JPH0437883B2 - - Google Patents

Info

Publication number
JPH0437883B2
JPH0437883B2 JP59172313A JP17231384A JPH0437883B2 JP H0437883 B2 JPH0437883 B2 JP H0437883B2 JP 59172313 A JP59172313 A JP 59172313A JP 17231384 A JP17231384 A JP 17231384A JP H0437883 B2 JPH0437883 B2 JP H0437883B2
Authority
JP
Japan
Prior art keywords
water
level
water level
gate
float
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59172313A
Other languages
Japanese (ja)
Other versions
JPS6062316A (en
Inventor
Sosan Chin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS6062316A publication Critical patent/JPS6062316A/en
Publication of JPH0437883B2 publication Critical patent/JPH0437883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/20Movable barrages; Lock or dry-dock gates

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Barrages (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、貯水池又は河川の の水位を自動的
に調節できるようにした自動水位調節方法および
その装置、更に詳しくは、貯水池において余水吐
けの高さを高くすることなく、設計計画洪水量を
設計計画通りの溢流を行いつつ、設計計画溢流水
深を最大限に活用して、余水吐けの高さに対応し
た既設従前満水位貯水量より多い貯水量、即ち、
設計計画溢流水深に対して最大限の貯水可能量を
貯水することができる自動水位調節方法およびそ
の装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an automatic water level adjustment method and device that can automatically adjust the water level of a reservoir or a river, and more particularly, to an automatic water level adjustment method and device for automatically regulating the water level of a reservoir or a river. The existing full water level corresponds to the height of the spillway by making the most of the design overflow depth while ensuring the overflow according to the design plan without increasing the height of the spillway. The amount of water stored is greater than the amount of water stored, i.e.
The present invention relates to an automatic water level adjustment method and device capable of storing the maximum amount of water for a designed overflow depth.

[従来の技術] 従来、貯水池は一定水位以上の水は排出できる
ように余水吐けを設けて溢水させており、このよ
うな余水吐け高さ以内の貯水の限定は、自然水資
源を十分に利用せずに惜しくもそのまま捨ててい
るという結果をもたらしている。しかし、現在の
貯水池施設において、設計計画溢流水深の溢流に
蹉趺をもたらさない条件であるのならば現在の貯
水量より多くの水を貯水することができるのであ
る。
[Conventional technology] Conventionally, reservoirs have been flooded by providing a spillway so that water above a certain water level can be discharged.Limiting water storage within the spillway height in this way does not fully utilize natural water resources. Unfortunately, the result is that they are simply thrown away without being used. However, in the current reservoir facility, it is possible to store more water than the current storage capacity if the conditions are such that the overflow does not cause overflow to the design plan overflow depth.

従来、貯水池の満水位を高くする調節方法とし
てはつぎのような方法が実施されてきた。即ち、
余水吐けの高さを高くするために、(イ)土叺や板材
を使つて高くする方法、(ロ)ゴムダム(DAM)を
設ける方法、(ハ)テンターゲイトを設ける方法、(ニ)
サイホン(Syphon)を設ける方法等がある。
Conventionally, the following methods have been used to raise the water level of a reservoir. That is,
In order to increase the height of the spillway, (a) using earthen mounds or planks, (b) installing a rubber dam (DAM), (c) installing a tentergate, (d)
There are methods such as installing a siphon.

[発明が解決しようとする問題点] しかしながら、前記(イ)の場合は洪水の時に土叺
が流失されるので、降雨の際ごとにあらためて土
叺を積みなおさなければならず、従つて経済的損
失、人力の消耗および手間がかかる等不都合があ
る。(ロ)の場合、ゴムダムは洪水の時、ゴムダム自
体が倒伏されて洪水量が設計計画洪水量より以上
に増加されることにより下流放水路の被害と河川
の被害が甚しくなる。(ハ)の場合は洪水時に人為的
に水門開閉をしなければならず、水門を開けると
洪水がいつぺんに越流するために放水路と河川に
莫大な被害を与えるので、大型ダムではダム上流
の流量観測所でダムに随時流量報告をし、それに
従つて水門を作動せしめるといつた不都合がある
ばかりでなく、大型ダムにおいて冬季満水位と夏
季満水位を設定のうえ洪水のある以前にあらかじ
め調節するので水門の開閉使用頻度が少なく、一
方小規模ダムではダム管理人を置くことができな
いので、危急の時には水門の操作が困難である。
(ニ)の場合は、余水吐けにサイホンを設けるもので
あつて、サイホンが一定水位以上に上昇すると、
一時に作動して多くの洪水量が排出されるので、
下流の放水路と河川に与える被害が大きく、また
作動が中止されるときには当初の満水位よりも水
位が落ちる欠陥と施工上の難点、工事費の過多等
の欠点がある。これかといつて余水吐け自体をよ
り高くすると満水位は高くなるけれどもそれに伴
なつて設計計画溢流水深の上昇につれば堤防の増
高築造、水没地域の拡大等の問題が生ずる。
[Problem to be solved by the invention] However, in the case of (a) above, the earthen mounds are washed away during floods, so the earthen earthen mounds have to be re-laid every time it rains, which is not economical. There are inconveniences such as loss, consumption of human power, and time consuming. In the case of (b), when a rubber dam floods, the rubber dam itself collapses and the flood volume increases beyond the designed flood volume, resulting in severe damage to the downstream spillway and the river. In case (c), the flood gates must be opened and closed manually during floods, and if the flood gates are opened, the floodwaters will suddenly overflow, causing enormous damage to the spillways and rivers. Not only is it inconvenient to constantly report the flow rate to the dam at the upstream flow rate gauging station and operate the flood gates accordingly, but also to set the winter high water level and summer high water level at large dams, and to set them before a flood occurs. Because they are adjusted in advance, the water gates are opened and closed less frequently, and on the other hand, small-scale dams cannot have a dam caretaker, making it difficult to operate the water gates in an emergency.
In case (d), a siphon is installed in the spillway, and when the siphon rises above a certain level,
Because they operate at once and discharge a large amount of flood water,
It causes great damage to downstream drainage channels and rivers, and has drawbacks such as defects in the water level dropping below the initial full water level when operation is stopped, construction difficulties, and excessive construction costs. On the other hand, if the spillway itself is made higher, the full water level will rise, but as the design plan overflow depth increases, problems such as the construction of higher embankments and the expansion of submerged areas will arise.

つぎに河川の〓の場合においては、河川を横切
る固定コンクリート〓を築造して取水位を高く
し、水路を通じた取水を利用するのであるが、〓
のためにその地点において洪水位が高くなり、堤
防の崩壊危険と河床の損傷流失等の問題点があ
る。
Next, in the case of a river, a fixed concrete wall is built across the river to raise the water intake level, and water is taken in through a waterway.
Therefore, the flood level becomes high at that point, causing problems such as the risk of bank collapse and damage to the river bed.

