつ材質MIお
よびMUにより複合した単体磁石を作製すれば相補的に
特性が向上する可能性があることは容易に推測できる。
From the above case, it can be easily inferred that if a composite single magnet is made from materials MI and MU having opposite magnetic properties, the properties may be improved in a complementary manner.

第5図(A)、CB)および(C)は、磁石形状が変化
したときの磁気特性の説明図である。第5図では材質(
MI)の磁石をそれぞれ用い、その内径rおよび外径日
を一定としであるが、第5図(A)→第5図CB)→第
5図(C)の順で厚みを増加させた場合の磁力線変化例
を示す。
FIGS. 5(A), CB), and (C) are explanatory diagrams of magnetic characteristics when the magnet shape changes. In Figure 5, the material (
MI) magnets are used, and the inner diameter r and outer diameter are constant, but when the thickness is increased in the order of Figure 5 (A) → Figure 5 CB) → Figure 5 (C). An example of changes in magnetic field lines is shown below.

第5図(A)に示すように、磁石の厚みtが幅りよりも
かなり薄い場合には、磁力線は、矢印aで代表して示す
ように、中空部へ引き込まれた形状となる。また、第5
図(B)に示すように、厚みtと幅りがほぼ等しい場合
には、磁力線は、矢印すで代表して示すように、中空部
へやや引き込みはあるが、中空部ではほぼ平行な磁場が
得られる。ざらに、第5図(C)(こ示すように、厚み
tが幅りよりもかなり大きくなると、材質MIIの磁石
の場合と同しように、磁力線は、矢印Cで代表して示す
ように、中空部ではふくらんだ形となる。尚、中心部の
磁束密度は、厚みtにほぼ比例し、厚みtとともに増加
する。また、磁石内径を一定としたとき、幅りを増加さ
せると中心部の磁束密度はやや増加するが、その場合の
磁束と度の変化量は小ざい。
As shown in FIG. 5(A), when the thickness t of the magnet is considerably thinner than the width, the lines of magnetic force take a shape drawn into the hollow portion, as represented by arrow a. Also, the fifth
As shown in Figure (B), when the thickness t and the width are almost equal, the lines of magnetic force are slightly drawn into the hollow part, as represented by the arrows, but the magnetic field is almost parallel in the hollow part. is obtained. Roughly speaking, as shown in Fig. 5(C), when the thickness t becomes much larger than the width, the lines of magnetic force will be as represented by arrow C, as in the case of a magnet made of material MII. The hollow part has a swollen shape.The magnetic flux density at the center is approximately proportional to the thickness t, and increases with the thickness t.Also, when the inner diameter of the magnet is constant, increasing the width causes the magnetic flux density at the center to increase. Although the magnetic flux density increases slightly, the amount of change in magnetic flux and degree in this case is small.

上述した冥験結果から得られた磁石の材質と形状によっ
て決められる磁力線分布についての一般的特性を整理す
ると、次のようになる。
The general characteristics of the magnetic field line distribution determined by the material and shape of the magnet obtained from the above-mentioned experimental results are summarized as follows.

■高保磁力で低残留磁束密度の材質で形成したリング状
磁石の厚ざtを小さくするほど、磁力線は中空部に引き
込まれ、へこんだ(凹面的な)形となる。
■The smaller the thickness of a ring-shaped magnet made of a material with high coercive force and low residual magnetic flux density, the more the lines of magnetic force are drawn into the hollow part, resulting in a concave (concave) shape.

■低保磁力で高残留磁束密度の材質で形成したリング状
磁石の厚ざtを大きくするほど、磁力線は中空部で反発
してふくらんだ(凸面的な)形となる。
■The larger the thickness of a ring-shaped magnet made of a material with low coercive force and high residual magnetic flux density, the more the lines of magnetic force are repelled in the hollow part and take on a bulged (convex) shape.

