JPH04372812A - Method for preparing topographic map of bottom of water such as swamp and dam and depth measuring body therefor - Google Patents

Method for preparing topographic map of bottom of water such as swamp and dam and depth measuring body therefor

Info

Publication number
JPH04372812A
JPH04372812A JP3150560A JP15056091A JPH04372812A JP H04372812 A JPH04372812 A JP H04372812A JP 3150560 A JP3150560 A JP 3150560A JP 15056091 A JP15056091 A JP 15056091A JP H04372812 A JPH04372812 A JP H04372812A
Authority
JP
Japan
Prior art keywords
water
gps
antenna
measuring body
gps antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3150560A
Other languages
Japanese (ja)
Inventor
Akira Takahata
高畑 章
Mikio Hirai
幹男 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3150560A priority Critical patent/JPH04372812A/en
Publication of JPH04372812A publication Critical patent/JPH04372812A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

PURPOSE:To survey the shape of the bottom of water such as a swamp and a dam quickly and accurately and to prepare a topographic map of the water bottom. CONSTITUTION:A GPS antenna 7 and a GPS receiver 8 are provided at the protruding part of a depth measuring body 1 which can run along the topograph of a water bottom 16. The protruding part protrudes from a water surface 14. A fixed GPS antenna 10 and a GPS receiver 11 are provided on a land part 15. The known points of the GPS antennas 7 and 11 of the depth measuring body 1 which is moved into the water region to be surveyed and the land part 15 are set. Then, the depth measuring body l is made to run. The depth measurement and the formation of the coordinates are performed by cinematic GPS based on the distance between the GPS antenna 7 of the depth measuring body 1 which moves up and down along the topography of the water bottom 16 and a GPS satellite 13. The depth measuring body 1 has the following constitution. A surveying pole 5 is uprightly provided on a water- bottom running crawler 4. The GPS antenna is provided at the part which is protruding from the water surface. The fall-down of the surveying pole 5 is prevented with a float 6. The constitution can allow the free up and down movement.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は沼、ダムなどの水底部の
地形を測量して地形図を作成する方法及びそれに適した
測深体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of surveying the topography of the bottom of water such as swamps and dams to create topographic maps, and a sounding body suitable for the method.

【0002】0002

【従来の技術】従来、水深測量における測深方法として
は、図3に示すように、水面21における測量船22か
ら音波受発信器(音響測深機)23により水中24に音
波を発信し、水底25に当たり反射してくるまでの所要
時間を測定して深度とする、音波による測深方法がある
。測量船が航行しながら行うもので、同時に縦横の座標
も測量される。
2. Description of the Related Art Conventionally, as shown in FIG. 3, a sound wave is transmitted into the water 24 from a survey ship 22 on the water surface 21 using a sound wave receiver/transmitter (acoustic sounder) 23, and There is a method of depth sounding using sound waves, which measures the time it takes for the object to hit and reflect back to the object to determine the depth. This is done while the survey ship is sailing, and the vertical and horizontal coordinates are also measured at the same time.

【0003】また、図4に示すように、測量船22から
水中24に測量用のワイヤ26を下げ、その最下部にあ
る測錘(レッド)27が水底25に到達した深さを測量
する、測錘による方法も知られている。この方法の場合
も同時に縦横の座標が測量される。
Furthermore, as shown in FIG. 4, a surveying wire 26 is lowered from a surveying boat 22 into the water 24, and the depth at which a measuring weight (red) 27 at the bottom reaches the water bottom 25 is measured. A method using measuring weights is also known. In this method, the vertical and horizontal coordinates are also measured at the same time.

