JPH04373272A - Slave screen display circuit of muse signal - Google Patents

Slave screen display circuit of muse signal

Info

Publication number
JPH04373272A
JPH04373272A JP3177574A JP17757491A JPH04373272A JP H04373272 A JPH04373272 A JP H04373272A JP 3177574 A JP3177574 A JP 3177574A JP 17757491 A JP17757491 A JP 17757491A JP H04373272 A JPH04373272 A JP H04373272A
Authority
JP
Japan
Prior art keywords
signal
circuit
screen
muse
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3177574A
Other languages
Japanese (ja)
Other versions
JP2809322B2 (en
Inventor
Shigeru Sato
茂 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP3177574A priority Critical patent/JP2809322B2/en
Publication of JPH04373272A publication Critical patent/JPH04373272A/en
Application granted granted Critical
Publication of JP2809322B2 publication Critical patent/JP2809322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Television Systems (AREA)
  • Studio Circuits (AREA)

Abstract

PURPOSE:To obtain an economical display circuit of low cost by synthesizing a signal from a slave screen generation circuit with a master screen signal and displaying a slave screen as the display size of about a quarter in both horizontal/vertical directions on a master screen. CONSTITUTION:A MUSE signal is made to branch through the input terminal 4 of a signal for a slave screen display and inputted to a luminance signal processing circuit 7 and a chrominance signal processing circuit 5. The circuit 7 uses a filter having the passing band of about 4MHz and outputs the luminance signal of the inputted MUSE signal by thinning it out to about a quarter and reducing its picture element data density. As high resolution is not required as a slave screen, the processing of a still area such as interpolation between frames, etc., can be omitted. Thus, the circuit processing of movement detection, etc., is unnecessitated and field interpolation processing is omitted so as to simplify circuit constitution.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、MUSE信号の子画面
表示回路に関し、特にMUSE信号の特徴を生かして、
MUSE信号から子画面表示用信号を作成する回路に関
する。現在、ハイビジョン放送に関しては実験放送が行
われている最中であり、この放送を受信するための受像
装置の開発が進められており、ハイビジョン受像装置を
普及するためには、ハイビジョン放送の受像ばかりでな
く、他のハイビジョンソフト信号を入力して再生できる
ようにしておくことが望ましい。また、将来、ハイビジ
ョン放送が多チャンネル化した場合を考え、親画面に子
画面表示ができるようにして、2つのソースからの信号
が同時に受像できるようにしておくことが便利である。
[Industrial Application Field] The present invention relates to a sub-screen display circuit for MUSE signals, and particularly takes advantage of the characteristics of MUSE signals to
The present invention relates to a circuit that creates a small screen display signal from a MUSE signal. Currently, experimental broadcasts are being conducted regarding high-definition broadcasting, and the development of receivers for receiving these broadcasts is progressing. Instead, it is desirable to be able to input and play back other high-definition software signals. Furthermore, in consideration of the possibility that high-definition broadcasting will become multi-channel in the future, it would be convenient to be able to display a sub-screen on the main screen so that signals from two sources can be received simultaneously.

