JPH0438805A - Manufacture of r-fe-b anisotropic compression-molded bonded magnet - Google Patents

Manufacture of r-fe-b anisotropic compression-molded bonded magnet

Info

Publication number
JPH0438805A
JPH0438805A JP2145432A JP14543290A JPH0438805A JP H0438805 A JPH0438805 A JP H0438805A JP 2145432 A JP2145432 A JP 2145432A JP 14543290 A JP14543290 A JP 14543290A JP H0438805 A JPH0438805 A JP H0438805A
Authority
JP
Japan
Prior art keywords
compression
magnetic field
anisotropic
magnetic
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2145432A
Other languages
Japanese (ja)
Inventor
Ryoji Muramatsu
村松 良二
Yuuichi Tachiya
雄一 立谷
Tetsutaro Imai
今井 徹太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2145432A priority Critical patent/JPH0438805A/en
Publication of JPH0438805A publication Critical patent/JPH0438805A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the magnetic property of the title magnet, such as the packing ratio, degree of magnetic orientation, etc., of magnetic powder by performing the first compression molding on a mixture of R-Fe-B anisotropic magnetic powder and a binder under a low pressure in the direction perpendicular to a magnetic field impressing direction, and then, the second compressionmolding on the mixture with a pressure lower than the first pressure in the direction parallel to the magnetic field impressing direction. CONSTITUTION:The first compression-molded body is formed by performing the first compression-molding on a mixture of R-Fe-B anisotropic magnetic powder prepared by pulverizing thin bands obtained by quenching an R-Fe-B (R: a rare earth element containing Y) liquid and a binder after hot upsetting under a low pressure in the direction perpendicular to a magnetic field impressing direction. Then the second compression-molding is performed on the mixture with a pressure lower than the pressure of the first compression-molding in the direction parallel to the magnetic field impressing direction. As a result, an R-Fe-B anisotropic compression-molded magnet with anisotropic magnetic powder which is high in degree of magnetic orientation and packing ratio can be obtained. The second compression- molding can be performed while the magnetic field is applied in the same direction as the magnetic field applied direction and it is preferable to set the pressure of the first compression- molding at 0-3 tons/cm<2> (however, '0' is not contained).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、R−FC・B系(但し、RはYを含む希土類
元素)異方性圧縮成形ボンド磁石の製造方法に関し、特
に高磁気特性を得るための圧縮成形方法に関するもので
ある。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing an R-FC/B system (where R is a rare earth element containing Y) anisotropic compression molded bonded magnet, and in particular to The present invention relates to a compression molding method for obtaining properties.

[従来の技術〕 近年、希土類元素(特にNd)、Fe、Bを主成分とす
る母合金を急速凝固して得られる薄帯に熱間据込み加工
処理を施し、て得られた積層体を粉砕した粉末が強い磁
気的異方性を示し、高いエネルギー積を有することが見
い出された。この強い磁気異方性粉末とバインダとの混
合物を圧縮成形して得られるR−Fe−B系(但し、R
はYを含む希土類元素)異方性圧縮成形ボンド磁石は、
従来の急冷薄帯を単に粉砕した粉末を原料とする等方性
圧縮成形ボンド磁石の磁気特性を上まわる磁石として期
待が寄せられている。
[Prior art] In recent years, hot upsetting has been applied to a thin strip obtained by rapidly solidifying a master alloy containing rare earth elements (particularly Nd), Fe, and B as main components, and the resulting laminate has been developed. It was found that the ground powder exhibits strong magnetic anisotropy and has a high energy product. R-Fe-B system (However, R
is a rare earth element containing Y) The anisotropic compression molded bonded magnet is
It is expected that this magnet will have better magnetic properties than the conventional isotropic compression-molded bonded magnet, which is made from a powder obtained by simply pulverizing a quenched ribbon.

ところで、このような異方性磁性粉末自体が高い磁気異
方性および高い最大エネルギー積を有するR−Fe・B
系異方性磁性粉末は、実際には。
By the way, such anisotropic magnetic powder itself has high magnetic anisotropy and high maximum energy product.
The system is actually anisotropic magnetic powder.

急冷薄帯を圧密死後熱間据込み加工を施して異方性化す
るとともに積層体とし、該積層体を粉末に解砕して得ら
れている。
The quenched ribbon is subjected to hot upsetting after consolidation to make it anisotropic and is made into a laminate, which is then crushed into powder.