【0004】0004

【発明が解決しようとする課題】しかし、上記したいず
れの測量方法も、測深と座標の測量を同時に行う必要が
あるため、測量に関わる作業人員が多くかかる。また、
音波による測量では、使用する周波数によって音波の広
がりがあり、点の測深ができにくいという問題がある。 他方、測錘による測深方法の場合、測量船を止めるか移
動しないようにしなければならないが、船が動揺するた
め測量誤差が大きい。また水底の土壌表面が軟弱の場合
は測錘が水底に沈降して正確な測深ができない。更に測
錘が水底に達したと同時に座標の測量を行うため、仕掛
りの人数が多くかかる等の問題がある。
[Problems to be Solved by the Invention] However, in any of the above-mentioned surveying methods, it is necessary to perform depth surveying and coordinate surveying at the same time, which requires a large number of workers involved in surveying. Also,
Surveying using sound waves has the problem that the sound waves spread out depending on the frequency used, making it difficult to measure the depth of a point. On the other hand, in the case of sounding methods using sounding weights, the survey ship must be stopped or prevented from moving, but the ship oscillates, resulting in large survey errors. Also, if the soil surface at the bottom of the water is soft, the measuring weight will sink to the bottom of the water, making accurate depth measurements impossible. Furthermore, since the coordinates are measured at the same time as the measuring weight reaches the bottom of the water, there are problems such as the need for a large number of workers.

【0005】本発明の目的は、上述した問題点を解決し
、沼,ダムなどの水底の形状を迅速かつ正確に測量し水
底地形図とする水底の地形図作成方法及びそれに適した
測深体を提供することにある。
An object of the present invention is to solve the above-mentioned problems and provide a method for creating an underwater topographic map by quickly and accurately surveying the shape of the underwater bottom of a swamp, dam, etc., and a sounding body suitable for the method. It is about providing.

【0006】[0006]

【課題を解決するための手段】本発明による沼,ダムな
どの水底の地形図作成方法は、水底の地形に沿って走行
可能な測深体の水面より突出する部分にGPSアンテナ
及びGPS受信機を設けると共に、陸上部に固定のGP
Sアンテナ及びGPS受信機を設け、測量水域中に繰り
出した上記測深体及び陸上部のGPSアンテナの既知点
を設定した後、上記測深体を走行させ、水底の地形に沿
って上下する上記測深体のGPSアンテナとGPS人工
衛星との距離から、キネマテックGPSにより測深と座
標作成とを行うものである。
[Means for Solving the Problems] The method of creating a topographical map of the bottom of a water body such as a swamp or a dam according to the present invention is to install a GPS antenna and a GPS receiver on a part of a sounding body that can travel along the topography of the bottom of the water and protrudes from the water surface. In addition to establishing a fixed GP on the land area,
After installing an S antenna and a GPS receiver and setting known points for the sounding body and the land-based GPS antenna, the sounding body is run and moves up and down along the topography of the water bottom. Based on the distance between the GPS antenna and the GPS satellite, depth sounding and coordinate creation are performed using Kinematec GPS.

【0007】上記測深体は、水底に沿って走行する水底
走行クローラと、この水底走行クローラに立設され水面
より突出している測量ポールと、この測量ポールの転倒
を防止しつつ該測量ポールの自由な上下動を許すフロー
トと、測量ポールの水面より突出する部分に設けたGP
Sアンテナとを有して構成することができる。
The above-mentioned sounding body includes a bottom crawler that runs along the bottom of the water, a survey pole that is erected on the bottom crawler and protrudes from the water surface, and a survey pole that is free to move while preventing the survey pole from falling. A float that allows vertical movement and a GP installed on the part of the surveying pole that protrudes from the water surface.
S antenna.

