JPH043877A - Air separating device - Google Patents

Air separating device

Info

Publication number
JPH043877A
JPH043877A JP2100346A JP10034690A JPH043877A JP H043877 A JPH043877 A JP H043877A JP 2100346 A JP2100346 A JP 2100346A JP 10034690 A JP10034690 A JP 10034690A JP H043877 A JPH043877 A JP H043877A
Authority
JP
Japan
Prior art keywords
air
heat exchanger
waste gas
supplied
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2100346A
Other languages
Japanese (ja)
Inventor
Masayoshi Nunomura
布村 雅良
Hirohiko Nakamura
裕彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP2100346A priority Critical patent/JPH043877A/en
Publication of JPH043877A publication Critical patent/JPH043877A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/68Cooling the adsorption vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To shorten a precooling time by a method wherein a path, capable of intermediate extraction only during precooling, is provided on the passage of an air heat exchanger or the heat recovering unit of waste gas from a separating device so that the waste gas can be supplied with a temperature lower than the temperature of air from the hot end of the heat exchanger. CONSTITUTION:Material air, compressed by a material air compressor 1 to the pressure of about 5 kg/cm<2>G, is cooled by a cooler 2 so as to have the temperature of about 5/7 deg.C. The cooled material air is sent into an adsorbing toward 3 to adsorb and remove moisture and carbon dioxide in the material air, then, is cooled by effecting heat exchange between waste gas in an air heat exchanger 4 and, thereafter, is supplied to a fractionating tower 5. Remaining waste gas, separated from product gas in the fractionating tower 5, is supplied to an adsorbing tower 3 as reproduced gas after recovering the heat thereof by the air heat exchanger 4. When the adsorbing tower 3 is in heating process among reproducing process, waste gas from the hot end of the air heat exchanger 4 is supplied to the adsorbing tower after heating through a heater 6. When the adsorbing tower 3 is in pre-cooling process, one part of the waste gas is branched from the intermediate part of the air heat exchanger 4 to join it with the hot end of the air heat exchanger 4 through a valve 8 and, thereafter, is supplied to the adsorbing tower 3 to effect the precooling.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は深冷空気分離装置に係り、特に吸$1塔の再生
時間を短縮するの1こ好適な空気分離装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cryogenic air separation device, and more particularly to an air separation device that is suitable for shortening the regeneration time of a $1 suction tower.

〔従来の技術〕[Conventional technology]

従来より、深冷空気分離装置の原料空気中の水分、炭酸
ガスの不純分を除去する前処理として温度差再生(TS
A)方式の吸S塔が採用されている。
Conventionally, temperature differential regeneration (TS
A) type S absorption tower is adopted.

第2図に示すようにTSA方式では、原料空気圧縮Wl
で昇圧された原料空気中の不純物を吸着塔3で吸着除去
するため、原料空気の温度を氷結しない範囲でできるだ
け低温(5〜7℃)に冷却器2で冷却し吸着塔3で不純
物を吸着除去する。
As shown in Figure 2, in the TSA system, the raw material air compression Wl
In order to adsorb and remove impurities in the feed air pressurized in the adsorption tower 3, the temperature of the feed air is cooled to as low as possible (5 to 7 degrees Celsius) without freezing using the cooler 2, and the impurities are adsorbed in the adsorption tower 3. Remove.

一方、不純物を吸着した吸着剤の再生は、深冷空気分離
装置で製品ガスを分離した残りのガス(廃ガス)が利用
される。再生は吸着時と再生時との温度差を利用するた
め、ドライである廃ガスを加熱器6で加熱して加熱ガス
を湿す再生工程と、吸着時の温度付近まで予冷して吸着
工程へと待期するための予冷工程にて行なわれる。この
ため吸着塔3は2基設置され、加熱時間と予冷時間とを
加算した一定時間(約6〜8時間)にて切替運転される
On the other hand, to regenerate the adsorbent that has adsorbed impurities, the remaining gas (waste gas) after separating the product gas in a cryogenic air separation device is used. Since regeneration utilizes the temperature difference between adsorption and regeneration, there is a regeneration process in which the dry waste gas is heated with a heater 6 to moisten the heated gas, and a second process in which it is precooled to near the adsorption temperature before proceeding to the adsorption process. This is done in a pre-cooling process to wait for the process. For this reason, two adsorption towers 3 are installed, and the operation is switched for a certain period of time (approximately 6 to 8 hours), which is the sum of the heating time and the precooling time.