こうして得た異方性磁性粉末の特性を最大限に生かした
異方性ボンド磁石を得るためには、同粉末を磁場中で圧
縮成形する条件が重要となる。
In order to obtain an anisotropic bonded magnet that makes the most of the characteristics of the anisotropic magnetic powder thus obtained, the conditions under which the powder is compression-molded in a magnetic field are important.

特に異方性磁性粉末の充填率及び配向性を考慮した成形
条件の確立が必要となる。磁場中成形法としては、印加
磁場方向と同一方向に加圧して。
In particular, it is necessary to establish molding conditions that take into account the filling rate and orientation of the anisotropic magnetic powder. In the magnetic field forming method, pressure is applied in the same direction as the applied magnetic field direction.

圧縮成形を行う方法(以下、平行磁場中圧縮成形法と呼
ぶ)と、印加磁場方向と垂直方向に印加して圧縮成形を
行う方法(以下、垂直磁場中圧縮成形法と呼ぶ)とがあ
る。
There is a method of performing compression molding (hereinafter referred to as a compression molding method in a parallel magnetic field) and a method of performing compression molding by applying a magnetic field in a direction perpendicular to the direction of the applied magnetic field (hereinafter referred to as a compression molding method in a perpendicular magnetic field).

ところで、前記積層体を解砕するとき、据込み方向に垂
直方向の積層界面で割れやすく、できた粉末は偏平状で
ありその厚さ方向に磁化容品方向であるC軸を持ってい
る場合が多い。このため磁場中圧縮成形法としては、平
行磁場中圧縮成形法を用いる方が、R−Fe−B系異方
性磁性粉末が配向しやすいと予想される。
By the way, when the laminate is crushed, it is easy to break at the laminate interface in the direction perpendicular to the upsetting direction, and the resulting powder is flat and has the C axis, which is the direction of the magnetized container, in the thickness direction. There are many. Therefore, it is expected that the R-Fe-B-based anisotropic magnetic powder will be more easily oriented when the parallel magnetic field compression molding method is used as the magnetic field compression molding method.

[発明が解決しようとする課題] しかしながら、平行磁場中圧縮成形法では装置上、十分
な印加磁場を発生することが困難である。
[Problems to be Solved by the Invention] However, in the compression molding method in a parallel magnetic field, it is difficult to generate a sufficient applied magnetic field due to the equipment.

このため、粉末の配向が十分に行われず、高い磁気特性
のボンド磁石が得られない欠点がある。
For this reason, there is a drawback that the powder is not sufficiently oriented and a bonded magnet with high magnetic properties cannot be obtained.

しかしながら、配向は9圧縮成形圧力に殆ど依存せず、
はぼ一定となる。
However, the orientation is almost independent of the 9 compression molding pressure;
becomes more or less constant.

一方、垂直磁場中圧縮成形法では、装置によって、十分
な配向磁場が得られるため、成形圧力が低い時は、粉末
の高い配向度が実現されるが 充填率が低くなり、した
がって、高磁気特性の圧縮成形ボンド磁石は得られない
欠点がある。
On the other hand, in the compression molding method in a vertical magnetic field, a sufficient orienting magnetic field is obtained by the equipment, so when the molding pressure is low, a high degree of orientation of the powder is achieved, but the filling rate is low, resulting in high magnetic properties. Compression molded bonded magnets have the disadvantage that they cannot be obtained.

また、この垂直磁場中圧縮成形法において、成形圧力を
高くすると、配向度が低くなり、十分な磁気特性が得ら
れない欠点がある。これは、前述のように異方性磁性粉
末が偏平状であり、その厚さ方向に磁化容易方向を持つ
ために、磁場配向した粉末の長さ方向に圧力が高いため
に異方性磁性粉末の配向が乱れ、配向度が低下すること
による。
Furthermore, in this vertical magnetic field compression molding method, if the molding pressure is increased, the degree of orientation decreases, and there is a drawback that sufficient magnetic properties cannot be obtained. This is because, as mentioned above, the anisotropic magnetic powder is flat and has a direction of easy magnetization in the thickness direction, so the pressure is high in the length direction of the magnetically oriented powder. This is because the orientation of is disturbed and the degree of orientation is reduced.

そこで1本発明の技術的課題はR−Fe−B系異方性圧
縮成形ボンド磁石の製造方法において。
Therefore, one technical problem of the present invention is a method for manufacturing an R-Fe-B anisotropic compression molded bonded magnet.