従つて、本発明は、前述のような貯水池におい
ての貯水量の増大確保と河川〓においての取水位
調節の問題点を解決しようとするもので、既設貯
水池余水吐けの施設と堤防を増高築造することな
く、また水没地域の拡大する要もなく、さらに設
計計画溢流水量の溢流水量を設計計画のとおり行
なえると同時に、既設余水吐けに対応した従前満
水位貯水量よりも多量の水を貯水できるようにし
ながらも、計画貯水位(変更満水位)を自動的に
調節、確保できるようにした自動水位調節方法お
よびその装置を提供することを目的とするもので
ある。
Therefore, the present invention aims to solve the above-mentioned problems of increasing the amount of water stored in reservoirs and adjusting the water intake level in rivers by increasing the height of existing reservoir spillway facilities and embankments. There is no need to build anything, there is no need to expand the submerged area, and the amount of overflow water can be carried out according to the design plan, and at the same time, the amount of water stored at the previous full water level corresponding to the existing spillway is larger. An object of the present invention is to provide an automatic water level adjustment method and device that can automatically adjust and secure the planned water level (changed full water level) while allowing the storage of water.

[問題点を解決するための手段] 本発明によれば、貯水池の余水吐け上に水門を
設置して余水吐けより高い変更満水位に水を貯水
し、該変更満水位にフロートを浮遊せしめ、該フ
ロートの昇降に対応して前記水門を開閉するよう
になし、前記変更満水位から設計計画溢流水位ま
での水位の変動に伴う前記フロートの昇降に対す
る前記水門の作動割合を、前記変更満水位から設
計計画溢流水位までの水深H1対余水吐けから設
計計画溢流水位までの水深と該設計計画溢流水位
から異常洪水位までの水深との和H5に相当する
値に設定した自動水位調節方法が提供される。ま
た、本発明によれば、河床に水門を設置するとと
もにに、河川の取水位にフロートを浮遊せしめ、
該フロートの昇降に対応して前記水門を開閉する
ようになし、前記取水位から設計計画洪水位まで
の水位の変動に伴う前記フロートの昇降に対する
前記水門の作動割合を、取水位から設計計画洪水
位までの水深H6に相当する値対河床から設計計
画洪水位までの水深H7に相当する値に設定した
自動水位調節方法が提供される。更に、本発明に
よれば、余水吐け又は河床上に上下動可能に設置
した水門と、該水門の設置に伴う変更満水位又は
取水位に浮遊せしめたフロートと、該フロートと
水門とを連動連結しフロートの昇降に対応して前
記水門を開閉作動する駆動手段とからなる自動水
位調節装置が提供される。
[Means for Solving the Problems] According to the present invention, a water gate is installed on the spillway of a reservoir to store water at a modified full water level higher than the spillway, and a float is suspended at the modified full water level. The water gate is opened and closed in response to the rise and fall of the float, and the operating ratio of the water gate with respect to the rise and fall of the float as the water level fluctuates from the changed full water level to the design plan overflow water level is changed as described above. The water depth from the full water level to the design plan overflow water level H1 is the sum of the water depth from the spillway to the design plan overflow water level and the water depth from the design plan overflow water level to the abnormal flood level, H5 . A set automatic water level adjustment method is provided. Further, according to the present invention, a water gate is installed on the river bed, and a float is suspended at the water intake level of the river,
The water gate is opened and closed in response to the rise and fall of the float, and the operating ratio of the water gate with respect to the rise and fall of the float accompanying fluctuations in water level from the water intake level to the design plan flood level is calculated from the water intake level to the design plan flood level. An automatic water level adjustment method is provided in which the water level is set to a value corresponding to a water depth H 6 from the river bed to a water depth H 7 from the riverbed to the design flood level. Furthermore, according to the present invention, a water gate installed movably up and down on a spillway or river bed, a float floating at a changed full water level or water intake level due to the installation of the water gate, and a linkage between the float and the water gate. An automatic water level adjustment device is provided which is connected to the drive means and which opens and closes the water gate in response to the raising and lowering of the float.

[作 用] 前記自動水位調節方法およびその装置が提供さ
れることにより、貯水池又は河川に洪水が流入
し、その水位が変更満水位又は取水位より高くな
ると、フロートが上昇し、該フロートの上昇に対
応して駆動装置が作動し、水門が引き上げられて
開き、流入水量を自動的に排出して貯水池又は河
川の水位を変更満水位又は取水位に維持する。
[Function] By providing the automatic water level adjustment method and its device, when flood water flows into a reservoir or river and the water level becomes higher than the changed full water level or the water intake level, the float rises; In response to this, the drive device is activated, the water gate is raised and opened, and the inflow water is automatically discharged to maintain the water level of the reservoir or river at the full or intake level.

〔実施例〕〔Example〕

次に、本発明による自動水位調節方法およびそ
の装置を図示の実施例に基づいて説明する。
Next, an automatic water level adjustment method and device thereof according to the present invention will be explained based on illustrated embodiments.

第1図は貯水池に適用する本発明方法の原理を
示すものである。同図において、Pは貯水池、Q
は余水吐け、Rは該余水吐けQと同一高さに設置
された水流案内台、Sは側溝である。このような
貯水池の満水位はD1(以下従前の満水位という)
である。この従前の満水位D1より更に貯水量を
増大するために、前記水流案内台R上に水門1が
設置され、これにより変更満水位をD2とするこ
とができる。この変更満水位D2以上貯水池Pに
水が流入した場合、その水量だけ貯水池Pから排
出し、貯水池Pの水位を変更満水位D2に自動的
に調節すべく前記水門1を開閉するために、前記
変更満水位D2から設計計画溢流水位D3間を貯水
池Pの水位に応じて浮動するフロート2が設置さ
れるとともに、該フロート2の上下動に対応して
前記水門1を作動開閉する後述する駆動手段3が
設置される。即ち、貯水池Pに洪水が流入し、そ
の水位が変更満水位D2より高くなり、フロート
2が上昇すると、前記駆動手段3はその水深H0
に対応して水門1を引き上げて開き、流入水量に
対応する水量を排出するようになつている。この
とき、排出量が流入量より多量であれば、水位が
次第に下がり、これに伴つてフロート2が降下す
ると、駆動手段3が水門1を下げて閉じるように
なつている。また、水門1が閉じられると、再び
水位が高くなりフロート2が上昇して前記のよう
に再び水門1が開かれるといつたフロート2の位
置に対応する水門の開閉動作が繰返し行われ、貯
水池Pの水位を変更満水位D2に自動的に維持す
べく調節される。
FIG. 1 shows the principle of the method of the invention applied to a reservoir. In the figure, P is a reservoir and Q
is a spillway, R is a water flow guide stand installed at the same height as the spillway Q, and S is a side gutter. The full water level of such a reservoir is D 1 (hereinafter referred to as the previous full water level).
It is. In order to further increase the amount of water stored from this previous full water level D1 , a water gate 1 is installed on the water flow guide platform R, thereby making it possible to set the changed full water level to D2 . In order to open and close the water gate 1 in order to automatically adjust the water level of the reservoir P to the changed full water level D2 by discharging that amount of water from the reservoir P when water flows into the reservoir P at or above the changed full water level D2 . , a float 2 is installed that floats between the changed full water level D 2 and the design plan overflow water level D 3 according to the water level of the reservoir P, and the water gate 1 is operated to open and close in response to the vertical movement of the float 2. A driving means 3, which will be described later, is installed. That is, when flood water flows into the reservoir P and its water level becomes higher than the modified full water level D2 , and the float 2 rises, the driving means 3 moves to the water depth H0.
In response to this, the water gate 1 is pulled up and opened, and an amount of water corresponding to the amount of inflow water is discharged. At this time, if the discharge amount is greater than the inflow amount, the water level gradually decreases, and when the float 2 descends accordingly, the driving means 3 lowers the water gate 1 and closes it. Furthermore, when the water gate 1 is closed, the water level rises again and the float 2 rises, and when the water gate 1 is opened again as described above, the opening and closing operations of the water gate corresponding to the position of the float 2 are repeated, and The water level of P is changed and adjusted automatically to maintain it at the full water level D2 .