従来技術では再生ガスとして精留塔5からの廃ガスが利
用されるため廃ガスの加熱器の容量および廃ガスの温度
により切替時間が決っており、特に予冷時間は精留塔5
(分離装置t)からの戻り温度のみとなり他の冷却源が
ないため切替時間の約70チの時間を要していた。この
ため吸着塔の容量低減をはかるためいかに予冷時間を短
縮するかにかかっていた。なお、この種の装置として関
連するものには例えば特開昭57−10076号が挙げ
られる。
In the conventional technology, since the waste gas from the rectification tower 5 is used as regeneration gas, the switching time is determined by the capacity of the waste gas heater and the temperature of the waste gas.
Since there was only the return temperature from (separator t) and no other cooling source, it took about 70 inches of switching time. Therefore, in order to reduce the capacity of the adsorption tower, it was necessary to shorten the precooling time. Note that related devices of this type include, for example, Japanese Patent Application Laid-Open No. 10076/1983.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、TSA方式の吸着塔の切替時間の加熱
工程、予冷工程によって決まり、特に予冷時間が分離装
置からの廃ガスの温度によって決まっている。この温度
を下げることは分離装置の熱ロスが大きくなり、動力の
アップとなっていた。
In the above-mentioned prior art, the switching time of the TSA adsorption tower is determined by the heating step and the pre-cooling step, and in particular, the pre-cooling time is determined by the temperature of the waste gas from the separation device. Lowering this temperature would increase heat loss in the separator, which would require an increase in power.

また、切替時間の長短は吸着塔の容量に太き(影響し、
予冷時間は大きな障害となっていた。
In addition, the length of the switching time will affect the capacity of the adsorption tower.
Precooling time was a major obstacle.

本発明の目的は、分離装置の熱ロスを大きくすることな
々、予冷時のみ廃ガスの温度の低下をはかることにより
、予冷時間を短縮できる空気分離装置を提供することに
ある。
An object of the present invention is to provide an air separation device that can shorten the precooling time by reducing the temperature of waste gas only during precooling, without increasing the heat loss of the separation device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、TSA方式の吸着塔の再生工程の短縮をは
かるため、分離装置からの廃ガスの熱回収部である空気
熱交の通路に、予冷時のみ中間抜き出しできる通路を設
け、熱交製端部からの温度より低温で廃ガスを供給でき
るようにして、予冷時間の短縮をはかるようにしたもの
である。
The above purpose is to shorten the regeneration process of the TSA adsorption tower by providing a passage in the air heat exchanger, which is the heat recovery section for the waste gas from the separation device, that allows intermediate extraction only during precooling. The exhaust gas can be supplied at a temperature lower than that from the end, thereby shortening the pre-cooling time.

〔作   用〕[For production]

TSA方式の吸着塔を有する深冷空気分離装置では、精
留分離に必要な圧力(約5Xp/d())に昇圧された
原料空気は、吸着塔での性能を上げるため約5〜7℃に
冷却された後、吸Iir塔に送入され、水分、炭酸ガス
を吸着除去し深冷分離部へ供給される。吸着塔では一定
時間吸着工程を行った後、一方の吸着塔へ切替えられ、
今まで吸着した不純物を脱着するため、深冷分離装置部
で製品ガスを分離した残りの廃ガスを加熱して再生ガス
を流すことにより加熱脱着する。さらに、加熱された吸
着剤の予冷を行ない次の吸着工程を待期するため、深冷
分離装置からの廃ガスを加熱装置を通さないで予冷ガス
と流すことにより冷却する。吸着塔再生ガスとして加熱
、予冷とも溌カスを利用するため、廃ガス温度により加
熱源の容量アップ。
In a cryogenic air separation device with a TSA type adsorption tower, the feed air that has been pressurized to the pressure required for rectification separation (approximately 5Xp/d()) is heated to approximately 5 to 7°C to improve performance in the adsorption tower. After being cooled to 100%, it is sent to an IIR absorption column, where water and carbon dioxide are adsorbed and removed, and then supplied to a cryogenic separation section. After performing the adsorption process for a certain period of time in the adsorption tower, the adsorption tower is switched to one side.
In order to desorb the impurities that have been adsorbed up to now, the remaining waste gas from which the product gas has been separated in the cryogenic separator section is heated and regenerated gas is passed through it to thermally desorb it. Furthermore, in order to pre-cool the heated adsorbent and wait for the next adsorption step, the waste gas from the cryogenic separation device is cooled by flowing it with the pre-chilled gas without passing through the heating device. The heating source capacity can be increased depending on the exhaust gas temperature, as the permeable gas is used as adsorption tower regeneration gas for both heating and pre-cooling.