磁性粉末の充填率および磁気的な配向度を共に高めるこ
とにより、優れた磁気特性を有するR・Fe−B系異方
性圧縮成形ボンド磁石を提供することにある。
The object of the present invention is to provide an anisotropic compression-molded bonded R.Fe-B magnet having excellent magnetic properties by increasing both the filling rate and the degree of magnetic orientation of magnetic powder.

[課題を解決するための手段] 本発明では、垂直磁場中圧縮成形法と平行磁場中圧縮成
形法とのそれぞれの利点を共に利用すべく、垂直磁場中
圧縮成形と平行磁場中圧縮成形との複合化について鋭意
検討した結果、初めに垂直磁場中圧縮成形によって、低
成形圧力で第1の圧縮成形を行うことによりR−Fe−
B系異方性粉末の磁気的配向度が高く、充填率が低い成
形体を得1次に該成形体を前記垂直磁場中圧縮成形にお
ける磁場印加方向に平行方向に前記垂直磁場中圧縮成形
圧力以上で第2の圧縮成形を行うことにより、異方性磁
性粉末の高い配向度を保持して、かつ充填率が高い、す
なわち優れた磁気特性を有するR−Fe−B系異方性圧
縮成形ボンド磁石を作製できることを見い出し本発明を
なすに至ったものである。
[Means for Solving the Problems] In the present invention, in order to utilize the respective advantages of compression molding in a vertical magnetic field and compression molding in a parallel magnetic field, compression molding in a vertical magnetic field and compression molding in a parallel magnetic field are combined. As a result of intensive studies on compounding, R-Fe-
A molded body having a high degree of magnetic orientation and a low filling rate of B-based anisotropic powder is obtained. First, the molded body is compressed in a direction parallel to the magnetic field application direction in the vertical magnetic field compression molding under the vertical magnetic field compression molding pressure. By performing the second compression molding in the above manner, R-Fe-B anisotropic compression molding which maintains a high degree of orientation of the anisotropic magnetic powder and has a high filling rate, that is, excellent magnetic properties. It was discovered that a bonded magnet could be produced, and the present invention was developed.

本発明によれば、R−Fe−B系(但し、RはYを含む
希土類元素)液体急冷薄片を熱間据込み加工後粉砕して
得られるR−Fe−B系異方性磁性粉末とバインダーと
の混合物を磁場印加方向に垂直方向に低圧力で第1の圧
縮成形を行って第1の圧縮成形体とした後、該第1の圧
縮成形体を前記磁場印加方向に平行方向に前記第1の圧
縮成形の圧力以上で加圧する第2の圧縮成形を行うこと
を特徴とするR−Fe−B系異方性圧縮成形ボンド磁石
の製造方法が得られる。
According to the present invention, R-Fe-B-based anisotropic magnetic powder obtained by pulverizing R-Fe-B-based (where R is a rare earth element containing Y) liquid quenched thin flakes after hot upsetting processing. The mixture with the binder is subjected to first compression molding at low pressure in a direction perpendicular to the direction of magnetic field application to obtain a first compression molded body, and then the first compression molded body is compressed in the direction parallel to the direction of applying the magnetic field. A method for manufacturing an R-Fe-B anisotropic compression-molded bonded magnet is obtained, which is characterized in that second compression molding is performed at a pressure higher than the pressure of the first compression molding.

本発明によれば、前記R−Fe−B系異方性日系成形ボ
ンド磁石の製造方法において、前記第2の圧縮成形は、
前記第1の圧縮成形の磁場印加方向と同じ方向に磁場を
印加しながら行うことを特徴とするR−Fe−B系異方
性圧縮成形ボンド磁石の製造方法が得られる。
According to the present invention, in the method for manufacturing the R-Fe-B anisotropic Japanese molded bonded magnet, the second compression molding comprises:
There is obtained a method for manufacturing an R-Fe-B-based anisotropic compression-molded bonded magnet, which is performed while applying a magnetic field in the same direction as the magnetic field application direction of the first compression molding.

本発明によれば、前記したいずれかのR−Fe・B系異
方性圧縮成形ボンド磁石の製造方法において、前記第1
の圧縮成形の圧力が0〜3ton/cj (ただし、0
は含まず)であることを特徴とするR−Fe−B系異方
性圧縮成形ボンド磁石の製造方法が得られる。
According to the present invention, in any of the above-described methods for manufacturing an R-Fe/B-based anisotropic compression-molded bonded magnet, the first
The compression molding pressure is 0 to 3 ton/cj (however, 0
A method for manufacturing an R-Fe-B anisotropic compression molded bonded magnet is obtained.

