JPH043856A - Jt circuit device for precooling operation with freezer device - Google Patents

Jt circuit device for precooling operation with freezer device

Info

Publication number
JPH043856A
JPH043856A JP10252990A JP10252990A JPH043856A JP H043856 A JPH043856 A JP H043856A JP 10252990 A JP10252990 A JP 10252990A JP 10252990 A JP10252990 A JP 10252990A JP H043856 A JPH043856 A JP H043856A
Authority
JP
Japan
Prior art keywords
flow path
pressure side
side flow
heat exchanger
flow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10252990A
Other languages
Japanese (ja)
Inventor
Hitoshi Mitsubori
仁志 三堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP10252990A priority Critical patent/JPH043856A/en
Publication of JPH043856A publication Critical patent/JPH043856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To simplify the piping work and reduce the manufacturing cost by a method wherein a high pressure flow passage and a low pressure flow passage in a JT circuit are thermally connected in respect a freezing state generating part of a freezer. CONSTITUTION:A JT circuit 10 includes a low pressure flow passage 13 and a high pressure flow passage 12 of a helium compressor 11. These high pressure flow passage 12 and low pressure flow passage 13 pass through the first heat exchanger 16, the first thermal coupling 25 with a GM freezer 20, the second heat exchanger 17, the second thermal coupling 26 with the GM freezer 20 and the third heat exchanger 18. These thermal couplings can be formed by turning around a double pipe of the high pressure flow passage 12 and the low pressure flow passage 13 around the freezing generating parts 22 and 23. The high pressure flow passage and the low pressure flow passage are coupled to the GM freezer so as to perform a heat exchanging operation, and then a cooling capability for the freezing load has no difference as compared with that of the prior art system.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は冷凍機に関し、特に冷凍機で予冷を行なうジュ
ールトムソン(JT)回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigerator, and more particularly to a Joule-Thomson (JT) circuit device for precooling the refrigerator.

「従来の技術] 極低温冷凍機等においては高圧回路を冷凍機で予冷する
方法かとられている。
"Prior Art" In cryogenic refrigerators, etc., a method is used in which a high-pressure circuit is precooled with a refrigerator.

第3図は、従来の技術による極低温冷凍機の例を示す0
本例においては、冷凍負荷35をジュールトムソン(J
T)回FI?130が断熱自由膨張を利用して冷却し、
このJT回路をギフオードマクマホン(GM)サイクル
を利用したGM冷凍機20が予冷する。JT回路30に
おいては、He圧縮機31の高圧側出力に接続された高
圧側流路32は、第1熱交換器36を出た後、冷凍[2
0の1段冷凍発生部22に対して、第1の熱的結合28
を形成し、冷却された後第2熱交換器37に入る。
FIG. 3 shows an example of a cryogenic refrigerator according to the prior art.
In this example, the refrigeration load 35 is set to Joule Thomson (J
T) Time FI? 130 cools using adiabatic free expansion,
A GM refrigerator 20 using the Gifford McMahon (GM) cycle precools this JT circuit. In the JT circuit 30, the high pressure side flow path 32 connected to the high pressure side output of the He compressor 31 passes through the refrigeration [2
The first thermal coupling 28
After being cooled, it enters the second heat exchanger 37.

第2熱交換器37を出た後、高圧側流路32はGM冷凍
機20の2段冷凍発生部23と第2の熱的結合29を形
成して冷却され、第3熱交換器38に入る。
After exiting the second heat exchanger 37, the high pressure side flow path 32 forms a second thermal coupling 29 with the two-stage refrigeration generating section 23 of the GM refrigerator 20, is cooled, and is transferred to the third heat exchanger 38. enter.

第3熱交換器38を出た高圧側流路32は、JT弁34
を介して低圧側流路33につながる。JT弁34以後の
低圧側流路33は、冷凍負荷35、第3熱交換器38、
第2熱交換器37、第1熱交換器36を通って、He圧
縮機31の低圧吸込側に接続される。
The high pressure side flow path 32 exiting the third heat exchanger 38 is connected to the JT valve 34
It is connected to the low pressure side flow path 33 via. The low pressure side flow path 33 after the JT valve 34 includes a refrigeration load 35, a third heat exchanger 38,
It passes through the second heat exchanger 37 and the first heat exchanger 36 and is connected to the low pressure suction side of the He compressor 31.