予冷時間の長短があった。特に予冷時間は廃ガスが空気
熱交で熱回収された後の温度(約10℃)で供給される
ため、冷却源もなく、吸着温度域まで冷却するの暑こ非
常に時間を要し、加熱、予冷の時間比は約1:3となっ
ていた。従って、いかに予冷時間を短縮するかがプラッ
ト全体の動力、コストに影響していた。
The pre-cooling time was long and short. In particular, during the pre-cooling time, the waste gas is supplied at the temperature after heat recovery in the air heat exchanger (approximately 10°C), so there is no cooling source, and it takes a very long time to cool the waste gas to the adsorption temperature range. The heating and precooling time ratio was about 1:3. Therefore, how to shorten the precooling time affected the power and cost of the entire platform.

本発明は、この欠点を改善するためのものである。吸着
塔の再生時間を短縮するため、加熱に供給される廃ガス
温度は空気熱交の温端部からの高い温度で、予冷に供給
される廃ガス温度は空気熱交の中間部からの低い温度と
切替られるよう、空気熱文中間部に廃ガスの一部を分流
できる通路を設ける。これにより加熱時間を変えること
な(、予冷時間の短縮をはかる。空気熱交での中間(例
えば0℃)からの抜き出しとした場合、深冷分離装置の
熱ロス補償としては廃ガスの約115o程度の液化ガス
(例えば液体音素)チャージで十分であり効果は大であ
る。
The present invention aims to improve this drawback. In order to shorten the regeneration time of the adsorption tower, the waste gas temperature supplied for heating is at a high temperature from the hot end of the air heat exchanger, and the waste gas temperature supplied for pre-cooling is at a low temperature from the middle part of the air heat exchanger. A passageway is provided in the middle of the air thermometer to divert a portion of the waste gas so that the temperature can be switched. By doing this, the heating time is not changed (and the precooling time is shortened. If extraction is performed from an intermediate temperature (for example, 0°C) using an air heat exchanger, approximately 115° A small charge of liquefied gas (for example, liquid phoneme) is sufficient and the effect is great.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

図において、原料空気圧縮機lで約5 Kg / cr
IGに圧縮された原料空気は、約5/7℃に冷却器2で
冷却される。冷却された原料空気は、吸S塔3に送入さ
れ、原料空気中の水分、炭酸ガスを吸着除去し空気熱交
4にて廊ガスとの熱交換を行ない冷却されて精留塔5に
供給される。精留塔3で製品ガスと分離した残りの廃ガ
スは空気熱交4で熱回収後、吸着塔3の再生ガスとして
供給される。
In the figure, the raw material air compressor l is approximately 5 Kg/cr
The raw air compressed by the IG is cooled to about 5/7°C by the cooler 2. The cooled raw material air is sent to the S absorption tower 3, which adsorbs and removes moisture and carbon dioxide from the raw material air, exchanges heat with the gas in the air heat exchanger 4, and is cooled and sent to the rectification tower 5. Supplied. The remaining waste gas separated from the product gas in the rectification column 3 is supplied as regeneration gas to the adsorption column 3 after heat recovery in the air heat exchanger 4 .

吸着塔3が再生工程のうち、加熱工程にある場合、空気
熱交4と部端からの廃ガスを加熱器6を通して加熱後、
吸着塔に供給される。また、吸着塔3か予冷工程にある
場合、空気熱交4中間部から廃ガスの一部を分流し、弁
8を通し、空気熱交4温端部と合流後吸着塔3へ供給し
予冷を行なう。
When the adsorption tower 3 is in the heating step of the regeneration step, after heating the waste gas from the air heat exchanger 4 and the end of the section through the heater 6,
Supplied to the adsorption tower. In addition, when the adsorption tower 3 is in the precooling process, a part of the waste gas is diverted from the middle part of the air heat exchanger 4, passes through the valve 8, joins the hot end of the air heat exchanger 4, and is then supplied to the adsorption tower 3 for precooling. Do this.

本実施例によれば、吸li塔の再生工程中、加熱、予冷
により廃ガスの温度を変えることができるため、吸s塔
の再生時間の短縮が図られる、これにより再生工程全体
の時間短縮も可能であり、吸着塔の容量も低減できる。
According to this embodiment, since the temperature of the waste gas can be changed by heating and pre-cooling during the regeneration process of the sulfur absorption tower, the regeneration time of the sulfur absorption tower can be shortened, thereby shortening the time of the entire regeneration process. It is also possible to reduce the capacity of the adsorption tower.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、吸着塔の再生工程中、加熱か予冷かに
よって空気熱交の中間部の分流を使用でき、加熱中は高
い温度による加熱油の低減、予冷中は低い温度による予
冷時間の短縮ばはかられる。
According to the present invention, during the regeneration process of the adsorption tower, it is possible to use a branch flow in the middle of the air heat exchanger depending on whether it is heating or pre-cooling. It can be measured if it is shortened.