また2本発明における垂直磁場中圧縮成形の後工程であ
る前記垂直磁場中圧縮成形時の磁場印加方向に平行方向
の第2の圧縮成形の成形圧力は基本的には垂直磁場中圧
縮成形の成形圧力より大きければ効果があり、望ましく
は3ton/c−以上である。
In addition, the molding pressure of the second compression molding in the direction parallel to the magnetic field application direction during the compression molding in the vertical magnetic field, which is the post-process of compression molding in the vertical magnetic field in the present invention, is basically the molding pressure of the compression molding in the vertical magnetic field. It is effective if the pressure is higher than the pressure, and preferably 3 ton/c- or more.

なお、垂直磁場中圧縮成形の後工程である第2の圧縮成
形において、前工程である垂直磁場中圧縮成形時の磁場
印加方向に同じ方向に磁場を印加して第2の圧縮成形を
行うことは磁気特性の向上に有効な方法である。
In addition, in the second compression molding, which is a post-process of compression molding in a vertical magnetic field, the second compression molding is performed by applying a magnetic field in the same direction as the magnetic field application direction during compression molding in a vertical magnetic field, which is a previous process. is an effective method for improving magnetic properties.

尚、以下に述べる本発明の実施例ではR−Fe・B系合
金粉末として、Nd、Fe、B系異方性粉末のみの効果
を示したが、たとえば希土類元素(R)としてNdを用
い、この一部または全部を。
In addition, in the examples of the present invention described below, the effect was shown only with Nd, Fe, and B-based anisotropic powder as the R-Fe/B-based alloy powder, but for example, using Nd as the rare earth element (R), Part or all of this.

Dy、Pr等の希土類に置換する場合、Feの一部をC
oに置換する場合、その他各種添加物を加えた合金系に
おいても本発明を実施する上で何ら問題とならず1本発
明に含まれることは言うまでもない。
When replacing with rare earth elements such as Dy and Pr, a part of Fe is replaced with C.
It goes without saying that when o is substituted, alloy systems containing various other additives do not pose any problem in carrying out the present invention and are included in the present invention.

[実施例] 次に、実施例により本発明をさらに詳細に説明する。[Example] Next, the present invention will be explained in more detail with reference to Examples.

(実施例−1) 高周波誘導溶解法により1組成(wt%)がFC=85
.8. Nd :29.8.  Co :2.65. 
 P r :0.8 、  B :0.95に調整した
母合金を溶解し、Ar雰囲気中にて単ロール装置を用い
て液体急冷薄帯を作製後。
(Example-1) One composition (wt%) has FC=85 by high frequency induction melting method
.. 8. Nd: 29.8. Co:2.65.
After melting the master alloy adjusted to P r : 0.8 and B : 0.95 and producing a liquid quenched ribbon using a single roll device in an Ar atmosphere.

この薄帯を積層して、この積層体を熱間据込み加工によ
って異方性化処理を施した。
The thin strips were laminated, and the laminated body was subjected to an anisotropic treatment by hot upsetting.

引き続き異方性化処理された500μ−以下の粒度まで
解砕し小薄片粒子からなる異方性磁性粉末を得2本発明
を実施するための出発原料とした。
Subsequently, the powder was anisotropically treated and crushed to a particle size of 500 μm or less to obtain anisotropic magnetic powder consisting of small flake particles, which was used as a starting material for carrying out the present invention.

この異方性磁性粉末とエポキシ樹脂を重量比で97=3
の割合で混合し、この混合物を金型内に挿入し、160
0kA/mの磁場を印加し磁場印加方向に垂直方向に0
.5ton/cjの圧力で第1の圧縮成形を行い、第1
の圧縮成形体を得た。次に、この第1の圧縮成形体を前
記磁場印加方向に平行方向に6ton/cシの圧力で第
2の圧縮成形を行い。
The weight ratio of this anisotropic magnetic powder and epoxy resin is 97=3
This mixture was inserted into the mold and heated at 160°C.
Apply a magnetic field of 0 kA/m and
.. The first compression molding was performed at a pressure of 5 tons/cj, and the first
A compression molded product was obtained. Next, this first compression molded body was subjected to a second compression molding in a direction parallel to the magnetic field application direction at a pressure of 6 ton/c.