第6図は、上述したこれらの基本特′i!を考慮し、ド
ライプロセスに対し磁力線分布が最適となる複合形リン
グ状永久磁石10の構造の一例を説明するための図であ
る。第6図に示す磁石の構造の詳細は、既に菓1図(A
)および(B)につき説明した磁石と同様であるので、
ここでも第1の磁石(MI)を12および第2の磁石(
Mll)を14で示す。磁石10の内周部分を構成する
楕円形の、低保磁力で高残留磁束密度の材質(Mll)
で形成した磁石14の長径日よけ、経験的に、次式によ
り決定することかできる。
Figure 6 shows these basic characteristics mentioned above. FIG. 2 is a diagram for explaining an example of the structure of a composite ring-shaped permanent magnet 10 in which the distribution of lines of magnetic force is optimal for a dry process in consideration of the above. The details of the structure of the magnet shown in Fig. 6 have already been explained in Fig. 1 (A).
) and (B), so
Again, the first magnet (MI) is 12 and the second magnet (
Mll) is indicated by 14. An elliptical material with low coercive force and high residual magnetic flux density (Mll) that constitutes the inner circumferential portion of the magnet 10
The long axis shade of the magnet 14 formed by can be empirically determined by the following equation.

但し、 12の長径方向の、内周から の長さβの比 R:磁石外径 r:磁石内径 t:磁石厚さ C:磁石12および14の磁気特性により決定される定
数。
However, the ratio of the length β from the inner circumference in the major axis direction of 12 R: Magnet outer diameter r: Magnet inner diameter t: Magnet thickness C: A constant determined by the magnetic properties of magnets 12 and 14.

第7図(A)、(B)および(C)は、この発明により
最適化されたリング状永久磁石と従来の磁石の、中心軸
○に治った方向の領域での磁力線分布を比較するために
示した、英験データに基づく図であり、平面図と、磁力
線方向と平行な3箇所の断面図(それぞれ、I−I線、
■−■線および■−m線に沿って示しである)とで示す
、第7図(A)は、高保磁力、低残留磁束玉度の材質(
MI)で作製したリング状磁石、第7図(B)は、第7
図(A)の磁石の両極の中間の接合部に低保磁力でしか
も高残留磁束密度の材質(Mll)で作製した磁石を入
れた構造のリング状磁石および第7図(C)は、第1図
(A)および(B)で説明したこの発明によるリング状
磁石である。
Figures 7 (A), (B), and (C) are for comparing the magnetic field line distributions of the ring-shaped permanent magnet optimized by the present invention and a conventional magnet in a region in the direction of the central axis ○. This is a diagram based on the Eiken data shown in , and includes a plan view and cross-sectional views of three locations parallel to the direction of the magnetic field lines (respectively, I-I line,
Figure 7(A) shows a material with high coercive force and low residual magnetic flux (
Figure 7 (B) shows the ring-shaped magnet manufactured by MI).
The ring-shaped magnet shown in Figure (A) has a structure in which a magnet made of a material (Mll) with low coercive force and high residual magnetic flux density is inserted in the joint between the two poles of the magnet, and Figure 7 (C) shows a ring-shaped magnet. 1 is a ring-shaped magnet according to the present invention explained in FIGS. 1(A) and 1(B).

第7図(A)の磁石構造の場合、I−I線断面(中心)
から■−■線断面〜■−m線断面へと磁石内周部に近づ
くにつれて、磁力線が中空部へ強く引き込まれてゆき、
内周部近傍では非常に不均一な分布になっていることが
わかる。
In the case of the magnet structure shown in Figure 7 (A), the cross section along the line I-I (center)
As it approaches the inner circumference of the magnet from the ■-■ line cross section to the ■-m line cross section, the lines of magnetic force are strongly drawn into the hollow part,
It can be seen that the distribution is very non-uniform near the inner circumference.

第7図(B)の磁石構造の場合、I−I線および■−■
線断面の磁力線分布は、第7図(A)の磁石構造の場合
と似ているが、内周部に最も近い■−■線断面では磁石
上方はふくらんた形となる。このような磁石の接合方法
では、急峻に磁力線形状が変化する領域が形成される。
In the case of the magnet structure shown in Fig. 7(B), the I-I line and ■-■
The magnetic field line distribution in the line cross section is similar to that of the magnet structure shown in FIG. 7(A), but in the cross section taken along the line ■-■ closest to the inner periphery, the upper part of the magnet has a bulging shape. In such a method of joining magnets, a region where the shape of the lines of magnetic force changes sharply is formed.