高圧側流1i32と低圧側流路33は、第1熱交換器3
6、第2熱交換器37、第3熱交換器38において、互
いに熱的に結合し、熱交換を行なう。
The high pressure side flow 1i32 and the low pressure side flow path 33 are connected to the first heat exchanger 3
6. The second heat exchanger 37 and the third heat exchanger 38 are thermally coupled to each other and perform heat exchange.

すなわち、低圧1llI流路33が高圧側流路32を冷
却し、逆に高圧側流路32か低圧fllll流路33を
加熱する。このようにしてHeの回路が形成される。
That is, the low-pressure 1lll flow path 33 cools the high-pressure side flow path 32, and conversely, the high-pressure side flow path 32 or the low-pressure full flow path 33 is heated. In this way, a He circuit is formed.

0M冷凍[20においては、He圧縮v&21によって
Heカスが圧縮される。He圧縮11fi21から出た
圧taHeカスは1段冷凍発生部22において膨張され
て冷却され、さらに2段冷凍発生部23に供給されて膨
張されることによってさらに冷却される。
In 0M refrigeration [20], He dregs are compressed by He compression v&21. The pressure taHe scum produced from the He compression 11fi21 is expanded and cooled in the first-stage refrigeration generating section 22, and is further cooled by being supplied to the second-stage refrigeration generating section 23, where it is expanded and further cooled.

JT回路30における冷凍発生の原理は以下の通りであ
る。
The principle of refrigeration generation in the JT circuit 30 is as follows.

He圧縮機で高圧に圧縮された高圧Heは、高圧側流路
32に供給された後、第1熱交換器36において低圧側
流路33内の低圧Heによって冷却され、第1熱交換器
36を出た後、GM冷凍機20の1段冷凍発生部22と
第1の熱的結合28でさらに冷却される。第1の熱的結
合を経た後、第2熱交換器37に入り、低圧側流路33
内の低圧Heと熱交換を行なって冷却される。第2熱交
換器37を出た後、高圧HeはGM冷凍8!20の2段
冷凍発生部23と第2の熱的結合29でさらに冷却され
、第3熱交換器38に入る。第3熱交換器38において
、低圧Heによってさらに冷却される。このようにして
高圧側流路32は、JT弁34に充分低温に冷却された
高圧Heガスを供給する。JT弁34を通ったHeガス
は、断熱自由膨張することによって急激に冷却され、冷
凍負荷35をたとえば4.2Kに冷却する。冷凍負荷3
5を冷却した後のHeガスは、低圧側流路33を通って
第3熱交換器38に入り高圧Heを冷却する。低圧He
は、その後第2熱交換器37、第1熱交換器36におい
て高圧Heと熱結合され、高圧Heを冷却すると共に徐
々に昇温される。昇温されたHeガスは、He圧a機に
吸入された後、He圧taa31によって圧縮され、高
圧側流FI@32に供給される。
The high-pressure He compressed to high pressure by the He compressor is supplied to the high-pressure side flow path 32, and then cooled by the low-pressure He in the low-pressure side flow path 33 in the first heat exchanger 36. After leaving the GM refrigerator 20 , it is further cooled by the first-stage refrigeration generator 22 and the first thermal coupling 28 . After passing through the first thermal coupling, it enters the second heat exchanger 37 and enters the low pressure side flow path 33.
It is cooled by heat exchange with the low pressure He inside. After leaving the second heat exchanger 37, the high-pressure He is further cooled by the second thermal coupling 29 with the two-stage refrigeration generator 23 of the GM refrigerator 8!20, and enters the third heat exchanger 38. In the third heat exchanger 38, it is further cooled by low pressure He. In this way, the high pressure side flow path 32 supplies high pressure He gas cooled to a sufficiently low temperature to the JT valve 34. The He gas that has passed through the JT valve 34 undergoes adiabatic free expansion and is rapidly cooled, cooling the refrigeration load 35 to, for example, 4.2K. Refrigeration load 3
After cooling the He gas, the He gas passes through the low pressure side flow path 33 and enters the third heat exchanger 38 to cool the high pressure He. Low pressure He
is then thermally coupled to the high-pressure He in the second heat exchanger 37 and the first heat exchanger 36, cooling the high-pressure He and gradually raising the temperature. The heated He gas is sucked into the He pressure a machine, compressed by the He pressure taa31, and supplied to the high pressure side stream FI@32.