ここで、フロート2の昇降と水門1の作動関係
について説明する。
Here, the relationship between the lifting and lowering of the float 2 and the operation of the water gate 1 will be explained.

フロート2は変更満水位D2から設計計画溢流
水位D3までの間、即ち、水位調節用水深H1内を
浮動するものであり、この水位調節用水深H1
大きいほど調節精度が高くなり好ましいのである
が、設計計画溢流水位D3は設計上決められてお
り、変更満水位D2から設計計画溢流水位D3まで
の間、即ち、設計計画溢流水深H2が一定である
ため、水位調節用水深H1を大きくすると、変更
満水位D2が低くなるため、水門1を設置して貯
水量を増加することができる水深(従前の満水位
D1から変更満水位D2までの水深)H3が相対的に
小さくなつてしまう。従つて、変更満水位D2
高さを適切に調節すれば、それに伴つてフロート
2の浮動距離で水位調節用水深H1も調節される。
即ち、次のような等式が成立する。
The float 2 floats between the modified full water level D 2 and the design plan overflow water level D 3 , that is, within the water level adjustment water depth H 1 , and the larger the water level adjustment water depth H 1 , the higher the adjustment accuracy. However, the design plan overflow water level D 3 is determined in the design, and the design plan overflow water depth H 2 is constant from the changed full water level D 2 to the design plan overflow water level D 3 . Therefore, if the water level adjustment water depth H 1 is increased, the changed full water level D 2 will be lowered, so the water depth (previous full water level
Water depth from D 1 to the changed full water level D 2 ) H 3 becomes relatively small. Therefore, if the height of the modified full water level D 2 is appropriately adjusted, the water level adjustment water depth H 1 is also adjusted by the floating distance of the float 2 accordingly.
That is, the following equation holds true.

D1から変更満水位D2までの水深H3 +水位調節用水深H1=設計計画溢流水深H2 一方、水門1は貯水池Pに流入する洪水の流入
量が増加し、フロート2が設計計画溢流水位D3
に達したとき、設計計画溢流水深H2より高く引
き上げられる必要がある。即ち、水門1は設計計
画溢流水深H2と設計計画溢流水位D3から異常洪
水位D4までの水深H4との和である異常洪水水深
H5に相当する量以上引き上げる必要がある。例
えば、設計計画溢流水深H2を1mとしたとき、フ
ロート2は設計計画溢流水位D3まで1m上昇する
が、水門1の開閉高さは設計計画溢流水位D3
り高くなくてはならず、設計計画溢流水位D3
(1m)の20%増をプラスした異常洪水位D4まで
の水位である1.2m以上でなくてはならない。な
ぜならば、もし、水門1の開閉高さが設計計画溢
流水位D3以下であると、水位が設計計画溢流水
位D3に上昇し、堤防の破壊の危険と水没地域範
囲の拡大等の問題が惹起される。
Water depth H 3 from D 1 to the changed full water level D 2 + Water depth for water level adjustment H 1 = Design plan overflow water depth H 2 On the other hand, in flood gate 1, the amount of flood water flowing into reservoir P increases, and float 2 is designed Design overflow water level D 3
When the water reaches H2, it is necessary to raise it higher than the design plan overflow depth H2 . In other words, the flood gate 1 has an abnormal flood water depth which is the sum of the design plan overflow water depth H2 and the water depth H4 from the design plan overflow water level D3 to the abnormal flood water level D4 .
It is necessary to raise the amount by more than the amount equivalent to H 5 . For example, when the design overflow water depth H 2 is 1 m, float 2 will rise 1 m to the design overflow water level D 3 , but the opening/closing height of flood gate 1 must be higher than the design overflow water level D 3 . Design plan overflow water level D 3
The water level must be 1.2 m or higher, which is the abnormal flood level D4 plus 20% increase of (1 m). This is because if the opening/closing height of flood gate 1 is below the design plan overflow water level D 3 , the water level will rise to the design plan overflow water level D 3 and there will be a risk of bank destruction and an expansion of the submerged area. Problems are caused.

そこで、水門1を設置することにより、貯水量
を増すことができる適切な水深H3をどの程度に
定めるか、即ち、水位調節用水深H1をどの位に
定めるかによつて水門1の開閉割合が定まるので
ある。
Therefore, by installing the water gate 1, the opening and closing of the water gate 1 is determined by determining the appropriate water depth H3 that can increase the amount of water stored, that is, how much the water depth H1 for water level adjustment is determined. The ratio is determined.

即ち、フロート2の上下浮動に対する水門1の
開閉割合を、変更満水位D2から設計計画溢流水
位D3までの水深H1(水位調節用水深)対余水吐け
Qから設計計画溢流水位D3までの水深H2(設計計
画溢流水深)と該設計計画溢流水位D3から異常
洪水位D4までの水深H4との和に相当する値に設
定した。このようなフロート2の昇降に対して水
門1を一定割合で作動するように前記駆動手段3
を構成することにより、変更満水位D2以上の流
入水量に対して同量の水量を排出することができ
るとともに、貯水池Pの水位が設計計画溢流水位
D3になるときには、水門1の位置は設計計画溢
流水位D3より高い異常洪水位D4まで開かれるた
め、設計計画洪水量は水門1を設置する以前と同
じ状態で排出されるので、洪水量の排出を円滑に
行うことができる。
In other words, the opening/closing ratio of the water gate 1 with respect to the vertical floating of the float 2 is changed from the full water level D 2 to the design plan overflow water level D 3 (water depth H 1 (water depth for water level adjustment)) versus the spillway Q to the design plan overflow water level It was set to a value corresponding to the sum of the water depth H 2 (design plan overflow water depth) up to D 3 and the water depth H 4 from the design plan overflow water level D 3 to the abnormal flood level D 4 . The drive means 3 operates the water gate 1 at a constant rate with respect to the rise and fall of the float 2.
By configuring , it is possible to discharge the same amount of water for an inflow amount of water greater than or equal to the changed full water level D2 , and the water level of the reservoir P can be adjusted to the design plan overflow water level.
When D 3 is reached, the position of flood gate 1 will be opened to the abnormal flood level D 4 which is higher than the design plan overflow water level D 3 , so the design plan flood volume will be discharged in the same state as before the installation of flood gate 1. Flood volume can be discharged smoothly.

ここで、水位調節用水位H1と水門1の開閉割
合について例示する。
Here, the water level H 1 for water level adjustment and the opening/closing ratio of the water gate 1 will be illustrated.

設計計画溢流水深H2を1m、異常洪水位D4を設
計計画溢流水位D3の20%増とし、異常洪水水深
H5を1.2mとすると次のとおりである。
Design plan overflow water depth H 2 is 1 m, abnormal flood water level D 4 is 20% higher than design plan overflow water level D 3 , and abnormal flood water depth is calculated.
If H 5 is 1.2m, it is as follows.