第7図(C)に示すこの発明の磁石構造の場合は、I−
I線、II −II線およびm−m線断面の順に内周部
に近づくにつれて、ややふくらんだ磁力線分布となるが
、第7図(A)および(8)に示す従来構造の磁石例に
比べ、磁力線の曲りかたは小ざく、かなり均一な磁力線
分布となっていることがわかる。
In the case of the magnet structure of the present invention shown in FIG. 7(C), I-
The magnetic field line distribution becomes slightly swollen as it approaches the inner periphery in the order of the I-line, II-II line, and mm-m line cross sections, but compared to the magnet examples with conventional structures shown in Figures 7 (A) and (8). , it can be seen that the magnetic field lines are slightly curved and have a fairly uniform magnetic field line distribution.

第8図(A)、(B)および(C)は、第7図(A)、
(B)および(C)に示した3種のリング状永久磁石の
、中心線○に直交する面内におけるリング中空部での磁
力線分布の寅験結果を示す。第8図(A)に示す材質M
Iのみで作製したリング状磁石の場合、磁力線は内周方
向へふくらんだ形となる。M8図(8)に示す、材質M
IIの磁石を材質MIの磁石の中間に接合したリング状
磁石の場合は、磁力線は、逆に、材質MUの磁石より強
に反発作用を受けた分布の形となる。この発明による第
8図(C)に示すリング状磁石の場合は、中空部全域に
わたってほぼ平行な磁力線が形成されることがわかる。
8(A), (B) and (C) are shown in FIG. 7(A),
The experimental results of the magnetic force line distribution in the ring hollow part in the plane orthogonal to the center line ○ of the three types of ring-shaped permanent magnets shown in (B) and (C) are shown. Material M shown in Figure 8(A)
In the case of a ring-shaped magnet made only of I, the lines of magnetic force bulge toward the inner circumference. M8 As shown in Figure (8), material M
In the case of a ring-shaped magnet in which the magnet II is joined between the magnets made of the material MI, the lines of magnetic force have a distribution shape that is more strongly repelled than that of the magnet made of the material MU. In the case of the ring-shaped magnet shown in FIG. 8(C) according to the present invention, it can be seen that substantially parallel lines of magnetic force are formed throughout the hollow portion.

上述した説明からも理解出来るように、この発明のリン
グ状永久磁石によれば、従来構成のリング状永久磁石に
比べて、リング中空部はもとより、中心軸○に沿った中
空部近傍の従来よりも広い領域で磁力線の曲りかたは小
ざくて磁力線分布が一層均一化すると共に、中心軸に直
交する面内での磁力線が一層平行となる。
As can be understood from the above explanation, according to the ring-shaped permanent magnet of the present invention, compared to the conventional ring-shaped permanent magnet, not only the hollow part of the ring but also the vicinity of the hollow part along the central axis ○ is smaller than the conventional ring-shaped permanent magnet. However, over a wide area, the lines of magnetic force curve less and less, making the distribution of the lines of magnetic force more uniform, and the lines of magnetic force in the plane orthogonal to the central axis becoming more parallel.

次に、この発明によるリング状永久磁石を用いたドライ
プロセス装置の一例として、マグネトロンエツチング装
置を例に挙げて説明する。
Next, a magnetron etching apparatus will be described as an example of a dry process apparatus using a ring-shaped permanent magnet according to the present invention.