【0002】0002

【従来の技術】従来のMUSEデコーダを使用した子画
面表示回路は、図6に示すような回路が使用されており
、親画面表示用のハイビジョン信号等を入力端子1を介
してMUSEデコーダ2に入力し、同MUSEデコーダ
2でハイビジョン信号等を復調し親画面表示用のRGB
の映像信号に変換し出力し、合成回路3に入力しており
、また、子画面表示用のMUSE信号を入力端子4を介
してMUSEデコーダ10に入力し、同MUSEデコー
ダ10でMUSE信号を復調しRGBの映像信号に変換
し出力し、フィルタ回路11に入力し、同フィルタ回路
11で前記MUSEデコーダ10から出力されるRGB
の映像信号の各々を間引いて画素データの密度を落とし
て出力し、バッファメモリ12に入力し、同バッファメ
モリ12で前記RGBの映像信号の各々をメモリに書き
込み、同書き込みに使用したクロックパルスより高速の
クロックパルスで読み出して出力することにより、映像
信号の水平方向及び垂直方向を圧縮して子画面表示用の
RGBの映像信号として出力し前記合成回路3に入力し
て、同合成回路3で前記親画面表示用RGB信号に前記
子画面表示用RGB信号を合成して映像信号出力として
出力し、同映像信号出力に基づきディスプレイで親画面
の子画面が表示できるようにしていた。
[Prior Art] A conventional sub-screen display circuit using a MUSE decoder uses a circuit as shown in FIG. The same MUSE decoder 2 demodulates the high-definition signal, etc., and converts it into RGB for main screen display.
The MUSE signal for sub-screen display is input to the MUSE decoder 10 via the input terminal 4, and the MUSE decoder 10 demodulates the MUSE signal. It is converted into an RGB video signal and output, inputted to a filter circuit 11, and the filter circuit 11 outputs the RGB video signal from the MUSE decoder 10.
Each of the RGB video signals is thinned out to reduce the density of pixel data and output, inputted to the buffer memory 12, and the buffer memory 12 writes each of the RGB video signals to the memory, and from the clock pulse used for the writing. By reading and outputting with high-speed clock pulses, the horizontal and vertical directions of the video signal are compressed and output as an RGB video signal for small screen display, which is input to the synthesis circuit 3, where it is output. The RGB signal for displaying a sub-screen is synthesized with the RGB signal for displaying the main screen and output as a video signal output, so that the sub-screen of the main screen can be displayed on the display based on the video signal output.

【0003】0003

【発明が解決しようとする課題】従って、従来のMUS
Eデコーダを2つ用いた子画面表示方式では回路規模が
大きくなるといった問題点があった。本発明は、MUS
E信号の特徴を生かした子画面表示回路とすることによ
り、回路規模が小さく、コストの安い経済的なMUSE
信号の子画面表示回路を提供することを目的とする。
[Problems to be Solved by the Invention] Therefore, the conventional MUS
The small screen display method using two E-decoders has a problem in that the circuit scale becomes large. The present invention
By using a small screen display circuit that takes advantage of the characteristics of the E signal, it is possible to create an economical MUSE with a small circuit scale and low cost.
The purpose of this invention is to provide a signal sub-screen display circuit.

【0004】0004

【課題を解決するための手段】図1は、本発明の一実施
例を示すMUSE信号の子画面表示回路の電気回路ブロ
ック図であり、同図に示すように、MUSE信号の輝度
信号を間引いて画素データ密度を低下せしめる輝度信号
処理回路7と、同輝度信号処理回路7からの出力を水平
方向に約1/4に時間軸圧縮し、垂直方向に約1/4に
間引いて出力する時間軸圧縮回路8と、MUSE信号に
線順次で多重されているR−Y、及びB−Y信号を合成
し、さらに、約1/2に間引いて出力する色信号処理回
路5と、前記時間軸圧縮回路8の出力と前記色信号処理
回路5の出力から原色信号に変換して出力するマトッリ
クス回路6とからなる子画面作成回路からなり、例えば
、ハイビジョン信号をMUSEデコーダ2で復調した映
像信号を親画面信号とし、同親画面信号に前記子画面作
成回路からの信号を合成回路3で合成して、親画面に対
して水平及び垂直方向共、約1/4の表示サイズとした
子画面を表示するようにしたものである。
[Means for Solving the Problems] FIG. 1 is an electric circuit block diagram of a sub-screen display circuit for MUSE signals showing an embodiment of the present invention. The luminance signal processing circuit 7 lowers the pixel data density by compressing the time axis of the output from the luminance signal processing circuit 7 in the horizontal direction to approximately 1/4, and thinning the output to approximately 1/4 in the vertical direction. an axial compression circuit 8, a color signal processing circuit 5 that synthesizes the R-Y and B-Y signals line-sequentially multiplexed on the MUSE signal, thins the signal to approximately 1/2, and outputs the same; It consists of a sub-screen creation circuit consisting of the output of the compression circuit 8 and the matrix circuit 6 which converts the output of the color signal processing circuit 5 into a primary color signal and outputs it. The main screen signal is used as the main screen signal, and the synthesis circuit 3 synthesizes the signal from the child screen creation circuit with the main screen signal to create a child screen with a display size of about 1/4 of the main screen in both the horizontal and vertical directions. It is designed to be displayed.