水位調節用水深H1を10cm(水門1を設置す
ることによつて貯水量が増加できる水深H3
90cm)にすると、水門1の開閉高さは水位調節
用水深H1の12倍以上になる。即ち、水位調節
用水深H1対水門1の開閉比は1:12以上にな
る。
The water depth H 1 for water level adjustment is 10 cm (the water depth H 3 where the amount of water storage can be increased by installing water gate 1 is
90cm), the opening/closing height of water gate 1 will be more than 12 times the water depth H1 for water level adjustment. That is, the opening/closing ratio of the water level adjustment water depth H1 to the water gate 1 is 1:12 or more.

水位調節用水深H1を20cm(H3は80cm)にす
ると、水門1の開閉高さは水位調節用水深H1
の6倍以上になる。即ち、水位調節用水深H1
対水門1の開閉比は1:6以上になる。
If the water depth H 1 for water level adjustment is 20 cm (H 3 is 80 cm), the opening/closing height of water gate 1 will be the water depth H 1 for water level adjustment.
It will be more than 6 times as large. That is, the water depth for water level adjustment H 1
The opening/closing ratio of floodgate 1 is 1:6 or more.

水位調節用水深H1を30cm(H3は70cm)にす
ると、水門1の調節高さは水位調節用水深H1
の4倍以上になる。即ち、水位調節用水深H1
対水門1の開閉比は1:4以上になる。
If the water depth H 1 for water level adjustment is 30 cm (H 3 is 70 cm), the adjustment height of water gate 1 will be the water depth H 1 for water level adjustment.
It will be more than four times as large. That is, the water depth for water level adjustment H 1
The opening/closing ratio of floodgate 1 is 1:4 or more.

水位調節用水深H1を50cm(H3は50cm)にす
ると、水門1の開閉高さは水位調節用水深H1
の約2.4倍以上になる。即ち、水位調節用水深
H1対水門1の開閉比は1:2.4以上になる。
If the water depth H 1 for water level adjustment is 50 cm (H 3 is 50 cm), the opening/closing height of water gate 1 will be the water depth H 1 for water level adjustment.
This will be approximately 2.4 times more than the previous year. In other words, the water depth for water level adjustment
The opening/closing ratio of H 1 to floodgate 1 will be 1:2.4 or more.

ここで、水位調節用水深H1はあまり少なくす
ると貯水量は多く確保されるが、水面変動(流量
による水位変動でなく、波等による水面変動)の
微動でも水門1の昇降動作が大きくおこり、よつ
て貯水量が流出されるおそれがあり、逆にあまり
多くすると水門1の昇降動作は大きくないが、相
対的に貯水量の確保が少なくなるので、最小限の
調節用水深H1は、設計計画溢流水深H2の30%程
度が好適である。
Here, if the water level adjustment water depth H 1 is too small, a large amount of water can be secured, but even slight fluctuations in the water level (not water level fluctuations due to flow rate, but water surface fluctuations due to waves, etc.) will cause large vertical movements of the water gate 1. As a result, there is a risk that the stored water will flow out.On the other hand, if it is increased too much, the vertical movement of the water gate 1 will not be large, but the amount of water stored will be relatively small, so the minimum adjustment water depth H1 is Approximately 30% of the planned overflow depth H2 is suitable.

従つて、設計計画溢流水深H2の高さが1mであ
つて水位調節用水深H1が30cmのとき、水門1は
駆動手段3によつて4倍の1.2m以上に開かれる。
即ち、水門1は余水吐けQの頂上から1.2mの位
置にあるので、当初の設計計画溢流水深H2を保
持しながら洪水量は排出されるのである。
Therefore, when the height of the designed overflow water depth H 2 is 1 m and the water level adjustment water depth H 1 is 30 cm, the water gate 1 is opened by the driving means 3 to a height of 1.2 m or more, which is four times the height.
That is, since the sluice gate 1 is located 1.2 m from the top of the spillway Q, the flood water is discharged while maintaining the original design plan overflow depth H2 .

このように、水位の昇降につれて水門1の開閉
割合を、変更満水位D2から設計計画溢流水位D3
までの水深H1(水位調節用水深)対余水吐けQか
ら設計計画溢流水位D3までの水深H2(設計計画溢
流水深)と該設計計画溢流水位D3から異常洪水
位D4までの水深H4との和H5(異常洪水水深)に
相当する値に設定したので、変更満水位D2を超
える流入水量に対して、その水位に従つて水門1
が自動的に開閉し流入水量と同量の水量を排出す
ることができ、貯水池Pの水を変更満水位D2
維持することができる。
In this way, as the water level rises and falls, the opening and closing ratio of water gate 1 changes from the full water level D 2 to the design plan overflow water level D 3
Water depth H 1 (water depth for water level adjustment) vs. water depth H 2 (design overflow water depth) from spillway Q to design plan overflow water level D 3 and from the design plan overflow water level D 3 to abnormal flood level D Since the value is set to be equivalent to the sum of the water depth H 4 up to H 4 ( abnormal flood water depth), water gate 1 is closed according to the water level for inflow water exceeding the changed full water level D 2 .
can automatically open and close to discharge the same amount of water as the inflow, and the water in the reservoir P can be maintained at the full water level D2 .

次に、河川Tに適用する本発明方法の原理を第
2図に基づいて説明する。
Next, the principle of the method of the present invention applied to river T will be explained based on FIG. 2.

河床Uに水門1を設置するとともに、河川Tの
取水位D6にフロート2を浮遊せしめ、該フロー
ト2の上下動に従い、前記駆動手段3によつて水
門1を開閉し、取水位D6を超える流入水量に対
して同量の水量を排出し、河川Tの水位を常に取
水位D6に維持するようにしたものである。
A water gate 1 is installed on the riverbed U, and a float 2 is suspended at the water intake level D 6 of the river T. According to the vertical movement of the float 2, the water gate 1 is opened and closed by the driving means 3 to raise the water intake level D 6 . The water level of river T is always maintained at the water intake level D 6 by discharging the same amount of water in response to the excess amount of inflow water.

ここでフロート2の昇降に対する水門1の作動
について説明する。
Here, the operation of the water gate 1 in response to the raising and lowering of the float 2 will be explained.

フロート2は取水位D6から設計計画洪水位D7
までの間(水位調節用水深H6)を上下に浮動す
る。
Float 2 is from intake level D 6 to design plan flood level D 7
It floats up and down (water depth H 6 for water level adjustment).

一方、水門1は河川Tに流入する洪水の流入量
が増加し、フロート2が設計計画洪水位D7に達
したとき、設計計画洪水水深H7に相当する量引
き上げられるように前記作動手段3を構成する。
On the other hand, when the amount of flood water flowing into the river T increases and the float 2 reaches the designed flood level D 7 , the operating means 3 is set such that the flood gate 1 is raised by an amount corresponding to the designed flood water depth H 7 . Configure.

即ち、フロート2の昇降に対する水門1の開閉
割合は、取水位D6から設計計画洪水位D7までの
水深H6(水位調節用水深)対河床Uから設計計画
洪水位D7までの水深H7(設計計画洪水水深)に設
定され、この作動割合になるように前記駆動手段
3は構成される。
In other words, the opening/closing ratio of the water gate 1 with respect to the rise and fall of the float 2 is the water depth H 6 from the intake level D 6 to the designed flood level D 7 (water depth for water level adjustment) versus the water depth H from the river bed U to the designed flood level D 7 7 (design plan flood water depth), and the driving means 3 is configured to have this operating ratio.

従つて、河川Tに洪水が流入し、その水位が取
水位D6を超えると、フロート2が上昇し、前記
駆動手段3を介してフロート2の上昇に対する前
記割合で水門1が引き上げられて開き、流入水量
に相当する水量を排出する。
Therefore, when flood water flows into the river T and the water level exceeds the water intake level D6 , the float 2 rises, and the water gate 1 is raised and opened via the drive means 3 at the rate of the rise of the float 2. , discharge an amount of water equivalent to the amount of inflow water.

そして、排出量が流入量よりも多すぎると水位
が次第に降下して水門1が前記駆動手段によつて
降下せしめられて閉じられる。水門1が降下し閉
じられると水位が上昇して再び水門1が前記駆動
手段により自動的に持ち上げられ開かれるといつ
た昇降運動の反復によつて取水位D6が自動的に
調節されるものである。
If the discharge amount is too much than the inflow amount, the water level will gradually drop and the water gate 1 will be lowered and closed by the driving means. When the water gate 1 is lowered and closed, the water level rises and the water gate 1 is automatically lifted and opened again by the driving means, and the water intake level D6 is automatically adjusted by repeating the vertical movement. It is.

この際、流入水量が排出水量より次第に多くな
ると水は継続して排出されながらも取水位が継続
して上昇するが、設計計画洪水位D7になるとき
の水門1の位置は、設計計画洪水位D7より高く
開かれて設計計画洪水量は水門1を設置しないと
同様の状態で排出されるので、洪水量排除が円滑
になされるのである。ここにおいて、水門の開閉
高さは、河川においては取水位D6が固定されて
いる(従つて、水位調節用水深H6が固定される)
ので、水位調節用水深H6対設計計画洪水深H7
割合は固定されるため、当該河川の実情に適した
値に設定すればよい。即ち、例えば、取水水深
H8を2mとし、水位調節用水深H6を5mとしたと
きは、設計計画洪水位水深H7は7mになる。即
ち、前記フロート2と水門1との作動割合は1:
1.4であればよい。この作動割合を前記貯水池の
場合のように1:4またはそれ以上にすると、設
計計画洪水の際水門1は20m以上引き上げられる
ことになり、不必要に水門を引き上げるという矛
盾が生ずるとともに、水門1を案内支持するガイ
ドレールも20m以上のものを設置しなければなら
ないという不都合が生ずる。
At this time, when the amount of inflow water gradually becomes larger than the amount of discharged water, water continues to be discharged and the water intake level continues to rise, but when the design plan flood level reaches D 7 , the position of flood gate 1 is at the design plan flood level. When the flood gate is opened higher than level D7 , the designed flood volume will be discharged in the same manner as if the flood gate 1 were not installed, so the flood volume can be removed smoothly. Here, the opening/closing height of the water gate is fixed at the water intake level D 6 in the river (therefore, the water depth H 6 for water level adjustment is fixed).
Therefore, since the ratio of the water level adjustment water depth H6 to the design plan flood depth H7 is fixed, it can be set to a value suitable for the actual situation of the river in question. That is, for example, the water intake depth
If H 8 is 2 m and water level adjustment water depth H 6 is 5 m, the design flood level depth H 7 will be 7 m. That is, the operating ratio of the float 2 and the water gate 1 is 1:
1.4 is fine. If this operating ratio is set to 1:4 or more as in the case of the above-mentioned reservoir, the water gate 1 will be raised more than 20m in the event of a planned flood, creating a contradiction in that the water gate is raised unnecessarily. The inconvenience arises in that the guide rail for guiding and supporting the vehicle must also be installed at a length of 20 m or more.

このように、取水位D6にフロート2を浮ばせ、
該フロート2の昇降に対する水門1の作動割合
を、取水位D6から設計計画洪水位D7までの水深
H6(水位調節用水深)対河床Uから設計計画洪水
位D7までの水深H7(設計計画洪水水深)となるよ
うに前記駆動手段3を構成したので、取水位D6
を超える流入水量に対して、フロート2が上昇す
るに従い水門1を前記作動割合によつて引き上げ
て開き、流入水量と同量の水量を排出するため、
河川Tの水位を常に取水位D6に維持することが
できる。
In this way, float 2 at the water intake level D 6 ,
The operating ratio of the water gate 1 with respect to the rise and fall of the float 2 is determined by the water depth from the water intake level D 6 to the design flood level D 7 .
H 6 (Water level adjustment water depth) Since the driving means 3 is configured to have a water depth H 7 (design flood water depth) from the riverbed U to the design flood level D 7 , the water intake level D 6
When the amount of water exceeds the amount of inflow water, as the float 2 rises, the water gate 1 is pulled up and opened according to the operating ratio to discharge the same amount of water as the amount of inflow water.
The water level of river T can always be maintained at the intake water level D6 .

尚、第2図において符号D8は異常洪水位であ
る。
Furthermore, in Fig. 2, the symbol D8 indicates the abnormal flood level.

次に、本発明による自動水位調節装置の具体例
を第3図および第4図により説明する。
Next, a specific example of the automatic water level adjustment device according to the present invention will be explained with reference to FIGS. 3 and 4.

第3図は本発明による自動水位調節装置を貯水
池に適用した状態を示す側面図、第4図は同装置
の斜視図である。流水案内台R上に設置した水門
1は、第4図に示すように流水案内台R上に設置
され断面コ字状をなし互いに対向して配置された
2つのガイドレール11,11にローラ12,1
2を介し上下動可能に支持される。
FIG. 3 is a side view showing the automatic water level adjustment device according to the present invention applied to a reservoir, and FIG. 4 is a perspective view of the device. As shown in FIG. 4, the water gate 1 installed on the flowing water guide stand R is installed on the flowing water guide stand R, has a U-shaped cross section, and has rollers 12 on two guide rails 11, 11, which are arranged opposite to each other. ,1
2, it is supported so that it can move up and down.

該水門1の上方には支柱9,9によつて支持さ
れる駆動手段3の架台31,31′が配置される。
該架台31,31′は断面コ字状をしたレール状
の枠材311によつて各々直方形状に構成され、
その上面には3つの軸受321,322,323
および321′,322′,323′が各々取付け
られている。該軸受321,321′にはチエー
ンホイール33,33′を各々備えた軸331,
331′が各々回転可能に軸支される。また、軸
受322,322′には前記チエーンホイール3
3,33′と同径のチエーンホイール34,3
4′および大径歯車35,35′を各々一体的に備
えた軸341,341′が各々回転可能に軸支さ
れる。更に、軸受323,323′には前記大径
歯車35,35′と各々噛合う小径歯車36,3
6′およびプーリ37,37′を各々一体的に備え
た軸361,361′が各々回転可能に軸支され
る。なお、前記大径歯車35,35′と小径歯車
36,36′との歯車比は、貯水池に適用する場
合は、前記余水吐けQの頂上D1から設計計画溢
流水位D3までの水深H2(設計計画溢流水深)と該
設計計画溢流水位D3から異常洪水位D4までの水
深H4との和H5(異常洪水水深)対変更満水位D2
から設計計画溢流水位D3までの水深H1(水位調節
用水深)との比率に、また、河川に適用する場合
は、河床Uから設計計画洪水位D7までの水深H7
(設計計画洪水水深)対取水位D6から設計計画洪
水位D7までの水深H6(水位調節用水深)との比率
に定められ、この歯車機構により増幅機構が構成
される。
Above the water gate 1, stands 31, 31' of the drive means 3 supported by pillars 9, 9 are arranged.
The frames 31, 31' are each formed into a rectangular parallelepiped shape by a rail-shaped frame member 311 having a U-shaped cross section.
There are three bearings 321, 322, 323 on its top surface.
and 321', 322', and 323' are attached, respectively. The bearings 321, 321' have a shaft 331, which is equipped with a chain wheel 33, 33', respectively.
331' are each rotatably supported. Further, the bearings 322, 322' are provided with the chain wheel 3.
Chain wheels 34, 3 with the same diameter as 3, 33'
4' and large-diameter gears 35, 35', respectively, are rotatably supported. Further, the bearings 323, 323' are provided with small diameter gears 36, 3 that mesh with the large diameter gears 35, 35', respectively.
6' and pulleys 37, 37', respectively, are rotatably supported. In addition, when applying to a reservoir, the gear ratio of the large diameter gears 35, 35' and the small diameter gears 36, 36' is based on the water depth from the top D1 of the spillway Q to the design plan overflow water level D3 . Sum of H 2 (design plan overflow water depth) and water depth H 4 from the design plan overflow water level D 3 to abnormal flood level D 4 H 5 ( abnormal flood water depth) vs. changed full water level D 2
to the water depth H 1 (water depth for water level adjustment) from the design plan overflow water level D 3 to the water depth H 1 (water level adjustment water depth), or when applying to a river, the water depth H 7 from the riverbed U to the design plan flood level D 7
(design plan flood water depth) to the water depth H6 (water level adjustment water depth) from intake water level D6 to design plan flood level D7 , and this gear mechanism constitutes an amplification mechanism.

前記フロート2,2′は、比重の小さい浮材を
内部に充填した円筒状に構成され、前記チエーン
ホイール33,33′の下方において貯水池内に
立設された軸棒24,24′に各々摺動可動に嵌
合される。該フロート2,2′の中空所21,2
1′の上下部にはベアリングを装着しており、軸
棒24,24′に沿つて円滑に摺動し得るように
なつている。なお、該フロート2,2′を嵌合す
る軸棒24,24′には載置片25,25′が各々
上下位置調整可能に装着され、フロート2,2′
の下方への移動を規制している。前記フロート
2,2′の上端には各々結着具22,22′が取付
けられており、該結着具22,22′に各々ロー
プ4,4′の一端が連結される。該ロープ4,
4′の他端には各々チエーン5,5′の一端が連結
され、該チエーン5,5′は前記チエーンホイー
ル33,33′および34,34′と係合して、そ
の他端が重錘6,6′を各々連結したロープ7,
7′と各々連結している。
The floats 2 and 2' have a cylindrical shape filled with a floating material having a low specific gravity, and slide on shaft rods 24 and 24' that are erected in the reservoir below the chain wheels 33 and 33'. It is movably fitted. Hollow spaces 21, 2 of the floats 2, 2'
Bearings are attached to the upper and lower parts of 1' so that it can slide smoothly along the shaft rods 24, 24'. In addition, mounting pieces 25 and 25' are respectively attached to the shaft rods 24 and 24' into which the floats 2 and 2' are fitted so that their vertical positions can be adjusted.
It restricts the downward movement of. Binding devices 22, 22' are attached to the upper ends of the floats 2, 2', respectively, and one ends of the ropes 4, 4' are connected to the binding devices 22, 22', respectively. The rope 4,
One end of each chain 5, 5' is connected to the other end of 4', and the chains 5, 5' are engaged with the chain wheels 33, 33' and 34, 34', and the other end is connected to the weight 6. , 6' connected to each other, the rope 7,
7', respectively.

なお、前記水門1にはその上端に結着具13,
13′が取付けられ、該結着具13,13′には、
前記プーリ37,37′に一端が各々連結された
ロープ8,8′の他端が各々連結される。なお、
前記重錘6,6′の重量は水門1の持ち上げ荷重
と、前記歯車35,35′と36,36′との歯車
比(増速比)と、機械摩擦損失との和より大き
く、また、前記フロート2,2′の重量は重錘6,
6′の重量と、機械摩擦損失の和より大きく設定
されている。また、前記水門1に連結されたロー
プ8,8′は、波涛による水面の流動の際、水門
1が作動しないように張り過ぎないようゆとりの
ある長さにする。
In addition, the water gate 1 has a binding device 13 at its upper end.
13' is attached to the fasteners 13, 13',
One end of the ropes 8, 8' is connected to the pulleys 37, 37', and the other ends of the ropes 8, 8' are connected to the pulleys 37, 37', respectively. In addition,
The weight of the weights 6, 6' is greater than the sum of the lifting load of the water gate 1, the gear ratio (speed increase ratio) of the gears 35, 35' and 36, 36', and mechanical friction loss, and The weight of the floats 2, 2' is the weight 6,
It is set larger than the sum of the weight of 6' and mechanical friction loss. Further, the ropes 8, 8' connected to the water gate 1 are made to have a sufficient length so as not to be too tensioned so that the water gate 1 does not operate when the water surface moves due to waves.

なお、流水案内台Rの上面長さLは、洪水量排
出のとき水圧のため水流Xが延びて直接側溝S
(第1図参照)に落下する水理現象を防止するよ
う適正な長さに設定する。
Note that the length L of the top surface of the water guide stand R is such that the water flow
(See Figure 1) Set the appropriate length to prevent the hydraulic phenomenon of falling.

次に、前記実施例の作動について説明する。 Next, the operation of the above embodiment will be explained.

貯水池Pの余水吐けQに設けた流水案内台R上
に水門1を設置することにより、結果的に余水吐
けQの高さを高める役割を果し、変更満水位D2
まで貯水することができる。洪水時に貯水池Pの
水位が変更満水位D2より上昇すると、フロート
2,2′は軸棒24,24′に沿つて上昇し、該フ
ロート6,6′とロープ4,4′、チエーン5,
5′およびロープ7,7′によつて連結されている
重錘6,6′が下降する。この過程において、チ
エーン5,5′はチエーンホイール34,34′を
第3図において矢印方向に回転するので、該チエ
ーンホイール34,34′と一体的に構成された
大径歯車35,35′が同一方向に回転せしめら
れる。従つて、該大径歯車35,35′と噛合つ
ている小径歯車36,36′が矢印方向に回転し、
該小径歯車36,36′と一体的に構成されてい
るプーリ37,37′が同一方向に回転するので、
該プーリ37,37′にロープ8,8′が巻き上げ
られ、これにより水門1がガイドレール11,1
1′(第4図参照)に沿つて引き上げられ、水門
1が開かれる。なお、前記重錘6と6′との合計
の重量は水門1の重量より重いので、フロート
2,2′が浮力によつて浮き上ることにより、水
門1は重錘6,6′に加わる重力によつて引き上
げられる。また、前記大径歯車35,35′と小
径歯車36,36′との歯車比を例えば4:1に
設定した場合、水位が10cm上昇すればフロート
2,2′が10cm上昇し、重錘6,6′が10cm下降す
るが、水門1は前記歯車比により4倍の40cm引き
揚げられる。即ち、水門1は水位上昇に対して4
倍の割合で引き揚げられることになる。
By installing the water gate 1 on the flow guide platform R installed at the spillway Q of the reservoir P, it serves to increase the height of the spillway Q, and the changed full water level D 2
Water can be stored up to. When the water level of the reservoir P rises above the full water level D2 during a flood, the floats 2, 2' rise along the shafts 24, 24', and the floats 6, 6', ropes 4, 4', chains 5,
5' and the weights 6, 6' connected by ropes 7, 7' are lowered. In this process, the chains 5, 5' rotate the chain wheels 34, 34' in the direction of the arrow in FIG. rotated in the same direction. Therefore, the small diameter gears 36, 36' meshing with the large diameter gears 35, 35' rotate in the direction of the arrow.
Since the pulleys 37 and 37' integrally constructed with the small diameter gears 36 and 36' rotate in the same direction,
The ropes 8, 8' are wound around the pulleys 37, 37', and this causes the water gate 1 to move along the guide rails 11, 1.
1' (see Figure 4) and the water gate 1 is opened. The total weight of the weights 6 and 6' is heavier than the weight of the water gate 1, so as the floats 2 and 2' float up due to buoyancy, the water gate 1 absorbs the gravity applied to the weights 6 and 6'. It is lifted up by. Further, if the gear ratio of the large diameter gears 35, 35' and the small diameter gears 36, 36' is set to 4:1, for example, if the water level rises by 10 cm, the floats 2, 2' will rise by 10 cm, and the weight 6 , 6' are lowered by 10 cm, but the water gate 1 is raised by 40 cm, which is 4 times the amount due to the gear ratio. In other words, sluice gate 1 is 4
It will be withdrawn at twice the rate.

水門1が開かれることにより、貯水池Pの水位
が下がると、フロート2,2′が降下するが該フ
ロートの重量は重錘6,6′の重量より重いので、
重錘6,6′は上昇し、該重錘6,6′と連結した
チエーン5がチエーンホイール34,34′を第
3図において矢印と反対方向に回動する。これに
より大径歯車35,35′、小径歯車36,3
6′が各々矢印と反対方向に回動するので、小歯
車35,35′と一体的に構成されたプーリ37,
37′がロープ8,8′を巻き戻し、水門1はその
自重によりガイドレール11,11′(第4図参
照)に沿つて降下し閉じられる。
When the water level in the reservoir P decreases by opening the water gate 1, the floats 2 and 2' descend, but since the weight of the floats is heavier than the weight of the weights 6 and 6',
The weights 6, 6' rise, and the chain 5 connected to the weights 6, 6' rotates the chain wheels 34, 34' in the direction opposite to the arrow in FIG. 3. As a result, large diameter gears 35, 35', small diameter gears 36, 3
6' rotate in the opposite direction to the arrows, so the pulleys 37 and
37' unwinds the ropes 8, 8', and the water gate 1 is lowered by its own weight along the guide rails 11, 11' (see FIG. 4) and closed.

[発明の効果] 以上のように本発明によれば貯水池および余水
吐けの高さを高くすることなく、設計計画洪水量
を設計計画とおり円滑に溢流させながら設計計画
溢流水深を最大限に活用して余水吐けの高さに対
応した既設の従前の満水位の貯水量より多くの貯
水量、即ち設計計画溢流水深に対して最大限の貯
水可能量を貯水することができる。従つて当初計
画された設計計画溢流水位がそのまま保持される
ので、従前の満水位を高めて水をより多量に貯水
しても貯水池の余水吐けの高さや、堤防の高さの
増高築造や、水没地域を拡大しなくても、変更満
水位を自由自在に調節保持することができる。そ
して流入された洪水量も自動的に水門を調節開閉
しながら排出することができるのである。
[Effects of the Invention] As described above, according to the present invention, the designed overflow depth can be maximized while smoothly overflowing the designed flood amount as planned without increasing the height of the reservoir and spillway. It is possible to store more water than the previous full water level storage capacity corresponding to the height of the spillway, that is, the maximum possible storage capacity for the design plan overflow depth. Therefore, the overflow water level originally planned will be maintained as it is, so even if you raise the previous full water level and store more water, there will be no increase in the height of the reservoir spillway or the height of the embankment. The full water level can be adjusted and maintained at will without any construction or expansion of the submerged area. The inflowing floodwaters can also be drained out while automatically adjusting and closing the flood gates.

また、本発明によれば、貯水量を増やすために
従来設置した余水吐けに土壌叺を積んだり、ゴム
ダム、テンターゲート、サイホン等の問題点を解
決し、貯水池に流入した水量だけ自動水位調節し
ながら排出すべく水門の開閉を水位に対応して自
動的に行うので、危急の洪水が流入しても自動的
に水位を調節し洪水を排出するため、ダム自体を
安全に保護し河床の破壊を防止し、人手や動力を
要することもなく、他の施設、方法に比べて施工
の簡便は勿論、工費も極めて低廉であるので、そ
の作用効果は真に大なるものである。
In addition, according to the present invention, in order to increase the amount of water stored, the conventionally installed spillway is piled with soil, and the problems of rubber dams, tenter gates, siphons, etc. are solved, and the water level is automatically adjusted according to the amount of water flowing into the reservoir. The sluice gates are automatically opened and closed according to the water level to discharge the water while the dam is in the flow, so even if critical floodwaters enter, the water level is automatically adjusted and the floodwaters are discharged, thereby safely protecting the dam itself and protecting the riverbed. It prevents destruction, does not require manpower or power, is easier to construct than other facilities or methods, and is extremely inexpensive, so its effects are truly great.

また、本発明によれば、河川においても固定コ
ンクリートを築造することなく取水位を高くする
ことができ、取水位の高さを保持することができ
るとともに、該取水位を超えて洪水が流入した場
合には、自動的に水門を開いて流入水量に対応し
た量だけ排出するので、河川の水位を常に取水位
に維持することができる。
Further, according to the present invention, the water intake level can be raised even in rivers without constructing fixed concrete, and the height of the water intake level can be maintained, and floodwaters can flow in beyond the water intake level. In such cases, the water gates are automatically opened and an amount corresponding to the amount of inflow water is discharged, so that the water level of the river can always be maintained at the intake level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を貯水池に適用した場合の
原理を示す説明図、第2図は同河川に適用した場
合の原理を示す説明図、第3図は本発明装置一実
施例を示す側面図、第4図は同斜視図である。 Q…余水吐け、R…流水案内台、U…河床、1
…水門、2…フロート、3…駆動手段、D2…変
更満水位、D3…設計計画溢流水位、D4…異常洪
水位、D6…取水位、D7…設計計画洪水位。
Fig. 1 is an explanatory diagram showing the principle when the method of the present invention is applied to a reservoir, Fig. 2 is an explanatory diagram showing the principle when the method is applied to a river, and Fig. 3 is a side view showing an embodiment of the device of the present invention. FIG. 4 is a perspective view of the same. Q...Spill water discharge, R...Flowing water guide, U...River bed, 1
...Sluice gate, 2...Float, 3...Driving means, D2...Change full water level, D3 ...Design plan overflow water level, D4 ...Abnormal flood level, D6 ... Water intake level, D7 ...Design plan flood level.