第9図は、マグネトロンエツチング装置の概略を示す構
成図であり、説明に必要な主要構成成分のみを示しであ
る。この装置では、真空排気できる円筒状の真空容器2
oを具え、この真空客器20には、エツチングガスのガ
ス導入管22および排気管24が設けられている。この
真空容器20の内部には、通常の如く、カソード電極2
6およびアノード電極28が設けられでいる。このカソ
ード電極26の上面には被処理体30である例えば、エ
ツチングされるべきウェハを載冨する。真空容器20の
外部には、カソード電極26とアノード電極28との間
の空間にプラズマを発生きせるための電力を供給するR
F(RadiOFreQuenC’/:高周波)電源3
2を設けである。そして、真空容器2oの外周には、上
述したこの発明のリング状永久磁石4oを回転自在に設
ける。この磁石40は、高保磁力で低残留磁束密度の材
質(MI)の磁石42と低保磁力で高残留磁束密度の材
質(M II )の磁石44により作製したものである
。磁石40の取り付は位置は、カソード電極26の上面
に載Nされるウェハ30の表面およびその近傍の空間領
域に、水平で平行な磁力線がくるような高さとする。尚
、後述するが、この磁石40は円周方向に回転および停
止可能な台座の上に保持されており、この回転および停
止をモータにより制御できる機構となっている。
FIG. 9 is a schematic block diagram of the magnetron etching apparatus, showing only the main components necessary for explanation. This device uses a cylindrical vacuum container 2 that can be evacuated.
The vacuum device 20 is provided with an etching gas inlet pipe 22 and an exhaust pipe 24. Inside this vacuum container 20, there is a cathode electrode 2 as usual.
6 and an anode electrode 28 are provided. On the upper surface of the cathode electrode 26, an object 30 to be processed, such as a wafer to be etched, is placed. Outside the vacuum container 20, there is an R for supplying electric power to generate plasma in the space between the cathode electrode 26 and the anode electrode 28.
F (RadiOFreQuenC'/: High frequency) power supply 3
2 is provided. The ring-shaped permanent magnet 4o of the present invention described above is rotatably provided on the outer periphery of the vacuum container 2o. The magnet 40 is made of a magnet 42 made of a material (MI) having a high coercive force and a low residual magnetic flux density, and a magnet 44 made of a material (M II ) having a low coercive force and a high residual magnetic flux density. The magnet 40 is mounted at a height such that horizontal and parallel lines of magnetic force are placed on the surface of the wafer 30 placed on the upper surface of the cathode electrode 26 and the spatial region in the vicinity thereof. As will be described later, this magnet 40 is held on a pedestal that can be rotated and stopped in the circumferential direction, and has a mechanism in which this rotation and stopping can be controlled by a motor.

第10図は、リング状永久磁石を回転させる回転機構を
含む位1調節機構の一構成例を示す概略図である。尚、
図中、第9図に示した各構成成分と同様な構成成分につ
いては、同一符号を付しで示し、その説明を省略する。
FIG. 10 is a schematic diagram showing a configuration example of a first adjustment mechanism including a rotation mechanism for rotating a ring-shaped permanent magnet. still,
In the figure, the same components as those shown in FIG. 9 are denoted by the same reference numerals, and the explanation thereof will be omitted.

第10図において、この実施例の構造では、磁場発生装
M110はリング状永久磁石40と、この永久磁石40
の位置の調節を行なう位置調節機構130とを備えてい
る。さらに、被処理体であるウェハ30を中心として回
転運動を可能とすることと、このウェハ30に対しての
相対高ざの調節を可能とするために、このような動作の
可能な位置調節機構130の磁石台座132上に固定す
る。尚、磁石の高さは、ウェハ30の直上のマグネトロ
ン放電@域に平行磁場領域が重なるように調節する。
In FIG. 10, in the structure of this embodiment, a magnetic field generator M110 includes a ring-shaped permanent magnet 40 and a ring-shaped permanent magnet 40.
and a position adjustment mechanism 130 for adjusting the position of. Furthermore, in order to enable rotational movement around the wafer 30, which is the object to be processed, and to adjust the relative height with respect to the wafer 30, a position adjustment mechanism capable of such operation is provided. 130 on a magnet pedestal 132. The height of the magnet is adjusted so that the parallel magnetic field region overlaps the magnetron discharge region directly above the wafer 30.

次に、この位置調節機構130についで説明する。Next, this position adjustment mechanism 130 will be explained.

この位置調節機構130としては、本質的には、リング
状永久磁石40を磁石台座132上に載冒して、この磁
石台座132を上下移動できると共に、ドライエツチン
グ装置の中心軸従ってリング状永久磁石40の回転中心
軸のまわりに回転できる構造であれば、どのような構造
としてもよい。従って、この第10図に示す実施例では
、この位置調節機構130を回転機構部]30aと、高
さ調節機構部130bとを以って主として構成する。こ
れら同機構部を、上述した磁石台座132と、この磁石
台座132を回転および上下動させる台座駆動部]34
とを以って全体的に構成している。ここでは、この台座
駆動部134を、支持台座136と、その軸受138で
支持され磁石台座132を支持する回転軸140と、こ
の回転軸140を、ヘルド142を介して、回転駆動す
るためのモータ144と、この支持台座136を上下動
させるためのキャスター付昇降機構146とで、主とし
て構成している。そして、回転機構部130aは、磁石
台座132と、モータ144と、回転軸140およびヘ
ルド142を含む。また、高さ調節機構部130bは支
持台座136と昇降機構146とを含む。しかしながら
、この台座駆動部134を、上述した実施例の構造とは
別の任意適当な構造としてもよい。
This position adjustment mechanism 130 essentially consists of placing a ring-shaped permanent magnet 40 on a magnet pedestal 132, and being able to move the magnet pedestal 132 up and down. Any structure may be used as long as it can rotate around the central axis of rotation. Therefore, in the embodiment shown in FIG. 10, the position adjustment mechanism 130 is mainly composed of a rotation mechanism section 30a and a height adjustment mechanism section 130b. These same mechanisms include the above-mentioned magnet pedestal 132 and a pedestal drive unit that rotates and moves the magnet pedestal 132 up and down] 34
It is composed of these as a whole. Here, this pedestal drive unit 134 is driven by a support pedestal 136, a rotating shaft 140 that is supported by a bearing 138 and supports the magnet pedestal 132, and a motor for rotationally driving this rotating shaft 140 via a heald 142. 144, and an elevating mechanism 146 with casters for moving the support pedestal 136 up and down. The rotation mechanism section 130a includes a magnet pedestal 132, a motor 144, a rotating shaft 140, and a heald 142. Further, the height adjustment mechanism section 130b includes a support base 136 and a lifting mechanism 146. However, the pedestal drive section 134 may have any suitable structure other than the structure of the embodiment described above.

このような構成のドライエツチング装置において、エツ
チングガスの導入管22よりエツチングガスを真空容器
20内に導入し、排気管24より適当な流量で排気を行
なって真空容器内のガス圧力を適当に調節しながら、R
F電源32からカソード電極26に13.56MHzの
電圧を印加すると、カソード電極26の上面に垂直に発
主する交流電場Eとそれに直交する磁場Bとの作用で、
マグネトロン放電50が発庄する。このとき、磁石40
は円周方向に回転させでいるので、マグネトロン放電5
oも回転する。ウェハ30のエツチング速度は、磁場B
の強度の変化により変動するか、この発明によるリング
状永久磁石40ては、磁石中空部のは1よ全域にわたっ
て均一で平行な磁場が形成されているので、優れた面内
均一性でエツチングか可能となる。また、真空容器2o
および磁石40も小型化が可能となる。
In a dry etching apparatus having such a configuration, etching gas is introduced into the vacuum container 20 through the etching gas introduction pipe 22, and is exhausted through the exhaust pipe 24 at an appropriate flow rate to appropriately adjust the gas pressure within the vacuum container. While doing so, R
When a voltage of 13.56 MHz is applied from the F power supply 32 to the cathode electrode 26, an alternating current electric field E generated perpendicularly to the upper surface of the cathode electrode 26 and a magnetic field B orthogonal thereto act to generate
A magnetron discharge 50 is generated. At this time, the magnet 40
is rotated in the circumferential direction, so the magnetron discharge 5
o also rotates. The etching speed of the wafer 30 is determined by the magnetic field B
In the ring-shaped permanent magnet 40 according to the present invention, a uniform and parallel magnetic field is formed over the entire area of the hollow part of the magnet, so that etching can be performed with excellent in-plane uniformity. It becomes possible. Also, vacuum container 2o
And the magnet 40 can also be made smaller.

この発明は、上述した実施例にのみ限定されるものでは
なく、この発明の虻囲内においで多くの変形または変更
をなし得る0例えば、磁石に使用した磁性材料をアルニ
コとしたが、これに限定されるものではなく、他の磁性
材料であってもよい。また、両接合磁石の接合の境界線
も楕円以外の、例えば階段状に変化する線であってもよ
い。
This invention is not limited only to the embodiments described above, and many modifications and changes can be made within the scope of this invention. For example, although alnico is used as the magnetic material for the magnet, it is not limited to this However, other magnetic materials may be used instead. Further, the boundary line between the two bonded magnets may also be a line other than an ellipse, for example, a line that changes stepwise.

この実施例でl(t、マグネトロンエツチング装置につ
いて述べたか、この発明では、エツチングに限定される
ものではなく、磁場を利用することにより、特性向上の
期待されるドライプロセス装置、例えば、マグネトロン
スパッタ蒸着装置、プラズマCVD装置などの磁場を印
加することにより処理の特性が向上する、全ての装置に
適用可能である。
In this embodiment, a magnetron etching apparatus was described. However, this invention is not limited to etching, but uses a dry process apparatus that is expected to improve characteristics by utilizing a magnetic field, such as magnetron sputter deposition. The present invention is applicable to all devices in which processing characteristics are improved by applying a magnetic field, such as a plasma CVD device or a plasma CVD device.

(発明の効果) 上述した説明からも明らかなように、この発明によれば
、リング状永久磁石で構成した磁場発生装置においで、
材質の異なる、2種類の磁石材料を接合し、その接合の
境界線を曲線としであるため、異なる磁石材料間の急峻
な磁気特性の変化を緩和し、これがため、リング状磁石
自体が小型であっても磁石中空部の内周部およびその近
傍の空間領域までをも含む広い傾城で、均一で平行な磁
力線か得られる。この結果、この発明のリング状永久磁
石を組み込んたドライプロセス装置では、被処理体に対
するドライプロセスの特性が従来と同等かそれよりも優
れると共に、磁石および真空容器を小型化することが可
能となる。
(Effects of the Invention) As is clear from the above description, according to the present invention, in a magnetic field generator configured with a ring-shaped permanent magnet,
Because two types of magnet materials with different materials are joined together, and the boundary line of the joining is a curve, the sharp change in magnetic properties between the different magnet materials is alleviated, and as a result, the ring-shaped magnet itself is small. Even if there is a wide inclination that includes the inner peripheral part of the magnet hollow part and the spatial area in the vicinity, uniform and parallel lines of magnetic force can be obtained. As a result, in the dry process device incorporating the ring-shaped permanent magnet of the present invention, the characteristics of the dry process for the object to be processed are equal to or better than conventional ones, and the magnet and vacuum container can be made smaller. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)および(B)は、この発明の磁場発生装置
を構成するリング状永久磁石の構成の一実施例を説明す
るための平面図および断面図、第2図(A)および(B
)、および第3図(A)および(B)は、従来の磁場発
生装置のリング状永久磁石の説明図、 第4図(A)および(B)は、材質の違いによる磁気特
性の差の説明図、 第5図(A)、(8)および(C)は、磁石形状の違い
による磁気特性の差の説明図、第6図は、この発明のリ
ング状永久磁石の最適構造の説明図、 藁7図(A)、(B)および(C)は、この発明と従来
との比較のための、リング状永久磁石の中心軸に沿った
方向の磁力線分布を示す図、第8図(A)、(B)およ
び(C)は、この発明と従来との比較のため、リング状
永久磁石のリング中空部での磁力線分布を示す図、 第9図は、この発明の、リング状永久磁石を装備した、
ドライプロセス製雪の一実施例を示す概略構成図、 第10図は、この発明のリング状永久磁石の回転機構の
説明図である。 1o、40・・・リング状永久磁石 12.42・・・第1の磁石 14.44・・・第2の磁石 20・・・真空容器、    22・・・ガス導入管2
4・・・排気管、     26・・・カソード電極2
8・・・アノード電極、 30・・・被処理体32・・
・日F電源 50・・・マグネトロン放電。 特許出願人      沖電気工業株式会社従来の1糧
類の材質の磁石 第2図 従来の2fi類の材質の磁石 第3図 壬
FIGS. 1(A) and (B) are a plan view and a cross-sectional view for explaining one embodiment of the structure of a ring-shaped permanent magnet that constitutes the magnetic field generator of the present invention, and FIGS. 2(A) and (B) are B
), and Figures 3 (A) and (B) are explanatory diagrams of a ring-shaped permanent magnet of a conventional magnetic field generator, and Figures 4 (A) and (B) are illustrations of differences in magnetic properties due to differences in materials. 5 (A), (8) and (C) are explanatory diagrams of differences in magnetic properties due to differences in magnet shape. FIG. 6 is an explanatory diagram of the optimal structure of the ring-shaped permanent magnet of the present invention. , Figure 8 (A), (B) and (C) are diagrams showing the magnetic field line distribution in the direction along the central axis of the ring-shaped permanent magnet for comparison between the present invention and the conventional one. A), (B) and (C) are diagrams showing the magnetic field line distribution in the ring hollow part of the ring-shaped permanent magnet for comparison between the present invention and the conventional one. Equipped with a magnet
FIG. 10 is a schematic configuration diagram showing an embodiment of dry process snow making, and is an explanatory diagram of the rotation mechanism of the ring-shaped permanent magnet of the present invention. 1o, 40...Ring-shaped permanent magnet 12.42...First magnet 14.44...Second magnet 20...Vacuum container, 22...Gas introduction tube 2
4...Exhaust pipe, 26...Cathode electrode 2
8... Anode electrode, 30... Treated object 32...
・Nippon F power supply 50...Magnetron discharge. Patent Applicant: Oki Electric Industry Co., Ltd. Conventional magnet made of 1st class material Figure 2 Conventional magnet made of 2fi class material Figure 3

Claims (1)

【特許請求の範囲】 (1)マグネトロン放電を利用したドライプロセス装置
に装備される、リング状永久磁石を用いた磁場発生装置
において、 リング状永久磁石を磁気特性の異なる、第1および第2
の2種類の磁石を接合して単一体構造として形成し、 該第1の磁石を前記リング状永久磁石が形成するリング
の外周側に配設しおよび前記第2の磁石を前記リングの
中心軸側に配設してあり、 前記リングの中心軸に直交する面内における前記第1お
よび第2の磁石の接合の境界線が前記中心軸側に向けて
凹となる曲線である ことを特徴とする磁場発生装置。 (2)請求項1に記載の接合の境界線を楕円としてなる
ことを特徴とする磁場発生装置。(3)請求項2に記載
の楕円の短径を前記リング状永久磁石の内径と一致させ
てなることを特徴とする磁場発生装置。 (4)請求項2に記載の楕円の長径を前記リング状永久
磁石の外径と一致させてなることを特徴とする磁場発生
装置。 (5)請求項1に記載の第1の磁石を高保磁力で低残留
磁束密度の材質で形成しおよび前記第2の磁石を低保磁
力で高残留磁束密度の材質で形成したことを特徴とする
磁場発生装置。 (6)真空排気可能な円筒状の真空容器内に設置される
被処理体に対し、マグネトロン放電を利用してドライプ
ロセスを行なうためのドライプロセス装置において、 真空容器の外周に、請求項1に記載の磁場発生装置のリ
ング状永久磁石を備えたことを特徴とするドライプロセ
ス装置。 (7)請求項6に記載のリング状永久磁石を、被処理体
のドライプロセスが行なわれる上面の上側のマグネトロ
ン放電空間に、該上面と平行となる方向の磁場を形成す
ると共に、真空容器の外周に沿って回転可能に構成して
なることを特徴とするドライプロセス装置。
[Scope of Claims] (1) In a magnetic field generating device using a ring-shaped permanent magnet, which is installed in a dry process device using magnetron discharge, the ring-shaped permanent magnet is used as a first and a second magnet having different magnetic properties.
two types of magnets are joined to form a single body structure, the first magnet is arranged on the outer circumferential side of the ring formed by the ring-shaped permanent magnet, and the second magnet is arranged on the outer peripheral side of the ring formed by the ring-shaped permanent magnet, and the second magnet is arranged on the outer peripheral side of the ring formed by the ring-shaped permanent magnet. The magnet is disposed on the side of the ring, and a boundary line between the first and second magnets in a plane perpendicular to the central axis of the ring is a curved line that is concave toward the central axis. A magnetic field generator. (2) A magnetic field generating device characterized in that the boundary line of the junction according to claim 1 is an ellipse. (3) A magnetic field generating device characterized in that the minor axis of the ellipse according to claim 2 is made to match the inner diameter of the ring-shaped permanent magnet. (4) A magnetic field generating device characterized in that the major axis of the ellipse according to claim 2 is made to match the outer diameter of the ring-shaped permanent magnet. (5) The first magnet according to claim 1 is made of a material with high coercive force and low residual magnetic flux density, and the second magnet is made of a material with low coercive force and high residual magnetic flux density. A magnetic field generator. (6) In a dry process device for performing a dry process using magnetron discharge on an object to be processed that is installed in a cylindrical vacuum container that can be evacuated, the method according to claim 1 is provided on the outer periphery of the vacuum container. A dry process device comprising the ring-shaped permanent magnet of the magnetic field generator described above. (7) The ring-shaped permanent magnet according to claim 6 is used to form a magnetic field in a direction parallel to the upper surface in the magnetron discharge space above the upper surface where the dry process of the object to be processed is performed, and A dry process device characterized by being configured to be rotatable along its outer periphery.
JP9968990A 1990-04-16 1990-04-16 Magnetic field generating device and dry process apparatus provided there with Pending JPH04389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9968990A JPH04389A (en) 1990-04-16 1990-04-16 Magnetic field generating device and dry process apparatus provided there with

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9968990A JPH04389A (en) 1990-04-16 1990-04-16 Magnetic field generating device and dry process apparatus provided there with

Publications (1)

Publication Number Publication Date
JPH04389A true JPH04389A (en) 1992-01-06

Family

ID=14254012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9968990A Pending JPH04389A (en) 1990-04-16 1990-04-16 Magnetic field generating device and dry process apparatus provided there with

Country Status (1)

Country Link
JP (1) JPH04389A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950714A (en) * 1984-12-21 1990-08-21 Monsanto Company Cross-linked polyvinyl butyral sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950714A (en) * 1984-12-21 1990-08-21 Monsanto Company Cross-linked polyvinyl butyral sheet

Similar Documents

Publication Publication Date Title
US7879186B2 (en) Method and apparatus for shaping a magnetic field in a magnetic field-enhanced plasma reactor
KR100383787B1 (en) Plasma process device
US4842707A (en) Dry process apparatus
KR0127663B1 (en) Apparatus & method for generating plasma of uniform flux density
JPH04162623A (en) Method and apparatus for plasma treatment
JP2003115527A (en) Substrate transfer system
KR100600177B1 (en) Magnetron plasma processing apparatus
JP2004104095A (en) Magnetron plasma etching apparatus
JP2001035839A (en) Plasma producing device and semiconductor manufacturing method
JPH07166346A (en) Magnetron sputtering device
JPH04389A (en) Magnetic field generating device and dry process apparatus provided there with
JP2007224343A (en) Magnetron sputtering device
JPH03190127A (en) Magnetic field producer and dryprocessor equipped with same
JPH0547715A (en) Magnetron plasma processor
JPH04324631A (en) Surface treatment equipment
JP3725968B2 (en) Plasma processing equipment
JPH09186141A (en) Plasma processing system
JP4004146B2 (en) Plasma generating apparatus and substrate surface processing method
JP3281545B2 (en) Plasma processing equipment
JP2005232554A (en) Sputtering system
JP2879302B2 (en) Magnetic field generator for magnetron plasma etching
JPH0621009A (en) Plasma processor
JPH0715900B2 (en) Dry process equipment
JP2004111334A (en) Plasma treating apparatus and plasma treatment method
JP4379771B2 (en) Plasma processing apparatus and plasma processing method