直径10mm、高さ10mの円柱状の成形体を作製し 
加熱硬化してボンド磁石とした。得られたボンド磁石の
磁気特性の結果を第1表に示す。
A cylindrical molded body with a diameter of 10 mm and a height of 10 m was produced.
It was heated and hardened to form a bonded magnet. Table 1 shows the results of the magnetic properties of the obtained bonded magnets.

(実施例−2) 実施例−1と同様に異方性磁性粉末を1600に^/m
の磁場を印加し、磁場印加方向に垂直方向に0.5to
n/c−の圧力で第1の圧縮成形を行った後。
(Example-2) Similar to Example-1, the anisotropic magnetic powder was adjusted to 1600^/m.
Apply a magnetic field of 0.5 to in the direction perpendicular to the direction of magnetic field application.
After the first compression molding at a pressure of n/c-.

該第1の圧縮成形体を前記磁場印加方向と同じ方向に8
00 kA/ mの磁場を印加し、同方向に6ton/
c−の圧力で第2の圧縮成形し、実施例−1と同形状の
ボンド磁石を作製した。得られたボンド磁石の磁気特性
の測定結果を第1表に示す。
The first compression molded body is moved in the same direction as the magnetic field application direction.
A magnetic field of 00 kA/m was applied, and a magnetic field of 6 ton/m was applied in the same direction.
A second compression molding was performed at a pressure of c- to produce a bonded magnet having the same shape as Example-1. Table 1 shows the measurement results of the magnetic properties of the obtained bonded magnets.

(比較例−1) 実施例−1の異方性磁性粉末を1600kA/mの磁場
を印加し、磁場印加方向に垂直方向に6ton/cJの
圧力で第1の圧縮成形し、実施例−1と同形状のボンド
磁石を作製した。得られたボンド磁石の磁気特性の測定
結果を第1表に示す。
(Comparative Example-1) A magnetic field of 1600 kA/m was applied to the anisotropic magnetic powder of Example-1, and the first compression molding was performed at a pressure of 6 ton/cJ in a direction perpendicular to the direction of magnetic field application. A bonded magnet with the same shape was fabricated. Table 1 shows the measurement results of the magnetic properties of the obtained bonded magnets.

(比較例−2) 実施例−1の異方性磁性粉末を800に^/mの磁場を
印加し、磁場印加方向に平行方向に6 ton/Cシの
圧力で第1の圧縮成形し、実施例−1と同形状のボンド
磁石を作製した。得られたボンド磁石の磁気特性の測定
結果を第1表に示す。
(Comparative Example-2) The anisotropic magnetic powder of Example-1 was subjected to first compression molding by applying a magnetic field of 800 cm/m and at a pressure of 6 ton/C in a direction parallel to the direction of applying the magnetic field, A bonded magnet having the same shape as Example-1 was produced. Table 1 shows the measurement results of the magnetic properties of the obtained bonded magnets.

第1表の結果から1本発明の実施例1及び2によるボン
ド磁石は、磁性粉末の充填率が比較例のものと殆ど変わ
らず、磁性粉末の配向度、エネルギー積ともに比較Ml
及び2より優れたボンド磁石が得られることが判明した
From the results in Table 1, the bonded magnets according to Examples 1 and 2 of the present invention have almost the same filling rate of magnetic powder as those of the comparative example, and both the degree of orientation of the magnetic powder and the energy product
It has been found that bonded magnets superior to those of Example 1 and Example 2 can be obtained.

[発明の効果〕 以上の説明から明らかなように1本発明によれば、従来
技術に比較して、異方性磁性粉末の配向度が高く、優れ
た磁気特性を有するR−FeeB系異日系圧縮成形ボン
ド磁石の作製が可能となり。
[Effects of the Invention] As is clear from the above description, according to the present invention, an R-FeeB-based heterogeneous material having a higher degree of orientation of the anisotropic magnetic powder and excellent magnetic properties compared to the prior art. It is now possible to produce compression molded bonded magnets.

工業上きわめて有益である。It is extremely useful industrially.