【0005】[0005]

【作用】本発明は上記した構成により、親画面にMUS
E信号を復調して子画面を表示するようにしており、図
2はMUSE信号の信号形式を示す説明図であり、MU
SE信号は縦方向に1125本の走査線を有し、横方向
は1ラインを480点に標本化して所定の信号をサンプ
ル値伝送するようにしており、図の縦方向はライン番号
を示し、横方向はサンプル番号を示している。同図に示
すように、色信号は輝度信号に時分割多重されており、
水平方向はサンプル番号107から480迄に輝度信号
が割当られているのに対し、色信号はサンプル番号13
から106迄が割当られており、輝度信号に対して約1
/4に圧縮されている。また、垂直方向は、ライン番号
43から558迄に色信号、R−Y、及びB−Y信号が
線順次で多重されており、R−Y及びB−Y信号の各1
本から合成される色信号は、516本を有する輝度信号
に対して1/2に圧縮されていることになる。
[Operation] With the above-described configuration, the present invention allows MUS to be displayed on the main screen.
The E signal is demodulated to display a sub screen, and FIG. 2 is an explanatory diagram showing the signal format of the MUSE signal.
The SE signal has 1125 scanning lines in the vertical direction, and in the horizontal direction, one line is sampled at 480 points to transmit sample values of a predetermined signal, and the vertical direction in the figure indicates the line number. The horizontal direction shows the sample number. As shown in the figure, the color signal is time-division multiplexed with the luminance signal,
In the horizontal direction, the luminance signal is assigned to sample numbers 107 to 480, while the color signal is assigned to sample number 13.
to 106, and approximately 1 is assigned to the luminance signal.
It is compressed to /4. In addition, in the vertical direction, the color signal, R-Y, and B-Y signals are multiplexed line-sequentially from line numbers 43 to 558, and one for each R-Y and B-Y signal.
The color signal synthesized from the book is compressed to 1/2 of the luminance signal having 516 signals.

【0006】子画面作成回路を色信号に輝度信号を合わ
せる回路構成とし、ハイビジョン信号の再生画像に縦1
/4、横1/4のサイズでMUSE信号を子画面表示を
するとすれば、輝度信号の水平方向と垂直方向を時間軸
圧縮回路8で約1/4に圧縮し、垂直方向は約129本
の走査線とし、水平方向は色信号の時間の長さに合わせ
るようにし、MUSE信号の輝度信号に線順次で多重さ
れている516本の色信号、R−Y、及びB−Y信号は
、合成して258本とし、さらに、間引き等の処理を行
って約1/2に変換して約129本の色信号とすれば良
く、色信号は輝度信号に対して既に圧縮されているため
、子画面作成回路の圧縮回路を部分的に省くことができ
、回路規模を小さくすることができる。また、子画面は
表示スペースが小さく、親画面より解像度が低くても違
和感がなく、MUSE信号の伝送の限界が約20MHz
の帯域幅であるため、子画面として表示する画質の品位
は約4MHzの帯域幅があれば充分であり、輝度信号処
理回路7に約4MHzの帯域幅を有するフィルタ回路を
使用してMUSE信号の輝度信号を間引いて画素データ
密度を低下せしめるようにしている。輝度信号処理回路
7の帯域幅を約4MHzとすれば、MUSE信号の帯域
圧縮による折り返し成分が含まれないことから、画素デ
ータの内挿処理が不要となり、従って、フレーム間内挿
等の静止領域の処理を省くことができ、動き検出等の回
路処理を不要とし、フィールド内内挿処理も省いて子画
面作成回路を簡素化することができる。
[0006] The sub-screen creation circuit has a circuit configuration that matches the luminance signal to the color signal, and the vertical one is added to the reproduced image of the high-definition signal.
/4, if the MUSE signal is to be displayed in a sub-screen with 1/4 horizontal size, the horizontal and vertical directions of the luminance signal will be compressed to about 1/4 by the time axis compression circuit 8, and the vertical direction will have about 129 lines. The 516 color signals, R-Y, and B-Y signals that are line-sequentially multiplexed on the luminance signal of the MUSE signal, with the horizontal direction matching the time length of the color signal, are as follows: All you have to do is combine them to 258 signals, and then perform processing such as thinning to convert them to approximately 1/2 to obtain approximately 129 color signals.Since the color signals are already compressed compared to the luminance signals, The compression circuit of the child screen creation circuit can be partially omitted, and the circuit scale can be reduced. In addition, the display space of the child screen is small, so there is no discomfort even if the resolution is lower than the main screen, and the limit of MUSE signal transmission is approximately 20MHz.
Therefore, a bandwidth of approximately 4 MHz is sufficient for the image quality displayed as a child screen, and a filter circuit having a bandwidth of approximately 4 MHz is used in the luminance signal processing circuit 7 to process the MUSE signal. The pixel data density is reduced by thinning out the luminance signal. If the bandwidth of the luminance signal processing circuit 7 is approximately 4 MHz, no aliasing component due to band compression of the MUSE signal will be included, so interpolation processing of pixel data will be unnecessary, and therefore static area such as interframe interpolation will be eliminated. This eliminates the need for circuit processing such as motion detection, and also simplifies the sub-screen creation circuit by eliminating intra-field interpolation processing.

【0007】[0007]

【実施例】図1は、本発明の一実施例を示すMUSE信
号の子画面表示回路の電気回路ブロック図であり、4は
入力端子であり、MUSE信号を子画面表示用信号の入
力端子4を介して分岐させて、輝度信号処理回路7と色
信号処理回路5に入力している。輝度信号処理回路7と
しては、約4MHz程度の通過帯域を有するフィルタを
使用し、入力されたMUSE信号の輝度信号を約1/4
に間引いて画素データ密度を低下せしめて出力するよう
にしており、子画面としては高解像度が要求されないた
め、フレーム間内挿等の静止領域の処理を省くことがで
き、従って、動き検出等の回路処理を不要とし、フィー
ルド内内挿処理も省いて回路構成を簡素化できるように
している。
Embodiment FIG. 1 is an electric circuit block diagram of a sub-screen display circuit for MUSE signals showing an embodiment of the present invention. Reference numeral 4 designates an input terminal, and the MUSE signal is transmitted to the input terminal 4 for sub-screen display signals. The signal is branched to the luminance signal processing circuit 7 and the color signal processing circuit 5. As the luminance signal processing circuit 7, a filter having a pass band of approximately 4 MHz is used, and the luminance signal of the input MUSE signal is reduced to approximately 1/4.
Since the sub-screen does not require high resolution, it is possible to omit processing of static areas such as inter-frame interpolation, and therefore it is possible to reduce the pixel data density before outputting. This eliminates the need for circuit processing and also eliminates field interpolation processing, simplifying the circuit configuration.

【0008】輝度信号処理回路7からの出力を時間軸圧
縮回路8に入力しており、図4は本発明の輝度信号の水
平方向の処理を示す説明図であり、同図に示すように時
間軸圧縮回路8で水平方向に約1/4に圧縮して、色信
号と水平方向の時間の長さを合わせるようにし、また、
図5は本発明の色信号と輝度信号の垂直方向の処理を示
す説明図であり、同図に示すように、516本の輝度信
号走査線を垂直方向に間引き等の処理を行って約1/4
にして、約129本の輝度信号走査線として出力する。 色信号処理回路5では、入力されたMUSE信号の輝度
信号に線順次で多重されている色信号、R−Y、及びB
−Y信号を合成して258本の色信号とし、さらに、図
5に示すように間引き等の処理を行って約1/2にし、
約129本の色信号として出力する。時間軸圧縮回路8
と色信号処理回路5からの出力はマトリックス回路6に
入力されており、同マトリックス回路6でRGBの原色
信号に変換して子画面作成用信号として出力する。
The output from the luminance signal processing circuit 7 is input to a time axis compression circuit 8. FIG. 4 is an explanatory diagram showing horizontal processing of the luminance signal according to the present invention. The axial compression circuit 8 compresses the signal to approximately 1/4 in the horizontal direction to match the color signal and the horizontal time length, and
FIG. 5 is an explanatory diagram showing vertical processing of color signals and luminance signals according to the present invention. /4
and outputs it as approximately 129 luminance signal scanning lines. In the color signal processing circuit 5, color signals, R-Y, and B, which are line-sequentially multiplexed on the luminance signal of the input MUSE signal, are processed.
-Y signals are combined to create 258 color signals, and as shown in Figure 5, processing such as thinning is performed to reduce the number to about 1/2.
It is output as approximately 129 color signals. Time axis compression circuit 8
The outputs from the color signal processing circuit 5 are input to a matrix circuit 6, which converts them into RGB primary color signals and outputs them as signals for creating a child screen.

【0009】例えば、親画面信号としてハイビジョンソ
フトを使用して入力端子1を介してハイビジョンソフト
信号をMUSEデコーダ2に入力し、同MUSEデコー
ダ2でハイビジョンソフト信号を復調してRGBの原色
信号を親画面信号として出力し、合成回路3に入力し、
同合成回路3で親画面信号と前記子画面作成用信号とを
合成して出力し、本発明の一実施例を示す親画面への子
画面の合成図である図3に示すように、子画面を親画面
に対して水平及び垂直方向共、約1/4の表示サイズと
して表示するようにしている。親画面信号としては、走
査線数1125本でインタレース走査しているハイビジ
ョン信号でも、525本の走査線数でノンインタレース
走査しているEDTV信号を使用しても良く、どちらの
場合でも約1/4の表示サイズで子画面表示をすること
ができる。
For example, using high-definition software as a main screen signal, input the high-definition software signal to the MUSE decoder 2 through the input terminal 1, demodulate the high-definition software signal with the same MUSE decoder 2, and convert the RGB primary color signals into the main color signals. Output it as a screen signal, input it to the synthesis circuit 3,
The synthesis circuit 3 synthesizes and outputs the main screen signal and the child screen creation signal, and as shown in FIG. The screen is displayed at approximately 1/4 the display size of the parent screen in both the horizontal and vertical directions. As the main screen signal, a high-definition signal with 1125 scanning lines and interlaced scanning or an EDTV signal with 525 scanning lines and non-interlaced scanning may be used; in either case, approximately You can display a sub-screen at 1/4 the display size.

【0010】0010

【発明の効果】以上説明したように、本発明によれば、
MUSE信号中に圧縮されて伝送されてくる色信号に合
わせて輝度信号を処理することにより、子画面作成回路
の圧縮回路を部分的に省くことができ、子画面としては
高解像度が要求されないため、輝度信号の静止画処理等
を省くことにより、回路規模を従来より小さくすること
ができ、コストの安い経済的なMUSE信号の子画面表
示回路を提供することができる。
[Effects of the Invention] As explained above, according to the present invention,
By processing the luminance signal in accordance with the color signal compressed and transmitted in the MUSE signal, the compression circuit of the child screen creation circuit can be partially omitted, and high resolution is not required for the child screen. By omitting still image processing of luminance signals, the circuit scale can be made smaller than before, and an economical MUSE signal sub-screen display circuit can be provided at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示すMUSE信号の子画面
表示回路の電気回路ブロック図である。
FIG. 1 is an electric circuit block diagram of a small screen display circuit for a MUSE signal, showing an embodiment of the present invention.

【図2】MUSE信号の信号形式を示す説明図である。FIG. 2 is an explanatory diagram showing a signal format of a MUSE signal.

【図3】本発明の一実施例を示す親画面への子画面の合
成図である。
FIG. 3 is a composite diagram of a child screen on a main screen, showing an embodiment of the present invention.

【図4】本発明の輝度信号の水平方向の処理を示す説明
図である。
FIG. 4 is an explanatory diagram showing horizontal processing of a luminance signal according to the present invention.

【図5】本発明の色信号と輝度信号の垂直方向の処理を
示す説明図である。
FIG. 5 is an explanatory diagram showing vertical processing of color signals and luminance signals according to the present invention.

【図6】従来例を示す子画面表示回路の電気回路ブロッ
ク図である。
FIG. 6 is an electric circuit block diagram of a small screen display circuit showing a conventional example.

【符号の説明】[Explanation of symbols]

1  入力端子 2  MUSEデコーダ 3  合成回路 4  入力端子 5  色信号処理回路 6  マトリックス回路 7  輝度信号処理回路 8  時間軸圧縮回路 10  MUSEデコーダ 11  フィルタ 12  バッファメモリ 1 Input terminal 2 MUSE decoder 3 Synthesis circuit 4 Input terminal 5 Color signal processing circuit 6 Matrix circuit 7 Luminance signal processing circuit 8 Time axis compression circuit 10 MUSE decoder 11 Filter 12 Buffer memory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ディジタル信号に変換され抽出された
MUSE信号の輝度信号を間引いて画素データ密度を低
下せしめる輝度信号処理回路と、同輝度信号処理回路か
らの出力を水平方向に約1/4に時間軸圧縮し、垂直方
向に約1/4に間引いて出力する時間軸圧縮回路と、M
USE信号に線順次で多重されているR−Y、及びB−
Y信号を合成し、さらに、約1/2に間引いて出力する
色信号処理回路と、前記時間軸圧縮回路の出力と前記色
信号処理回路の出力とから原色信号に変換して出力する
マトッリクス回路とからなる子画面作成回路からなり、
親画面信号に前記子画面作成回路からの信号を合成して
、親画面に水平及び垂直方向共、約1/4の表示サイズ
として子画面を表示することを特徴とするMUSE信号
の子画面表示回路。
1. A luminance signal processing circuit that reduces the pixel data density by thinning out the luminance signal of the MUSE signal converted into a digital signal and extracted, and the output from the luminance signal processing circuit is reduced to about 1/4 in the horizontal direction. M
R-Y and B- are multiplexed line-sequentially on the USE signal.
a color signal processing circuit that synthesizes the Y signal, thins it out to approximately 1/2, and outputs the signal; and a matrix circuit that converts the output of the time axis compression circuit and the output of the color signal processing circuit into a primary color signal and outputs the signal. It consists of a child screen creation circuit consisting of
A sub-screen display of a MUSE signal characterized in that the main screen signal is combined with the signal from the sub-screen creation circuit to display the sub-screen at approximately 1/4 the display size of the main screen in both the horizontal and vertical directions. circuit.
【請求項2】  前記輝度信号処理回路が約4MHzの
通過帯域を有するフィルタ回路からなることを特徴とす
るMUSE信号の子画面表示回路。
2. A small screen display circuit for a MUSE signal, wherein the luminance signal processing circuit is comprised of a filter circuit having a pass band of about 4 MHz.
JP3177574A 1991-06-21 1991-06-21 Small screen display circuit for MUSE signal Expired - Lifetime JP2809322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177574A JP2809322B2 (en) 1991-06-21 1991-06-21 Small screen display circuit for MUSE signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177574A JP2809322B2 (en) 1991-06-21 1991-06-21 Small screen display circuit for MUSE signal

Publications (2)

Publication Number Publication Date
JPH04373272A true JPH04373272A (en) 1992-12-25
JP2809322B2 JP2809322B2 (en) 1998-10-08

Family

ID=16033353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177574A Expired - Lifetime JP2809322B2 (en) 1991-06-21 1991-06-21 Small screen display circuit for MUSE signal

Country Status (1)

Country Link
JP (1) JP2809322B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549234B1 (en) 1998-06-09 2003-04-15 Hyundai Electronics Industries Co., Ltd. Pixel structure of active pixel sensor (APS) with electronic shutter function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549234B1 (en) 1998-06-09 2003-04-15 Hyundai Electronics Industries Co., Ltd. Pixel structure of active pixel sensor (APS) with electronic shutter function

Also Published As

Publication number Publication date
JP2809322B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
KR950009450B1 (en) Television signal convertor
JPH03112279A (en) High definition multi-screen television receiver
US5001562A (en) Scanning line converting system for displaying a high definition television system video signal on a TV receiver
JPH0547025B2 (en)
JP2809322B2 (en) Small screen display circuit for MUSE signal
JPS5879390A (en) Television transmission and reception system
JP2735621B2 (en) Television system converter
JP2619076B2 (en) Television system converter
JP2872269B2 (en) Standard / high-definition television receiver
JP2557466B2 (en) Low-frequency replacement circuit for MUSE decoder
KR0159531B1 (en) Muse/ntsc tv signal converter
JPH0793738B2 (en) Video signal format converter
JP3097140B2 (en) Television signal receiving and processing device
JP3081060B2 (en) Multi-screen display high-definition television receiver
JP2822366B2 (en) MUSE signal processing circuit
JPH0670256A (en) Master/slave screen signal synthesizing circuit for high-vision receiver
JPH033493A (en) High definition/standard television signal receiver
JPH027685A (en) Television receiver
EP0838944A1 (en) TV receiver with teletext function
JPH05145902A (en) High-definition television signal processor
JPH0246071A (en) Television receiver
JPH048083A (en) Band compression television signal converter
JPH06327035A (en) Muse/ntsc converter
JPH0440786A (en) System converting device
JPH03106280A (en) Divided display system