このように、従来の技術による極低温冷凍機においては
、高圧側流路32は低圧側流路33と熱交換器を形成し
たり、冷凍機と熱的結合を形成するために、低圧側流路
33と交互に結合離脱を繰り返している。すなわち、第
3図の構成において、高圧側流路32は第1熱交換器3
6を出た後、X点において低圧側流路33と分離し、G
M冷凍機20の第1冷凍発生部22と熱的結合を形成し
、その後Y点において、JT回路30の低圧側流路33
と再結合する。また、第2熱交換器37を出た後、高圧
側流路32はX点で低圧側流路33と分離し、0M冷凍
8120の第2冷凍発生部23と第2の熱的結合29を
形成した後、Y点において低圧側流路33と再結合を行
なう、これらの分離、再結合の箇所において、配管に加
工を行なうことが必要である。たとえば、第1熱交換器
36、第2熱交換器37、第3熱交換器38においては
、低圧側流路33と高圧側流路32とが、二重管式構造
で熱的に結合されている。
As described above, in the conventional cryogenic refrigerator, the high-pressure side flow path 32 is connected to the low-pressure side flow path 32 to form a heat exchanger with the low-pressure side flow path 33, or to form a thermal connection with the refrigerator. The connection and separation are repeated alternately with path 33. That is, in the configuration shown in FIG. 3, the high pressure side flow path 32 is connected to the first heat exchanger 3.
6, it separates from the low pressure side flow path 33 at point
A thermal connection is formed with the first refrigeration generation section 22 of the M refrigerator 20, and then at the Y point, the low pressure side flow path 33 of the JT circuit 30 is formed.
Recombine with. Further, after exiting the second heat exchanger 37, the high-pressure side flow path 32 is separated from the low-pressure side flow path 33 at point After forming, it is necessary to process the piping at these separation and recombination points where it is recombined with the low pressure side flow path 33 at point Y. For example, in the first heat exchanger 36, second heat exchanger 37, and third heat exchanger 38, the low pressure side flow path 33 and the high pressure side flow path 32 are thermally coupled with a double pipe structure. ing.

高圧側流路32をGM冷凍機20で冷却するために、X
、Yで示す点において、高圧側流路32は低圧側流路3
3から引き離され、再結合されている。これら配管の分
離再結合は、配管作業上。
In order to cool the high pressure side flow path 32 with the GM refrigerator 20,
, at the point indicated by Y, the high pressure side flow path 32 is connected to the low pressure side flow path 3.
It has been separated from 3 and reunited. The separation and reconnection of these piping is necessary for piping work.

面倒なものであり、システムの製造原価を上昇させる。It is cumbersome and increases the cost of manufacturing the system.

[発明が解決しようとする課U] 以上説明したように、従来の技術による冷凍機で予冷を
行なうJT回路装置においては、配管作業が繁雑なもの
であった。
[Problem U to be Solved by the Invention] As explained above, in the conventional JT circuit device in which precooling is performed using a refrigerator, piping work is complicated.

本発明の目的は、配管作業を簡素化し、製造原価を低減
することのできる、冷凍機で予冷を行なうJT回路装置
を提供することである。
An object of the present invention is to provide a JT circuit device that performs precooling with a refrigerator, which can simplify piping work and reduce manufacturing costs.

[課題を解決するための手段] 本発明の冷凍機で予冷を行なうJ、T回路装置は、冷凍
機の冷凍発生部に対して、JT回路の高圧流路、低圧流
路が共に熱的に結合され、熱交換を行なう。
[Means for Solving the Problems] In the J and T circuit device for precooling a refrigerator of the present invention, both the high-pressure flow path and the low-pressure flow path of the JT circuit are thermally connected to the refrigeration generation part of the refrigerator. are connected to perform heat exchange.

[作用] 冷凍機の冷凍発生部に対して、JT回路の高圧流路、低
圧流路を共に熱的に結合すると−JT回路の熱交換器と
、冷凍機の冷凍発生部との間において、JT回路の高圧
流路、低圧流路を分離する必要がなくなり、一体の配管
を行なうことができる。
[Operation] When both the high-pressure flow path and the low-pressure flow path of the JT circuit are thermally coupled to the refrigeration generation section of the refrigerator, - between the heat exchanger of the JT circuit and the refrigeration generation section of the refrigerator, There is no need to separate the high-pressure flow path and low-pressure flow path of the JT circuit, and the piping can be integrated.

[実施例] 第1図は本発明の実施例による、冷凍機で予冷を行なう
JT回路装置を示す。
[Embodiment] FIG. 1 shows a JT circuit device that performs precooling with a refrigerator according to an embodiment of the present invention.

JT回路10は、He圧縮aiiiの低圧側流路13と
高圧側流路12を含む、これらの高圧側流路12と低圧
側流路13とは共に第1熱交換器16.0M冷凍ff1
20との第1の熱的結合25、第2熱交換器17、GM
冷凍8m20との第2の熱的結合26、第3熱交換器1
8を経由する。その後、高圧側流路12はJT弁14を
介して冷凍負荷15に結合され、出力側が低圧側流路1
3に結合される。
The JT circuit 10 includes a low-pressure side flow path 13 and a high-pressure side flow path 12 for He compression aiii, and both the high-pressure side flow path 12 and the low-pressure side flow path 13 are connected to the first heat exchanger 16.0M refrigeration ff1.
first thermal coupling 25 with 20, second heat exchanger 17, GM
Second thermal coupling 26 with refrigeration 8m20, third heat exchanger 1
8. Thereafter, the high pressure side flow path 12 is connected to the refrigeration load 15 via the JT valve 14, and the output side is connected to the low pressure side flow path 1.
Combined with 3.

GM冷凍機20は、He圧縮機21を含み、1段冷凍発
生部22と2段冷凍発生部23を有する。
The GM refrigerator 20 includes a He compressor 21 and has a first-stage refrigeration generation section 22 and a second-stage refrigeration generation section 23.

1段冷凍発生部22においては、第1熱的結合25を介
してJT回路10の高圧側流路12および低圧(lII
流路13に対して、熱的結合を結合し、熱の授受を行な
う、同様に、0M冷凍120の2段冷凍発生部23は、
JT回Ii!810の第2の熱的結合26を介して高圧
側流路12と低圧側流路13と熱的結合する。これらの
熱的結合は、たとえば冷凍発生部22.23に高圧側流
路12と低圧側流路13との二重管を巻回しすることに
よって形成できる。
In the first stage refrigeration generation section 22, the high pressure side flow path 12 of the JT circuit 10 and the low pressure (III) are connected via the first thermal coupling 25.
Similarly, the two-stage refrigeration generation unit 23 of the 0M refrigeration unit 120 connects the flow path 13 with thermal coupling and transfers heat.
JT episode II! The high-pressure side flow path 12 and the low-pressure side flow path 13 are thermally coupled via the second thermal connection 26 of 810 . These thermal connections can be formed, for example, by winding a double pipe of the high-pressure side flow path 12 and the low-pressure side flow path 13 around the refrigeration generating section 22,23.

JT回路10の高圧rpJ流路12と低圧側流路13は
、第1熱交換器16、第1の熱的結合25、第2熱交換
器17、第2の熱的結合26、および第3熱交換器18
の間、同一の結合状態を保持することができる。
The high pressure RPJ channel 12 and the low pressure side channel 13 of the JT circuit 10 are connected to a first heat exchanger 16, a first thermal coupling 25, a second heat exchanger 17, a second thermal coupling 26, and a third heat exchanger 18
The same binding state can be maintained during this period.

このため、たとえば二重管構造をとった場合、二重管構
造から高圧rPJ流路32を分岐、合流する必要かなく
、常に同等の二重管構造を保持することかできる。GM
冷凍a120は、He圧縮機21を含み、1段冷凍発生
部22および2段冷凍発生部23においてJT回路10
の高圧側流路12および低圧側流路13と第1の熱的結
合25および第2の熱的結合26を形成する。
Therefore, when a double pipe structure is adopted, for example, there is no need to branch or merge the high pressure rPJ flow path 32 from the double pipe structure, and the same double pipe structure can always be maintained. GM
The refrigeration a120 includes a He compressor 21, and the JT circuit 10 in the first-stage refrigeration generating section 22 and the second-stage refrigeration generating section 23.
A first thermal connection 25 and a second thermal connection 26 are formed with the high-pressure side flow path 12 and the low-pressure side flow path 13 of.

以上説明した、冷凍機で予冷を行なうJT回路装置の性
能を以下の様に検討した。
The performance of the above-described JT circuit device that performs precooling using a refrigerator was examined as follows.

第2図は第1図に示す本発明の実施例によるJT回路装
置の、第3図に示す従来のJT回路装置との比較検討を
説明するモデルを示す。
FIG. 2 shows a model for explaining a comparative study of the JT circuit device according to the embodiment of the present invention shown in FIG. 1 with the conventional JT circuit device shown in FIG. 3.

JT回RIOは室温、20気圧の高圧側流路12と低温
、1気圧の低圧側流11813とを含む6図においては
、高圧側流路12とGM冷凍機20との結合を右側に、
低圧(III流路13とGM冷凍機20との結合を左側
に分けて示す。
In Figure 6, which includes the high-pressure side flow path 12 at room temperature and 20 atm and the low-pressure side flow 11813 at low temperature and 1 atm, the JT cycle RIO has the connection between the high-pressure side flow path 12 and the GM refrigerator 20 on the right side.
The connection between the low pressure (III) flow path 13 and the GM refrigerator 20 is shown separated on the left side.

JT回Il@ 10においては、第1熱交換器16にお
いて、高圧側流路12と低圧(lII流路13とか熱交
換率η1で結合し、第1の熱的結合25においては、高
圧側流路12かGM冷凍機20と効率ηh1で結合し、
低圧側流路13はGM冷凍fR20と効率ηL1で結合
する。同様に、第2熱交換器17においては、高圧側流
路12と低圧側流路13が効率η2で結合し、第2の熱
的結合26においては、高圧側流路12か効率ηh2で
、低圧側流路13か効率ηL2で結合し、第3熱交換器
18においては、効率η3で高圧側流路12と低圧側流
Ij@13か結合する。なお、JT回路10にはHeカ
スか流量GJ流れ、冷凍負荷15において熱量Qを奪う
In JT cycle Il@10, in the first heat exchanger 16, the high pressure side flow path 12 and the low pressure (lII flow path 13) are coupled with a heat exchange coefficient η1, and in the first thermal coupling 25, the high pressure side flow 12 or GM refrigerator 20 with efficiency ηh1,
The low pressure side flow path 13 is coupled to the GM refrigeration fR20 with efficiency ηL1. Similarly, in the second heat exchanger 17, the high pressure side flow path 12 and the low pressure side flow path 13 are coupled with efficiency η2, and in the second thermal coupling 26, the high pressure side flow path 12 is coupled with efficiency ηh2, The low pressure side flow path 13 is coupled with the efficiency ηL2, and in the third heat exchanger 18, the high pressure side flow path 12 and the low pressure side flow Ij@13 are coupled with the efficiency η3. Incidentally, the He sludge flows through the JT circuit 10 at a flow rate GJ, and the refrigeration load 15 takes away the amount of heat Q.

また、第1の熱的結合25においては、高圧側流路12
から熱量Qhtが0M冷凍8120に奪われ、低圧側流
路13は、GM冷凍機20がら熱1QL1を奪う、同様
に、第2の熱的結合においては高圧側流F#112から
熱量Qh2がGM冷凍機2oに杼り、GM冷凍機20か
ら低圧側流II?I13に熱量QL2が移る。また、そ
れぞれの熱的結合25.26において、GM冷凍機20
は温度STI、ST2を保持し、JT回路10の高圧側
流路12は、温度TH2から温度TH3に変化し、温度
■114がらTH5に変化する。また、低圧側流路13
においては、熱的結合25において、温度が■[3がら
TL2に変化し、熱的結合26においては温度はT15
からT14に変化する。このような、条件の下において
、ガス流量を種々に変化させて冷凍負荷15における熱
量Q (W)を計算によって算出した。なお、効率η[
1、ηL2は、50%の場合と90%の場合の2つの場
合について計算した。比較のため、従来式(ηし1=η
L2=O)も挙げである。結果を表1として示す、従来
のJT回路と比較して、本発明の実施例によるJT回路
の場合、冷凍負荷における熱量Qの大きさは、はとんど
変化していないことかわかる。つまり、高圧側流路と低
圧側流路をともにGM冷凍機と結合させ、熱交換を行な
っているか、目的とする冷凍負荷の冷却能力はほとんど
従来方式と差がない、一方、高圧側流路と低圧側流路を
一体に配管することができるため、JT回路の設置作業
はきわめて容易となり、製造原価を低減することができ
る4 以上実施例に沿って本発明を説明したが、本発明はこれ
らに制限されるものではない、たとえば、種々の変更、
改良、組み合わせ等が可能なことは当業者に自明であろ
う。
In addition, in the first thermal coupling 25, the high pressure side flow path 12
The amount of heat Qht is taken away from the 0M refrigerator 8120, and the low pressure side flow path 13 takes away heat 1QL1 from the GM refrigerator 20. Similarly, in the second thermal coupling, the amount of heat Qh2 is taken away from the high pressure side flow F#112 from the GM refrigerator 8120. Shuttle to refrigerator 2o, low pressure side flow II from GM refrigerator 20? The amount of heat QL2 is transferred to I13. Also, in each thermal coupling 25.26, the GM refrigerator 20
maintains temperatures STI and ST2, and the high pressure side flow path 12 of the JT circuit 10 changes from temperature TH2 to temperature TH3, and from temperature 114 to TH5. In addition, the low pressure side flow path 13
In thermal coupling 25, the temperature changes from ■[3 to TL2, and in thermal coupling 26, the temperature changes to T15.
It changes from T14. Under these conditions, the amount of heat Q (W) in the refrigeration load 15 was calculated by varying the gas flow rate. Note that the efficiency η[
1. ηL2 was calculated for two cases: 50% and 90%. For comparison, the conventional formula (η and 1 = η
L2=O) is also listed. The results are shown in Table 1, and it can be seen that compared to the conventional JT circuit, the amount of heat Q in the refrigeration load hardly changes in the JT circuit according to the embodiment of the present invention. In other words, the high-pressure side flow path and the low-pressure side flow path are both connected to the GM refrigerator to perform heat exchange, or the cooling capacity of the target refrigeration load is almost the same as that of the conventional system. Since the low pressure side flow path and the low pressure side flow path can be piped together, the installation work of the JT circuit is extremely easy and the manufacturing cost can be reduced. For example, without limitation, various changes,
It will be obvious to those skilled in the art that improvements, combinations, etc. are possible.

[発明の効果] 以上説明したように、本発明によれば、JT回路の高圧
111!I流路、低圧側流路の配管作業かきわめて簡素
化される一方、冷凍能力はほとんど差が生じない。
[Effects of the Invention] As explained above, according to the present invention, the high voltage 111! of the JT circuit! Although the piping work for the I flow path and the low pressure side flow path is extremely simplified, there is almost no difference in the refrigerating capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す冷凍機の冷凍回路を示す
回路図、 第2図は本発明の実施例による冷凍機の性能を検討する
ために行なった解析を説明するための該略図、 第3図は従来の技術による冷凍機の冷凍回路を示す回路
図である。 図において、 10      JT回路 11      He圧縮機 12     高圧側流路 13     低圧側流路 (表1) JT弁 冷凍負荷 第1熱交換器 第2熱交換器 第3熱交換器 GM冷凍機 He圧縮機 1段冷凍発生部 2段冷凍発生部 第1の熱的結合 第2の熱的結合 第1の熱的結合 第2の熱的結合 JT回路 He圧縮機 高圧側流路 低圧側流路 JT弁 冷凍負荷 第1熱交換器 第2熱交換器 第3熱交換器
FIG. 1 is a circuit diagram showing a refrigeration circuit of a refrigerator according to an embodiment of the present invention, and FIG. 2 is a schematic diagram illustrating an analysis conducted to examine the performance of a refrigerator according to an embodiment of the present invention. , FIG. 3 is a circuit diagram showing a refrigeration circuit of a refrigerator according to the prior art. In the figure, 10 JT circuit 11 He compressor 12 High pressure side flow path 13 Low pressure side flow path (Table 1) JT valve refrigeration load 1st heat exchanger 2nd heat exchanger 3rd heat exchanger GM refrigerator He compressor 1 Stage refrigeration generation section Two-stage refrigeration generation section First thermal coupling Second thermal coupling First thermal coupling Second thermal coupling JT circuit He compressor High pressure side flow path Low pressure side flow path JT valve Refrigeration load 1st heat exchanger 2nd heat exchanger 3rd heat exchanger

Claims (1)

【特許請求の範囲】[Claims] (1)、冷凍機で予冷を行なうJT回路装置であって、
冷凍機の冷凍発生部に対してJT回路の高圧流路、低圧
流路が共に熱的に結合され、熱交換を行なうことを特徴
とするJT回路装置。
(1) A JT circuit device that performs precooling with a refrigerator,
A JT circuit device characterized in that a high-pressure flow path and a low-pressure flow path of a JT circuit are both thermally coupled to a refrigeration generation part of a refrigerator to perform heat exchange.
JP10252990A 1990-04-18 1990-04-18 Jt circuit device for precooling operation with freezer device Pending JPH043856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10252990A JPH043856A (en) 1990-04-18 1990-04-18 Jt circuit device for precooling operation with freezer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10252990A JPH043856A (en) 1990-04-18 1990-04-18 Jt circuit device for precooling operation with freezer device

Publications (1)

Publication Number Publication Date
JPH043856A true JPH043856A (en) 1992-01-08

Family

ID=14329839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10252990A Pending JPH043856A (en) 1990-04-18 1990-04-18 Jt circuit device for precooling operation with freezer device

Country Status (1)

Country Link
JP (1) JPH043856A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633737A (en) * 1993-12-24 1997-05-27 Sharp Kabushiki Kaisha Projection-type color liquid crystal display having two micro-lens arrays
US5801814A (en) * 1995-03-28 1998-09-01 Fuji Photo Film Co., Ltd. Split image exposure method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633737A (en) * 1993-12-24 1997-05-27 Sharp Kabushiki Kaisha Projection-type color liquid crystal display having two micro-lens arrays
US5801814A (en) * 1995-03-28 1998-09-01 Fuji Photo Film Co., Ltd. Split image exposure method

Similar Documents

Publication Publication Date Title
US4169361A (en) Method of and apparatus for the generation of cold
RU2598471C2 (en) Cooling method and apparatus
JPH043856A (en) Jt circuit device for precooling operation with freezer device
GB2397367A (en) A pulse tube refrigerator
CN107560226B (en) Precooling type direct throttling JT refrigerating machine in liquid hydrogen temperature zone
CN211625758U (en) Four-stage cascade refrigeration device with multi-stage water cooler
CN109114851B (en) Regenerator and refrigeration cycle system
CN103808057B (en) A kind of cascade connection type vascular refrigerator reclaiming sound merit
US5575155A (en) Cooling system
CN108050722B (en) Primary throttling low-temperature refrigeration system for precooling by using energy separation effect of vortex tube
JP2003185280A (en) Refrigerating system and cold generation method
CN110953741A (en) Four-stage cascade refrigeration device with multi-stage water cooler
JP2001041598A (en) Multi-stage compression refrigerating machine
JPH1073333A (en) Cryogenic cooling apparatus
JP3732102B2 (en) Cryogenic refrigerator
CN216592305U (en) JT/GM refrigerator precooled by adopting plane sealing valve and heat regenerator
JPS5951155B2 (en) superconducting device
JPH11108476A (en) Cryostatic cooling device
JPH06101919A (en) Cryogenic freezing apparatus
JPH0250381B2 (en)
JP3708746B2 (en) Ice making device for ice heat storage
CN116864257A (en) Superconducting magnet long-distance rapid cooling system
JPH0737099Y2 (en) Cold transport equipment
SU1395911A1 (en) Method and cryogenic installation for producing cold
JPS61223455A (en) Cryogenic refrigerator and operation method thereof