Claims (3)

【特許請求の範囲】[Claims] 1.R・Fe・B系(但し,RはYを含む希土類元素)
液体急冷薄片を熱間据込み加工後粉砕して得られるR・
Fe・B系異方性磁性粉末とバインダーとの混合物を磁
場印加方向に垂直方向に低圧力で第1の圧縮成形を行っ
て第1の圧縮成形体とした後,該第1の圧縮成形体を前
記磁場印加方向に平行方向に前記第1の圧縮成形の圧力
以上で加圧する第2の圧縮成形を行うことを特徴とする
R・Fe・B系異方性圧縮成形ボンド磁石の製造方法。
1. R・Fe・B system (however, R is a rare earth element containing Y)
R. obtained by crushing liquid quenched flakes after hot upsetting.
A mixture of Fe/B-based anisotropic magnetic powder and a binder is subjected to first compression molding at low pressure in a direction perpendicular to the magnetic field application direction to form a first compression molded body, and then the first compression molded body is A method for producing an anisotropic compression-molded R.Fe.B-based bonded magnet, characterized in that second compression molding is performed in which the magnet is compressed in a direction parallel to the magnetic field application direction at a pressure equal to or higher than that of the first compression molding.
2.第1の請求項記載のR・Fe・B系異方性圧縮成形
ボンド磁石の製造方法において, 前記第2の圧縮成形は,前記第1の圧縮成形の磁場印加
方向と同じ方向に磁場を印加しながら行うことを特徴と
するR・Fe・B系異方性圧縮成形ボンド磁石の製造方
法。
2. In the method for manufacturing an R-Fe-B-based anisotropic compression-molded bonded magnet according to claim 1, the second compression molding applies a magnetic field in the same direction as the magnetic field application direction of the first compression molding. A method for producing an anisotropic compression molded bonded R/Fe/B magnet.
3.第1又は第2の請求項記載のR・Fe・B系異方性
圧縮成形ボンド磁石の製造方法において,前記第1の圧
縮成形の圧力が0〜3ton/cm^2(ただし,0は
含まず)であることを特徴とするR・Fe・B系異方性
圧縮成形ボンド磁石の製造方法。
3. In the method for manufacturing an R/Fe/B anisotropic compression molded bonded magnet according to the first or second claim, the pressure of the first compression molding is 0 to 3 ton/cm^2 (however, 0 is not included). A method for producing an R/Fe/B anisotropic compression molded bonded magnet, characterized in that:
JP2145432A 1990-06-05 1990-06-05 Manufacture of r-fe-b anisotropic compression-molded bonded magnet Pending JPH0438805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2145432A JPH0438805A (en) 1990-06-05 1990-06-05 Manufacture of r-fe-b anisotropic compression-molded bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2145432A JPH0438805A (en) 1990-06-05 1990-06-05 Manufacture of r-fe-b anisotropic compression-molded bonded magnet

Publications (1)

Publication Number Publication Date
JPH0438805A true JPH0438805A (en) 1992-02-10

Family

ID=15385111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2145432A Pending JPH0438805A (en) 1990-06-05 1990-06-05 Manufacture of r-fe-b anisotropic compression-molded bonded magnet

Country Status (1)

Country Link
JP (1) JPH0438805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509545A (en) * 2004-08-06 2008-03-27 オーストリアマイクロシステムズ アクチエンゲゼルシャフト High voltage NMOS transistor and manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509545A (en) * 2004-08-06 2008-03-27 オーストリアマイクロシステムズ アクチエンゲゼルシャフト High voltage NMOS transistor and manufacturing method

Similar Documents

Publication Publication Date Title
CN1061162C (en) Hot-pressed magnets formed from anisotropic powders
JP2002015907A (en) Switching spring magnet powder and its manufacturing method
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPH0438805A (en) Manufacture of r-fe-b anisotropic compression-molded bonded magnet
JPH0473908A (en) Manufacture of r-fe-b-based anisotropic compression molding bonded magnet
JPS6318602A (en) Manufacture of permanent magnet of rare earth-iron system
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH02125402A (en) Magnetic powder and manufacture thereof
JPH0774012A (en) Manufacture of bonded permanent magnet and raw material powder therefor
JPH10189320A (en) Anisotropic magnet alloy powder, and its manufacture
JPS6353201A (en) Production of permanent magnet material
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JP2585443B2 (en) Manufacturing method of resin-bonded permanent magnet molding
JPH04280606A (en) Bonded magnet and manufacture thereof
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
JPH04188805A (en) Manufacture of rare-earth bonded magnet
JPH0483308A (en) Manufacture of r-fe-b anisotropic bond magnet
JPH04179102A (en) Manufacture of anisotropic r-fe-b magnetic powder
JPH0329302A (en) Manufacture of anisotropic high-polymer composite-type rare-earth magnet
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JPH1041114A (en) Manufacture of powder for high molecular composite type rare earth magnet
JPH0228901A (en) Manufacture of polymer composite rare earth magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet