JPH0437332B2 - - Google Patents

Info

Publication number
JPH0437332B2
JPH0437332B2 JP60139425A JP13942585A JPH0437332B2 JP H0437332 B2 JPH0437332 B2 JP H0437332B2 JP 60139425 A JP60139425 A JP 60139425A JP 13942585 A JP13942585 A JP 13942585A JP H0437332 B2 JPH0437332 B2 JP H0437332B2
Authority
JP
Japan
Prior art keywords
flame
air
current
fuel ratio
flame rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60139425A
Other languages
Japanese (ja)
Other versions
JPS62725A (en
Inventor
Hirohisa Imai
Keiichi Mori
Katsuhiko Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60139425A priority Critical patent/JPS62725A/en
Publication of JPS62725A publication Critical patent/JPS62725A/en
Publication of JPH0437332B2 publication Critical patent/JPH0437332B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/16Flame sensors using two or more of the same types of flame sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガス、石油等の燃焼装置の空燃比を検
出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a device for detecting the air-fuel ratio of a combustion device for gas, oil, etc.

従来の技術 従来の空燃比検出装置は第7図に示すように、
燃焼用混合気体の流出するバーナ1と、このバー
ナ1から形成される炎の外炎に触れる位置に設置
したフレームロツド2とを電源3と電流計4とを
直列に接続した回路に組込んだ構成であり、バー
ナ1から流出する燃焼用混合気体が着火して炎を
形成するのであるが、この炎に電導性がある為、
前記電流計4の回路が形成されて、この回路に電
流が流れる。この電流の大きさは炎内のイオン濃
度、即ち燃料と空気との混合比(以後、空燃比と
記す)によつて決定されるのであるから電流計4
の電流値を読み取る事によつて空燃比を知る事が
できるというものである。(例えば、特公昭46−
36947号公報)又、例えば特開昭51−117341号公
報に記載された装置のようにフレームロツドを2
本使い、一方を空気過剰検出、他方を燃料過剰検
出として用いた例もある。
Conventional technology As shown in Fig. 7, a conventional air-fuel ratio detection device
A configuration in which a burner 1 from which a combustion gas mixture flows out and a flame rod 2 installed in a position where it touches the outer flame of the flame formed from this burner 1 are incorporated into a circuit in which a power source 3 and an ammeter 4 are connected in series. The combustion gas mixture flowing out of burner 1 ignites and forms a flame, but since this flame has electrical conductivity,
A circuit for the ammeter 4 is formed, and a current flows through this circuit. The magnitude of this current is determined by the ion concentration in the flame, that is, the mixture ratio of fuel and air (hereinafter referred to as air-fuel ratio), so the ammeter 4
The air-fuel ratio can be determined by reading the current value. (For example, Tokuko Sho 46-
36947) Also, for example, as in the device described in JP-A-51-117341, two frame rods are
In some cases, one is used to detect excess air and the other is used to detect excess fuel.

発明が解決しようとする問題点 しかしながら、炎イオン電流と空燃比の関係は
第8図に示す様に空燃比P=POでイオン電流If
ピーク値If=IfOとなり、1対1の関数にならない
ことが知られており、上記前者の様な従来の構成
では、If=If1のときにP=P1なのかP=P2なのか
判別できないという問題点を有していた。又、上
記後者の様な従来の構成では空気過剰による燃焼
異常、燃料過剰による燃焼異常、又は正常状態の
識別はできるが、正常、異常の程度を定量的に検
出する、即ち空燃比を全域にわたつて検出するこ
とが困難であるという問題点を有していた。
Problems to be Solved by the Invention However, as shown in Figure 8, the relationship between the flame ion current and the air-fuel ratio is such that when the air-fuel ratio P = P O , the ion current I f has a peak value I f = I fO , and it is 1:1. It is known that it is not a function of Ta. In addition, in conventional configurations such as the latter, it is possible to distinguish between combustion abnormalities due to excess air, combustion abnormalities due to excess fuel, or normal conditions, but it is not possible to quantitatively detect the degree of normality or abnormality, that is, to determine the air-fuel ratio over the entire range. The problem is that it is difficult to detect it across the board.

本発明はかかる従来の問題点を解消するもの
で、空燃比を全域にわたり検出し、燃焼の正常、
異常を定量的に検出することを目的とする。
The present invention solves these conventional problems by detecting the air-fuel ratio over the entire range and determining whether combustion is normal or not.
The purpose is to quantitatively detect abnormalities.

問題点を解決するための手段 上記問題点を解決するために本発明の空燃比検
出装置は、一対の電極で構成され燃焼火炎中のイ
オン電流対空燃比特性が異なる箇所に挿入された
複数のフレームロツドセンサと、前記各フレーム
ロツドセンサの電極間に共通の電圧を印加する1
個の電源と、前記各フレームロツドセンサと直列
に接続された炎電流検出抵抗と、前記各検出抵抗
に流れる電流を計測する電流計測回路と、前記各
電流計測回路で計測した電流の相対値を演算する
割算手段を有する構成としたものである。
Means for Solving the Problems In order to solve the above problems, the air-fuel ratio detection device of the present invention comprises a plurality of frames each of which is composed of a pair of electrodes and is inserted into a combustion flame at a location where the ionic current vs. air-fuel ratio characteristics are different. 1. Applying a common voltage between the electrodes of the rod sensor and each of the frame rod sensors.
a flame current detection resistor connected in series with each of the flame rod sensors, a current measurement circuit that measures the current flowing through each of the detection resistors, and a relative value of the current measured by each of the current measurement circuits. The structure includes a division means for calculating .

作 用 本発明は上記した構成によつて、イオン電流の
相対値を演算することにより相対値と空燃比が1
対1の関数になるので相対値により空燃比が検出
可能という作用を有する。
Effect The present invention has the above-described configuration, and by calculating the relative value of the ion current, the relative value and the air-fuel ratio can be adjusted to 1.
Since it is a one-to-one function, it has the effect that the air-fuel ratio can be detected by a relative value.

実施例 以下、本発明の実施例を添付図面にもとづいて
説明する。なお、実施例の説明にあたつては第7
図と同一部分には便宜上同一符号を付した。第1
図において1はバーナーで、このバーナー1から
形成される火炎に2本のフレームロツド2aと2
bが挿入され、一方の電極をバーナ、他方の電極
をフレームロツドとした2個のフレームロツドセ
ンサ5a,5bを構成している。3は電源でここ
では直流電源を使用しており、6a,6bは炎電
流検出用抵抗であり、フレームロツドセンサ5
a,5bと炎電流検出用抵抗6a,6bの接続点
の電位は電流計測回路7a,7bに入力されフレ
ームロツドセンサ5a,5bに流れる炎電流Ifa
Ifbを検出している。演算増幅器8a,8bはボ
ルテージフオロア回路を構成しており炎電流Ifa
Ifbに比例した出力電圧に変換される。演算増幅
器9a、抵抗10a,11a、および演算増幅器
9b、抵抗10b,11bはそれぞれ反転増幅回
路を構成し抵抗12,13により分圧された基準
電位に対して反転増幅している。14は割算予段
で、演算増幅器15a,15b、トランジスタ1
6a,16b、ダイオード17a,17b、抵抗
18a,18b,19によりそれぞれ構成された
2個の対数変換回路と、演算増幅器20、抵抗2
1,22,23,24で構成された差動増幅器に
より構成され、log Ifb/Lfaに比例した出力を得
るために対数変換回路と差動増幅回路の組み合わ
せでlog Ifb−log lfaの演算を行つている。火炎
中でフレームフロツドの挿入箇所によりイオン電
流対空燃比特性を変えることが可能であることは
知られており、フレームロツドセンサ5a,5b
のイオン電流対空燃比特性を第2図に示す。イオ
ン電流Ifa、Ifbがピークとなる空燃比はそれぞれ
P=Pa、P=Pbと違つた点になる。電流検出回
路7a,7bの出力電圧V7a、V7bの特性は第3
図に示す様にイオン電流Ifa、Ifbに比例したもの
となる。電流検出回路7a,7bの出力電圧
V7a、V7bは割算予段14に入力する。2個の対
数変換回路の出力電圧Vla、VlbはV7a、V7bの対数
に比例するので特性は第4図に示す様になる。差
動増幅回路の出力電圧VputはVlb−Vlaに比例する
ので空燃比特性は第5図の様に1対1に対応する
関数となる。なお、第5図上P1、P2は第8図の
P1、P2に相当するものである。これでVputを計測
することにより空燃比を検出することが可能とな
るのである。
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings. In addition, when explaining the example, please refer to the seventh
For convenience, the same parts as those in the figure are given the same reference numerals. 1st
In the figure, 1 is a burner, and two flame rods 2a and 2 are attached to the flame formed from this burner 1.
b is inserted to form two flame rod sensors 5a and 5b, one electrode of which is a burner and the other electrode of which is a flame rod. 3 is a power source, in which a DC power source is used; 6a and 6b are resistances for flame current detection; and flame rod sensor 5.
The potential at the connection point between a, 5b and the flame current detection resistors 6a, 6b is input to the current measuring circuits 7a, 7b, and the flame current I fa flows to the flame rod sensors 5a, 5b.
I am detecting fb . The operational amplifiers 8a and 8b constitute a voltage follower circuit, and the flame current I fa ,
I is converted to an output voltage proportional to fb . The operational amplifier 9a, the resistors 10a and 11a, and the operational amplifier 9b and the resistors 10b and 11b each constitute an inverting amplifier circuit, and perform inverting amplification with respect to the reference potential divided by the resistors 12 and 13. 14 is a division budget stage, which includes operational amplifiers 15a and 15b, and transistor 1.
6a, 16b, diodes 17a, 17b, resistors 18a, 18b, 19, respectively, two logarithmic conversion circuits, an operational amplifier 20, and a resistor 2.
It is composed of a differential amplifier consisting of 1, 22, 23, and 24, and calculates log Ifb - log lfa by a combination of a logarithmic conversion circuit and a differential amplifier circuit to obtain an output proportional to log Ifb / Lfa. It's on. It is known that it is possible to change the ion current versus air-fuel ratio characteristics depending on the insertion point of the flame rod in a flame, and the flame rod sensors 5a and 5b
Figure 2 shows the ion current vs. air-fuel ratio characteristics of . The air-fuel ratios at which the ion currents I fa and I fb reach their peaks are at different points, P=P a and P=P b , respectively. The characteristics of the output voltages V 7a and V 7b of the current detection circuits 7a and 7b are as follows.
As shown in the figure, it is proportional to the ion currents I fa and I fb . Output voltage of current detection circuits 7a and 7b
V 7a and V 7b are input to the division budget stage 14. Since the output voltages V la and V lb of the two logarithmic conversion circuits are proportional to the logarithms of V 7a and V 7b , the characteristics are as shown in FIG. Since the output voltage Vput of the differential amplifier circuit is proportional to Vlb - Vla , the air-fuel ratio characteristic becomes a function corresponding to one to one as shown in FIG. In addition, P 1 and P 2 on the top of Figure 5 are the same as in Figure 8.
This corresponds to P 1 and P 2 . This makes it possible to detect the air-fuel ratio by measuring V put .

次に本発明の別の実施例を第6図に示す。前記
実施例と相違する点は電源3に交流電源を使用し
ている点である。抵抗25a,25bの両端の電
圧はコンデンサ26a,26bと抵抗27a,2
7bでそれぞれなる積分回路で、整流作用により
発生した直流分のみが積分され、積分回路の出力
電位は電流計測回路7a,7bに入力し、以下前
記実施例と同様の動作でVputを計測することによ
り空燃比を検出することが可能となる。以上の実
施例では割算手段を対数変換回路と差動増幅回路
で構成してlag Ifb−log/lfaの演算を行わせてい
るが、A/D変換回路によりデイジタル値に変換
してマイクロコンピユータ等のプログラムで構成
してIfb/Ifaの演算を行つてもよい。又、第2図
ではイオン電流Ifa、Ifbのピーク値が等しいが、
ピーク値が違つても同様の作用を有するものであ
り、フレームロツドセンサを3個以上使用してよ
り精度の高い検出を行なうことも可能である。
又、複数のフレームロツドセンサをパイロツトバ
ーナ等別バーナの火炎に挿入しても実現可能であ
る。
Next, another embodiment of the present invention is shown in FIG. The difference from the previous embodiment is that an AC power source is used as the power source 3. The voltage across the resistors 25a, 25b is the voltage across the capacitors 26a, 26b and the resistors 27a, 2.
At 7b, each integrating circuit integrates only the DC component generated by the rectifying action, and the output potential of the integrating circuit is input to current measuring circuits 7a and 7b, and V put is then measured in the same manner as in the above embodiment. This makes it possible to detect the air-fuel ratio. In the above embodiment, the dividing means is configured with a logarithmic conversion circuit and a differential amplifier circuit to perform the calculation of lag Ifb-log/lfa. Ifb/Ifa calculations may be performed using a program such as the following. Also, in Fig. 2, the peak values of the ion currents I fa and I fb are equal, but
Even if the peak values are different, they have the same effect, and it is also possible to perform more accurate detection by using three or more flame rod sensors.
It is also possible to insert a plurality of flame rod sensors into the flame of a separate burner such as a pilot burner.

発明の効果 以上のように本発明の空燃比検出装置によれば
次の効果が得られる。
Effects of the Invention As described above, the air-fuel ratio detection device of the present invention provides the following effects.

(1) 複数のフレームロツドセンサによりイオン電
流の相対値で空燃比を検出しているので、1対
1に対応する関数として空燃比を全域にわたり
検出可能であり、正常燃焼、異常燃焼の程度を
定量的に検出できる効果がある。
(1) Since the air-fuel ratio is detected using the relative value of the ion current using multiple flame rod sensors, it is possible to detect the air-fuel ratio over the entire range as a function with a one-to-one correspondence, and it is possible to detect the degree of normal combustion and abnormal combustion. It has the effect of quantitatively detecting

(2) 複数のフレームロツドセンサに1個の電源で
共通の電圧を印加しているので、電源電圧が変
動していイオン電流の絶対値が変動しても相対
値は変動しないので信頼性の高い空燃比検出装
置を提供できるという効果がある。
(2) Since a common voltage is applied to multiple flame rod sensors by one power supply, even if the power supply voltage fluctuates and the absolute value of the ion current changes, the relative value does not change, which improves reliability. This has the effect of providing a high air-fuel ratio detection device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す空燃比検出装
置の回路図、第2図はイオン電流の空燃比特性
図、第3図は電流検出回路出力電圧の空燃比特性
図、第4図は対数変換回路出力電圧の空燃比特性
図、第5図は空燃比検出部出力電圧の空燃比特性
図、第6図は本発明の他の実施例を示す回路図、
第7図は従来例の空燃比検出装置のシステム図、
第8図はイオン電流の空燃比特性図である。 1……バーナ(フレームロツドセンサの電極)、
2a,2b……フレームロツド(フレームロツド
センサの電極)、3……電源、5a,5b……フ
レームロツドセンサ、6a,6b……炎電流検出
抵抗、7a,7b……電流計測回路、14……割
算手段。
Fig. 1 is a circuit diagram of an air-fuel ratio detection device showing an embodiment of the present invention, Fig. 2 is an air-fuel ratio characteristic diagram of ion current, Fig. 3 is an air-fuel ratio characteristic diagram of current detection circuit output voltage, and Fig. 4 is an air-fuel ratio characteristic diagram of the logarithmic conversion circuit output voltage, FIG. 5 is an air-fuel ratio characteristic diagram of the air-fuel ratio detection unit output voltage, and FIG. 6 is a circuit diagram showing another embodiment of the present invention.
Figure 7 is a system diagram of a conventional air-fuel ratio detection device.
FIG. 8 is an air-fuel ratio characteristic diagram of ion current. 1...Burner (flame rod sensor electrode),
2a, 2b... Flame rod (electrode of flame rod sensor), 3... Power supply, 5a, 5b... Flame rod sensor, 6a, 6b... Flame current detection resistor, 7a, 7b... Current measurement circuit, 14 ...Division means.

Claims (1)

【特許請求の範囲】[Claims] 1 一対の電極で構成され燃焼火炎中のイオン電
流対空燃比特性が異なる箇所に挿入された複数の
フレームロツドセンサと、前記各フレームロツド
センサの電極間に共通の電圧を印加する1個の電
源と、前記各フレームロツドセンサと直列に接続
された炎電流検出抵抗と、前記各検出抵抗に流れ
る電流を計測する電流計測回路と、前記各電流計
測回路で計測した電流の相対値を演算する割算手
段を有する構成の空燃比検出装置。
1 A plurality of flame rod sensors each consisting of a pair of electrodes and inserted at locations with different ionic current versus air-fuel ratio characteristics in a combustion flame, and one flame rod sensor that applies a common voltage between the electrodes of each of the flame rod sensors. A power source, a flame current detection resistor connected in series with each of the flame rod sensors, a current measurement circuit that measures the current flowing through each of the detection resistors, and a calculation of the relative value of the current measured by each of the current measurement circuits. An air-fuel ratio detection device configured to have a dividing means.
JP60139425A 1985-06-26 1985-06-26 Air-fuel ratio detecting device Granted JPS62725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60139425A JPS62725A (en) 1985-06-26 1985-06-26 Air-fuel ratio detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60139425A JPS62725A (en) 1985-06-26 1985-06-26 Air-fuel ratio detecting device

Publications (2)

Publication Number Publication Date
JPS62725A JPS62725A (en) 1987-01-06
JPH0437332B2 true JPH0437332B2 (en) 1992-06-19

Family

ID=15244899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60139425A Granted JPS62725A (en) 1985-06-26 1985-06-26 Air-fuel ratio detecting device

Country Status (1)

Country Link
JP (1) JPS62725A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805029B1 (en) * 2000-02-15 2002-07-19 Brandt Cooking GAS BURNER CONTROL DEVICE
ITAN20020038A1 (en) * 2002-08-05 2004-02-06 Merloni Termosanitari Spa Ora Ariston Thermo Spa LAMBDA VIRTUAL SENSOR COMBUSTION CONTROL SYSTEM.
JP4997900B2 (en) * 2006-09-29 2012-08-08 株式会社ノーリツ Flame current detection device and combustion device
JP5274442B2 (en) * 2009-12-22 2013-08-28 株式会社パロマ Combustion device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117341A (en) * 1975-04-07 1976-10-15 Mitsubishi Electric Corp Combustion apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117341A (en) * 1975-04-07 1976-10-15 Mitsubishi Electric Corp Combustion apparatus

Also Published As

Publication number Publication date
JPS62725A (en) 1987-01-06

Similar Documents

Publication Publication Date Title
US4719428A (en) Storage battery condition tester utilizing low load current
US7671600B2 (en) Gas concentration detection apparatus having function for detecting sensor element activation status
US4769124A (en) Oxygen concentration detection device having a pair of oxygen pump units with a simplified construction
US5928494A (en) Gas sensor and method of measuring quantity of specific compounds in measuring gas
US6352632B1 (en) Connector for NOx sensor
JPH0437332B2 (en)
JPS6325572A (en) Leakage current measuring system of electrometer amplifier
CN211701978U (en) Extremely low bias current operational amplifier AD549 testing arrangement
JPH0437334B2 (en)
JPH0743340B2 (en) Oxygen concentration detector
JPH0421094B2 (en)
JP2001083183A (en) Current detection circuit and its inspection method
JP3523323B2 (en) Gas detection circuit using contact combustion type gas sensor
JPH0437330B2 (en)
JPS625013A (en) Combustion detecting system
JP3106660B2 (en) Humidity detector
JPS622489Y2 (en)
JP3019783B2 (en) Printed circuit board temperature detector
JPH0136150Y2 (en)
JPH0584412B2 (en)
JPH039023Y2 (en)
JPH088431Y2 (en) Resistance measurement device
SU1506342A1 (en) Method of linearizing the conversion characteristic of adsorbtion semiconductor sensing element
US6290828B1 (en) Circuit for measuring oxygen concentration
JPH1062463A (en) Method for measuring contact resistance of biological signal measuring electrode