従って、再生工程全体の時間が短縮できる。Therefore, the time for the entire regeneration process can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の空気分離装置の系統図、第
2図は従来の空気分離装置の系統図である。 3・・・・・・吸着塔、4・・・・・・空気熱交、5・
・・・・・精留墳、6・・・・・・加熱器、7・・・・
・・吸着塔切替弁、8・・・・・・吸着塔予冷弁
FIG. 1 is a system diagram of an air separation device according to an embodiment of the present invention, and FIG. 2 is a system diagram of a conventional air separation device. 3... Adsorption tower, 4... Air heat exchanger, 5...
・・・・・・Serifuged tumulus, 6・・・・・・ Heater, 7・・・・
...Adsorption tower switching valve, 8...Adsorption tower precooling valve

Claims (1)

【特許請求の範囲】 1、空気分離装置の前処理として空気中の水分、炭酸ガ
スを除去する温度差再生方式の吸着塔を有する空気分離
装置において、 前記空気分離装置からの廃ガスの一部を空気熱交の中間
部から抜き出す通路を設け、該通路を前記吸着塔の再生
ガス用通路に連結したことを特徴とする空気分離装置。
[Scope of Claims] 1. In an air separation device having an adsorption tower of a temperature difference regeneration type that removes moisture and carbon dioxide from the air as a pretreatment of the air separation device, a portion of the waste gas from the air separation device An air separation apparatus characterized in that a passage is provided for extracting gas from an intermediate portion of an air heat exchanger, and the passage is connected to a regeneration gas passage of the adsorption tower.
JP2100346A 1990-04-18 1990-04-18 Air separating device Pending JPH043877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2100346A JPH043877A (en) 1990-04-18 1990-04-18 Air separating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2100346A JPH043877A (en) 1990-04-18 1990-04-18 Air separating device

Publications (1)

Publication Number Publication Date
JPH043877A true JPH043877A (en) 1992-01-08

Family

ID=14271551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2100346A Pending JPH043877A (en) 1990-04-18 1990-04-18 Air separating device

Country Status (1)

Country Link
JP (1) JPH043877A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712509A1 (en) * 1993-11-19 1995-05-24 Air Liquide Process and installation for air distillation.
US8741524B2 (en) 2008-02-28 2014-06-03 Ricoh Company, Ltd. Toner, developer, and image forming method
EP3845847A1 (en) * 2019-12-30 2021-07-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude A method and apparatus for improving efficiency of a front-end purification unit of an air separation plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712509A1 (en) * 1993-11-19 1995-05-24 Air Liquide Process and installation for air distillation.
EP0654643A1 (en) * 1993-11-19 1995-05-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the distillation of air
US5505050A (en) * 1993-11-19 1996-04-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the distillation of air
US8741524B2 (en) 2008-02-28 2014-06-03 Ricoh Company, Ltd. Toner, developer, and image forming method
EP3845847A1 (en) * 2019-12-30 2021-07-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude A method and apparatus for improving efficiency of a front-end purification unit of an air separation plant

Similar Documents

Publication Publication Date Title
US5486227A (en) Integrated process for purifying and liquefying a feed gas mixture with respect to its less strongly adsorbed component of lower volatility
US5855650A (en) Purification of gases using solid adsorbents
US4233038A (en) Reactivation system for water-carbon dioxide adsorbers
US3216178A (en) Process for regenerating an adsorbent bed
JPH07280432A (en) Plant for distilling air and method thereof
JPS6241055B2 (en)
JPH043877A (en) Air separating device
US3884661A (en) Method of and installation for fractionation by adsorption
CN104073310A (en) Device and method for purifying and drying natural gas
CN211595550U (en) Natural gas decarbonization system
CN114621798A (en) Combined natural gas heavy hydrocarbon removal device and using method thereof
JPH01266831A (en) Device for purifying light gas
JPH0378126B2 (en)
JP3544860B2 (en) Pretreatment device in air separation unit
JPH09122432A (en) Gas separator using pressure swing adsorption process
JP2644823B2 (en) Regeneration method of helium gas purification adsorber
JPS6129768B2 (en)
US3421333A (en) Thawing technique for a single air separation plant
JP3841792B2 (en) Pretreatment method in air separation apparatus and apparatus used therefor
CN218392962U (en) Hydrogen purifier
JPS638395B2 (en)
JPH039390B2 (en)
JPS58170518A (en) Operation of adsorbing tower
JPH01159018A (en) Regeneration apparatus for adsorber in air separating device
JPH0255203A (en) Production of high-purity oxygen