【0008】[0008]

【作用】測深体の水面より突出する部分に設けたGPS
アンテナ及びGPS受信機と陸上部に固定的に設けたG
PSアンテナ及びGPS受信機とは、4つのGPS人工
衛星と共にGPSシステム(Global Posit
ioning System :汎地球測位システム)
を構成しており、これら4つのGPS人工衛星からの電
波を受信して、干渉法により、同じ人工衛星対して距離
の測定(位相測定)を行う。通常、干渉法では、2つの
距離測定の差即ち一重差をとることで、衛星の軌道誤差
と衛星の原子時計による誤差を自動的に消去すると共に
、さらに2つの一重差の差(二重差)をとることにより
、時計の誤差及び未知の軌道の誤差の大部分を除去する
。但し、この二重差をとって位相測定するだけでは、波
長の整数倍分の不確定があって全体の距離までは不明で
ある。
[Operation] GPS installed on the part of the sounding body that protrudes from the water surface
Antenna and GPS receiver fixedly installed on land
The PS antenna and GPS receiver are used in the GPS system (Global Posit) along with the four GPS satellites.
ioning System: Global Positioning System)
It receives radio waves from these four GPS satellites and uses interferometry to measure the distance (phase measurement) to the same satellite. Normally, in interferometry, by taking the difference between two distance measurements, that is, the single difference, the orbit error of the satellite and the error caused by the satellite's atomic clock are automatically eliminated. ) eliminates most of the clock errors and unknown orbit errors. However, if only the phase is measured by taking this double difference, there is an uncertainty equal to an integral multiple of the wavelength, and the entire distance is unknown.

【0009】キネマテック(Kinematic GP
S)方式は、この衛星と受信点間の距離に含まれる波長
の整数倍分の不確定さを予め取り除いておいて、複数の
点を短時間に次々と決めて行く観測方式である。既知点
から出発する方法が最も簡単であり、本発明もこれによ
る。即ち、まず測深体及び陸上部のGPSアンテナの位
置を正確に位置が分かった2点(既知点)として設定し
、その後受信を開始する。測深体が水底の地形に沿って
走行すると、測深体のGPSアンテナは水底の地形に応
じて上下し、これとGPS人工衛星との距離が変わるた
め、キネマテックGPSにより測深と座標作成とを行う
ことができる。従って、従来の音波や測錘を用いて測深
し座標を測量する方法に比べ、測量作業時間が短縮され
、測量精度を大幅に向上させることができる。
Kinematic GP
The S) method is an observation method in which a plurality of points are determined one after another in a short period of time by removing in advance uncertainties equal to integral multiples of the wavelength included in the distance between the satellite and the receiving point. The method of starting from a known point is the simplest, and the present invention also follows this method. That is, first, the positions of the sounding body and the GPS antenna on land are set as two points whose positions are accurately known (known points), and then reception is started. When the sounding body travels along the topography of the water bottom, the GPS antenna of the sounding body moves up and down according to the topography of the water bottom, and the distance between this and the GPS satellite changes, so Kinematec GPS performs depth sounding and coordinates creation. be able to. Therefore, compared to the conventional method of depth sounding and measuring coordinates using sound waves and measuring weights, surveying work time is shortened and surveying accuracy can be significantly improved.

【0010】測深体は、水底に沿って走行する水底走行
クローラに測量ポールを立設し、その測量ポールをフロ
ートで転倒しないよう且つその自由な上下動を許すよう
に支持すると、測量ポールの水面より突出する部分に安
定してGPSアンテナを設けることができる。この水底
走行クローラは、複数の無限軌道の走行ベルトよる推進
、スクリューによる推進、水流などによる推進方法のも
のを採用することができる。また水底走行クローラの動
力源は電気式、エンジン式、油圧式のどれでも良く、こ
のクロ−ラの制御も有線方式でも無線方式のどちらでも
良い。
[0010] In a sounding body, a surveying pole is set up on a bottom crawler that runs along the bottom of the water, and when the surveying pole is supported by a float to prevent it from falling over and to allow free up and down movement, the surveying pole moves along the water surface. The GPS antenna can be stably provided in the more protruding part. This underwater crawler can be propelled by a plurality of endless track running belts, by a screw, by water flow, or the like. The power source of the underwater crawler may be electric, engine, or hydraulic, and the crawler may be controlled by wire or wireless.

【0011】[0011]

【実施例】以下、本発明を図示の実施例に基づいて説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on the illustrated embodiments.

【0012】図1は一例としてダム湖の断面を示したも
のであり、1は湖の測量水域中に繰り出された測深体,
2はこの測深体1を測量水域中で必要方向へ進ませる測
量指揮船であり、測量指揮船2は測深体1の近傍に配置
され且つ制御線3を介して測深体1と接続される。ここ
で測深体1は、測量指揮船2により制御され水底16に
沿って走行する水底走行クローラ4と、この水底走行ク
ローラ4に立設され水面14より突出している測量ポー
ル5と、この測量ポール5を転倒しないように浮力で保
持し且つ測量ポール5の自由な上下動を許すフロート6
とを有する。
[0012] Figure 1 shows a cross section of a dam lake as an example, and 1 shows a sounding body carried out into the surveying water area of the lake;
Reference numeral 2 denotes a survey command boat that moves the sounding body 1 in a required direction in the surveying water area.The survey command boat 2 is arranged near the sounding body 1 and is connected to the sounding body 1 via a control line 3. Here, the sounding body 1 includes a bottom crawler 4 that is controlled by a survey command vessel 2 and runs along the bottom 16, a survey pole 5 that is erected on the bottom crawler 4 and protrudes from the water surface 14, and a survey pole 5 that is erected on the bottom crawler 4 and protrudes from the water surface 14. A float 6 that holds the surveying pole 5 with buoyancy to prevent it from falling over and allows free vertical movement of the surveying pole 5.
and has.

【0013】水底走行クローラ4は、水底16の山谷に
対処できるようにするため、複数の無限軌道の走行ベル
ト4aを有し、この走行ベルト4aは電気式、エンジン
式、油圧式のいずれかの動力源で駆動される。しかし、
軟弱水底などに対応するためスクリューによる推進、水
流などによる推進方法を採用することもできる。
The underwater crawler 4 has a plurality of endless track running belts 4a in order to cope with the peaks and valleys of the underwater bottom 16, and the running belts 4a are electrical, engine-type, or hydraulic-type. Driven by a power source. but,
In order to cope with soft water bottoms, propulsion methods such as screw propulsion and water flow can also be adopted.

【0014】上記測深体1の測量ポール5の頂部にはG
PS電波受信用のGPSアンテナ7が、またフロート6
上にはGPS受信機8が取り付けられ、両者の間はアン
テナコード9で接続されている。一方、陸上部15にも
、GPS電波受信用のGPSアンテナ10とGPS受信
機11が設けられ、両者の間がアンテナコード12で接
続されている。陸上部15のアンテナ10の高さ及び位
置は固定である。しかし測深体1のアンテナ7の高さ及
び2次元的位置は、上記水底走行クローラ4の高さつま
り湖底の高低と水底走行クローラ4の現在位置とによっ
て変移する。
[0014] At the top of the surveying pole 5 of the sounding body 1, there is a G
The GPS antenna 7 for receiving PS radio waves is also installed on the float 6.
A GPS receiver 8 is attached to the top, and an antenna cord 9 connects the two. On the other hand, the land section 15 is also provided with a GPS antenna 10 and a GPS receiver 11 for receiving GPS radio waves, and an antenna cord 12 connects the two. The height and position of the antenna 10 on the land section 15 are fixed. However, the height and two-dimensional position of the antenna 7 of the sounding body 1 change depending on the height of the underwater crawler 4, that is, the height of the lake bottom, and the current position of the underwater crawler 4.

【0015】受信機8,11は、4つのGPS人工衛星
13と共にGPSシステムを構成しており、これら人工
衛星13から出されている1.5GHzと1.2GHz
の時刻信号電波(L1,L2帯)の一方又は双方を受信
して、干渉法により、ある瞬間の衛星13と受信点であ
るアンテナ7,10との間の距離Rを算出する。この測
位計算においては、1つの衛星に対する2つの受信アン
テナ7,10の位相差(一重差と称される)を作成し、
他の衛星に対しても同様に一重差を作成して、2つの一
重差のさらに差(二重差と称される)を観測として解く
[0015] The receivers 8 and 11 constitute a GPS system together with four GPS satellites 13, and the 1.5 GHz and 1.2 GHz transmitted from these satellites 13
One or both of the time signal radio waves (L1 and L2 bands) are received, and the distance R between the satellite 13 and the antennas 7 and 10, which are the reception points, at a certain moment is calculated by interferometry. In this positioning calculation, a phase difference (referred to as a single difference) between the two receiving antennas 7 and 10 for one satellite is created,
Single differences are similarly created for other satellites, and the further difference between the two single differences (referred to as a double difference) is solved as an observation.

【0016】一重差をとる理由は、上記のように2つの
受信機8,11(アンテナ7,10)で同じ衛星13に
対して距離の測定(位相測定)を行うと、測定値の中に
含まれる誤差のうち、衛星の軌道誤差と衛星の原子時計
による誤差は等量であるから、2つの距離測定の差即ち
一重差をとることで、衛星に起因する軌道・時計の誤差
を自動的に消去できるためである。また、二重差をとる
理由は、一重差をとるだけでは受信機の時計の誤差まで
は消去されないため、二重差をとることによってこの時
計の誤差及び未知の軌道の誤差の大部分を除去するため
である。但し、この二重差をとって位相測定するだけで
は、波長の整数倍分の不確定があって全体の距離までは
不明である。
The reason for taking the single difference is that when distance measurements (phase measurements) are made to the same satellite 13 using the two receivers 8 and 11 (antennas 7 and 10) as described above, some differences occur in the measured values. Of the included errors, the orbital error of the satellite and the error due to the satellite's atomic clock are equal, so by taking the difference between the two distance measurements, that is, the single difference, the error in the orbit and clock caused by the satellite can be automatically corrected. This is because it can be erased. In addition, the reason for taking a double difference is that taking a single difference does not eliminate the error of the receiver's clock, so by taking a double difference, most of the errors of this clock and the error of the unknown orbit are removed. This is to do so. However, if only the phase is measured by taking this double difference, there is an uncertainty equal to an integral multiple of the wavelength, and the entire distance is unknown.

【0017】キネマテックGPSは、上記の不確定整数
(アンビギュイティ)を解消する実用的な方式であって
、予め不確定さを取り除いておいて複数の点を短時間に
次々と決めて行く観測方式である。予め不確定さを取り
除いておく手段のうち、最も簡単なものは、既知点から
出発する方法であり、まず位置が正確に分かった2点で
受信を開始することにより、最初に距離差の整数不確定
分を決めてしまい、後は受信状態にしたまま途中で観測
の中断(サイクルスリップ)が起らないように注意して
、一方の受信機で複数の未知点を次々に観測するもので
ある。本発明もこのキネマテックGPSを基本原理とす
るものである。
[0017] Kinematec GPS is a practical method to eliminate the above-mentioned uncertain integer (ambiguity), and it removes the uncertainty in advance and determines multiple points one after another in a short time. It is an observation method. The simplest way to remove uncertainty in advance is to start from a known point.By starting reception at two points whose positions are accurately known, first the integer of the distance difference is calculated. After determining the uncertainties, one receiver observes multiple unknown points one after another while remaining in the receiving state, being careful not to interrupt the observation (cycle slip). be. The present invention also uses this Kinematec GPS as its basic principle.

【0018】まず、始めにGPS受信機8,11とGP
S電波受信アンテナ7,10でGPS人工衛星13から
電波を受信して初期設定をする。これにより測量点の値
を既知とする。
First, the GPS receivers 8, 11 and the GP
Initial settings are performed by receiving radio waves from the GPS satellite 13 using the S radio wave receiving antennas 7 and 10. This makes the value of the survey point known.

【0019】次に図1のように陸上部15のアンテナ点
を固定したまま、水底走行クローラ4に測量ポール5を
装備して、そのフロート6を貫通してGPS受信機8を
付けて測量水域に繰り出しておく。測量条件として、2
箇所にあるアンテナ7,10は4個の人工衛星13の電
波を同時刻に受信しなければならない。
Next, as shown in FIG. 1, with the antenna point on the land section 15 fixed, a surveying pole 5 is attached to the bottom traveling crawler 4, and a GPS receiver 8 is attached to the float 6 through which the surveying water area is surveyed. Take it out. As surveying conditions, 2
The antennas 7 and 10 located at each location must receive radio waves from the four artificial satellites 13 at the same time.

【0020】次に、対象水域の測量は水底走行クローラ
4を連続的に走らせる。走行の進路は、測定に必要な水
域を選択する。また、水底16の全てを測量するような
場合は水底走行クローラ4を縦横無尽に側点の漏れがな
いように走行させる。
Next, to survey the target water area, the underwater crawler 4 is continuously run. For the travel route, select the area of water necessary for measurement. In addition, when surveying the entire underwater bottom 16, the underwater crawler 4 is run in all directions so as not to leak any side points.

【0021】クローラ4が走行して水深が変動すると、
測量ポール5の高さはフロート貫通穴を通しての受信ア
ンテナ7のアンテナ高さが変動する。尚、フロート6は
常時水面にある。
[0021] When the crawler 4 runs and the water depth changes,
The height of the surveying pole 5 changes as the antenna height of the receiving antenna 7 passes through the float through hole. Note that the float 6 is always on the water surface.

【0022】測量したデータには、任意の点の深さ(測
深)と地球座標の値が瞬時に測定される。これはGPS
電波受信アンテナ10の受信機11にストックされる。 GPS電波受信アンテナ10の受信の間中、GPS受信
機11でも同時受信を実施している。
[0022] The surveyed data includes instantaneous measurements of the depth (bathymetry) and earth coordinate values of arbitrary points. This is GPS
It is stocked in the receiver 11 of the radio wave receiving antenna 10. During the reception by the GPS radio wave receiving antenna 10, the GPS receiver 11 is also performing simultaneous reception.

【0023】測量が完了したならば、GPS電波受信ア
ンテナ10とGPS受信機11からパソコン(パーソナ
ルコンピュータ)にデータを取り出して座標と深度の関
係を演算処理する。これをXYプロッターにかけて図2
に示すような等高線を描く。かくして、測深において深
さと座標を同時にかつ瞬時に連続的に測量することがで
き、これにより正確な水底16の地形図が作成できる。 これは上記ダム湖において、土砂の流入や移動などを正
確に把握し、ダムの有効容積の低下を監視するといった
管理保全を容易に行なえることを意味する。
[0023] When the surveying is completed, data is taken out from the GPS radio wave receiving antenna 10 and the GPS receiver 11 to a personal computer, and the relationship between coordinates and depth is processed. Plot this on an XY plotter and see Figure 2.
Draw contour lines as shown. In this way, depth and coordinates can be measured simultaneously and instantaneously and continuously during bathymetry, thereby making it possible to create an accurate topographical map of the water bottom 16. This means that in the dam lake, it is possible to accurately monitor the inflow and movement of sediment, and to easily carry out management and maintenance operations such as monitoring a decrease in the effective volume of the dam.

【0024】尚、上記実施例では、水底走行クローラの
動作を測量指揮船から有線にて制御したが無線で制御す
ることもでき、また測量指揮船以外の外部から有線また
は無線で制御することもできる。
[0024] In the above embodiment, the operation of the underwater crawler was controlled by wire from the survey command ship, but it can also be controlled wirelessly, and it may also be controlled by wire or wirelessly from an external source other than the survey command ship. can.

【0025】[0025]

【発明の効果】以上述べたように、本発明は、測深体に
水底の地形に応じて上下するGPSアンテナを設け、こ
れと陸上部のGPSアンテナの位置とを既知点として、
測深体を走行させて受信を開始し、水底の地形に応じて
上下する測深体のGPSアンテナとGPS人工衛星との
距離を、キネマテックGPSにより測定し、測深と座標
作成とを行うものであるため、、従来の音波や測錘を用
いる方法に比べ、次のような優れた効果が得られる。
As described above, the present invention provides a sounding body with a GPS antenna that moves up and down according to the topography of the water bottom, and uses this and the position of the GPS antenna on land as known points.
The sounding body travels to start reception, and Kinematec GPS measures the distance between the GPS antenna of the sounding body, which moves up and down according to the topography of the ocean floor, and the GPS satellite, and performs depth sounding and coordinate creation. Therefore, compared to conventional methods using sound waves or measuring weights, the following superior effects can be obtained.

【0026】(1)測深において深さと座標を同時にか
つ瞬時に連続的に測量できるため仕掛り人員が削減でき
る。
(1) In sounding, depth and coordinates can be measured simultaneously and instantaneously and continuously, so the number of workers in process can be reduced.

【0027】(2)GPSを利用しているため測量誤差
が少ない。
(2) Since GPS is used, surveying errors are small.

【0028】(3)正確な等高線を描くことができる。 従って、土砂の流入,移動などを正確に把握できるため
ダムなどの管理保全が容易に行なえる。
(3) Accurate contour lines can be drawn. Therefore, since the inflow and movement of earth and sand can be accurately grasped, management and maintenance of dams, etc. can be easily carried out.

【0029】また、請求項2の測深体によれば、測量ポ
ールの水面より突出する部分に安定してGPSアンテナ
を設けることができ、水底に凹凸があってもクローラを
連続的に動かすことによって正確な測深ができる。
Further, according to the sounding body of claim 2, the GPS antenna can be stably provided on the part of the surveying pole that protrudes from the water surface, and even if the bottom of the water is uneven, the GPS antenna can be stably installed by continuously moving the crawler. Accurate depth measurement is possible.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例を示すダム湖における断面図で
ある。
FIG. 1 is a cross-sectional view of a dam lake showing an embodiment of the present invention.

【図2】本発明の方法により得られる水底の地形図を例
示した図である。
FIG. 2 is a diagram illustrating a topographical map of the water bottom obtained by the method of the present invention.

【図3】従来の音波による測深法を示した断面図である
FIG. 3 is a sectional view showing a conventional sound sounding method.

【図4】従来の測錘による測深法を示した断面図である
FIG. 4 is a sectional view showing a conventional sounding method using a sounding weight.

【符号の説明】[Explanation of symbols]

1  測深体 2  測量指揮船 3  制御線 4  水底走行クローラ 4a  無限軌道の走行ベルト 5  測量ポール 6  フロート 7  GPSアンテナ 8  GPS受信機 9  アンテナコード 10  GPSアンテナ 11  GPS受信機 12  アンテナコード 13  GPS人工衛星 14  水面 15  陸上部 1 Sounding body 2 Survey command ship 3 Control line 4 Underwater crawler 4a Trail running belt 5 Survey pole 6 Float 7 GPS antenna 8 GPS receiver 9 Antenna code 10 GPS antenna 11 GPS receiver 12 Antenna code 13 GPS satellite 14 Water surface 15 Track and field club