Claims (1)

【特許請求の範囲】 1 貯水池の余水吐け上に水門を設置して余水吐
けより高い変更満水位に水を貯水し、該変更満水
位にフロートを浮遊せしめ、該フロートの昇降に
対応して前記水門を開閉するようになし、前記変
更満水位から設計計画溢流水位までの水位の変動
に伴う前記フロートの昇降に対する前記水門の作
動割合を、前記変更満水位から設計計画溢流水位
までの水深H1対余水吐けから設計計画溢流水位
までの水深と該設計計画溢流水位から異常洪水位
までの水深との和H5に相当する値に設定したこ
とを特徴とする自動水位調節方法。 2 河床に水門を設置するとともに、河川の取水
位にフロートを浮遊せしめ、該フロートの昇降に
対応して前記水門を開閉するようになし、前記取
水位から設計計画洪水位までの水位の変動に伴う
前記フロートの昇降に対する前記水門の作動割合
を、取水位から設計計画洪水位までの水深H6
河床から設計計画洪水位までの水深H7に相当す
る値に設定したことを特徴とする自動水位調節方
法。 3 余水吐け又は河床上に上下動可能に設置した
水門と、該水門の設置に伴う変更満水位又は取水
位に浮遊せしめたフロートと、該フロートと水門
とを連動連結しフロートの昇降に対応して前記水
門を開閉作動させるのにフロートの昇降に対する
水門の作動割合を、変更満水位から設計計画溢流
水位までの水深H1対余水吐けから設計計画溢流
水位までの水深と該設計計画溢流水位から異常洪
水位までの水深との和H5に相当する値にする増
幅機構を備えた駆動手段とからなることをと特徴
とする自動水位調節装置。 4 前記駆動装置は、フロートの昇降に対する水
門の作動割合を、取水位から設計計画洪水位まで
の水深H6対河床から設計計画洪水位までの水深
H7に相当する値にする増幅機構を備えたことを
特徴とする特許請求の範囲第3項記載の自動水位
調節装置。 5 前記増幅機構は、フロートの昇降に対応して
作動せしめられる大歯車と、該大歯車と噛合い水
門とロープによつて連結されたプーリと一体的に
構成された小歯車とからなる歯車機構によつて構
成したことを特徴とする特許請求の範囲第3項又
は第4項記載の自動水位調節装置。
[Claims] 1. A water gate is installed above the spillway of a reservoir to store water at a changed full water level higher than the spillway, and a float is suspended at the changed full water level to correspond to the rise and fall of the float. The water gate is opened and closed at the same time as the modified full water level to the design plan overflow water level. The automatic water level is set to a value corresponding to H 5 , the sum of the water depth H 1 from the spillway to the design plan overflow water level and the water depth from the design plan overflow water level to the abnormal flood level. Adjustment method. 2.In addition to installing a water gate on the riverbed, a float is suspended at the water intake level of the river, and the water gate is opened and closed in response to the rise and fall of the float, thereby responding to fluctuations in water level from the water intake level to the designed flood level. An automatic system characterized in that the operating ratio of the water gate with respect to the elevation of the float is set to a value corresponding to a water depth H 6 from the water intake level to the designed flood level to a water depth H 7 from the river bed to the designed flood level. How to adjust the water level. 3. A water gate installed on a spillway or riverbed so that it can move up and down, a float suspended at a changed full water level or water intake level due to the installation of the water gate, and the float and water gate are interlocked and connected to handle the rise and fall of the float. In order to open and close the floodgate, change the operating ratio of the floodgate relative to the elevation of the float. Water depth H from the full water level to the design plan overflow water level H 1 vs. water depth from the spillway to the design plan overflow water level and the design 1. An automatic water level adjustment device comprising: a drive means equipped with an amplification mechanism that adjusts the water depth to a value corresponding to the sum H5 of the water depth from the planned overflow water level to the abnormal flood water level. 4 The drive device adjusts the operating ratio of the water gate to the rise and fall of the float by the water depth H from the water intake level to the designed flood level versus the water depth from the river bed to the designed flood level.
4. The automatic water level adjustment device according to claim 3, further comprising an amplification mechanism to adjust the water level to a value corresponding to H7 . 5. The amplification mechanism is a gear mechanism consisting of a large gear that is operated in response to the rise and fall of the float, and a small gear that meshes with the large gear and is integrally configured with a pulley connected by a water gate and a rope. An automatic water level adjustment device according to claim 3 or 4, characterized in that it is constructed by.
JP59172313A 1983-08-18 1984-08-18 Automatic water level control method and apparatus Granted JPS6062316A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR3866 1983-08-18
KR1019830003866A KR850001685B1 (en) 1983-08-18 1983-08-18 Method and apparatus of autometically controlling water level in a dam

Publications (2)

Publication Number Publication Date
JPS6062316A JPS6062316A (en) 1985-04-10
JPH0437883B2 true JPH0437883B2 (en) 1992-06-22

Family

ID=19229733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59172313A Granted JPS6062316A (en) 1983-08-18 1984-08-18 Automatic water level control method and apparatus

Country Status (2)

Country Link
JP (1) JPS6062316A (en)
KR (1) KR850001685B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009632A (en) * 2005-07-04 2007-01-18 Ryozo Kimura Effluent rate regulating device of regulating reservoir, and regulating reservoir
KR101362996B1 (en) * 2012-10-12 2014-02-20 주식회사 준수이앤텍 Habitat for providing ecosystem environment of fish
JP6405939B2 (en) * 2014-11-27 2018-10-17 株式会社朝日技研 Closing device
JP2021110085A (en) * 2019-12-30 2021-08-02 仲二 和田 Automatic opening and closing device of water gate door

Also Published As

Publication number Publication date
JPS6062316A (en) 1985-04-10
KR850001937A (en) 1985-04-10
KR850001685B1 (en) 1985-11-22

Similar Documents

Publication Publication Date Title
KR0183992B1 (en) Spillway for exceptional floods for barrages comprising at least two spillways
US6467998B1 (en) Self-regulating weirs and fishways
CN212477623U (en) Intelligent irrigation sluice control mechanism
GB2488809A (en) Buoyant weir
KR102179578B1 (en) Clutch hoisting device
KR101028841B1 (en) Flood control reservoir buoyancy type floodgate
JPH0437883B2 (en)
KR100473937B1 (en) Reservoir and embankment for reservoir
KR100399744B1 (en) Automatic sluice
JP3427324B2 (en) Chain gate device
KR200364372Y1 (en) Water gate driving apparatus for using water pressure
WO2021071985A1 (en) Surface water management system including weir wall and detention pond
KR200168438Y1 (en) Automatic water gate
KR101565081B1 (en) Apparatus for Movable Weir Gate
JPH086101Y2 (en) Fishway equipment for dams and weirs
JP4082260B2 (en) Float type selective water intake equipment
KR20180111113A (en) Buoyancy dam
SU1002452A1 (en) Fish passage
JP3972027B2 (en) Water-impervious film elevating type selective water intake equipment
KR20010012005A (en) Automatic water gate
JP3518747B2 (en) Float type selective water intake equipment
KR200183405Y1 (en) An automatic water gate
KR100784780B1 (en) Opening and Closing Device
KR200163487Y1 (en) Automatic water gate
KR200163475Y1 (en) An automatic water gate