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  水底の地形に沿って走行可能な測深体
の水面より突出する部分にGPSアンテナ及びGPS受
信機を設けると共に、陸上部に固定のGPSアンテナ及
びGPS受信機を設け、測量水域中に繰り出した上記測
深体及び陸上部のGPSアンテナの既知点を設定した後
、上記測深体を走行させ、水底の地形に沿って上下する
上記測深体のGPSアンテナとGPS人工衛星との距離
から、キネマテックGPSにより測深と座標作成とを行
うことを特徴とする沼,ダムなどの水底の地形図作成方
法。
Claim 1: A GPS antenna and a GPS receiver are provided on a part of a sounding body that can travel along the topography of the water bottom that protrudes from the water surface, and a fixed GPS antenna and a GPS receiver are provided on land, and a sounding body that can travel along the topography of the water bottom is provided with a GPS antenna and a GPS receiver that are fixed on land. After setting the known points of the sounding body and the GPS antenna on land, the sounding body is run and the distance between the GPS antenna of the sounding body and the GPS satellite, which moves up and down along the topography of the water bottom, is determined. A method for creating topographical maps of the bottom of water such as swamps and dams, which is characterized by performing depth sounding and creating coordinates using Kinematec GPS.
【請求項2】  水底に沿って走行する水底走行クロー
ラと、この水底走行クローラに立設され水面より突出し
ている測量ポールと、この測量ポールの転倒を防止しつ
つ該測量ポールの自由な上下動を許すフロートと、測量
ポールの水面より突出する部分に設けたGPSアンテナ
とを有することを特徴とする測深体。
Claim 2: A bottom crawler that travels along the bottom of the water, a survey pole that is erected on the bottom crawler and protrudes from the water surface, and a survey pole that can freely move up and down while preventing the survey pole from falling over. A sounding body characterized by having a float that allows the water to move, and a GPS antenna provided on a part of a surveying pole that protrudes from the water surface.
JP3150560A 1991-06-21 1991-06-21 Method for preparing topographic map of bottom of water such as swamp and dam and depth measuring body therefor Pending JPH04372812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3150560A JPH04372812A (en) 1991-06-21 1991-06-21 Method for preparing topographic map of bottom of water such as swamp and dam and depth measuring body therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3150560A JPH04372812A (en) 1991-06-21 1991-06-21 Method for preparing topographic map of bottom of water such as swamp and dam and depth measuring body therefor

Publications (1)

Publication Number Publication Date
JPH04372812A true JPH04372812A (en) 1992-12-25

Family

ID=15499551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3150560A Pending JPH04372812A (en) 1991-06-21 1991-06-21 Method for preparing topographic map of bottom of water such as swamp and dam and depth measuring body therefor

Country Status (1)

Country Link
JP (1) JPH04372812A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743160A (en) * 1993-07-27 1995-02-10 Mitsui Constr Co Ltd Gps station piling device
WO1995016895A1 (en) * 1993-12-13 1995-06-22 Core Corp. Integrated photographing apparatus mounted on aircraft
JPH08160155A (en) * 1994-12-07 1996-06-21 Denken:Kk Apparatus for measuring various substances contained in atmosphere utilizing current position measuring apparatus
JPH10332416A (en) * 1997-06-02 1998-12-18 Kansai Electric Power Co Inc:The Automatic moving body, automatic navigating ship, and automatic surveying ship for deposited sand of dam
KR100563757B1 (en) * 2006-01-23 2006-03-24 김은주 Methods to measure pondage
KR100826631B1 (en) * 2008-02-01 2008-05-02 (주) 일신하이텍 Gps receiving apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743160A (en) * 1993-07-27 1995-02-10 Mitsui Constr Co Ltd Gps station piling device
WO1995016895A1 (en) * 1993-12-13 1995-06-22 Core Corp. Integrated photographing apparatus mounted on aircraft
AU679599B2 (en) * 1993-12-13 1997-07-03 Leica Geosystems Gis & Mapping, Llc Integrated photographing apparatus mounted on aircraft
JPH08160155A (en) * 1994-12-07 1996-06-21 Denken:Kk Apparatus for measuring various substances contained in atmosphere utilizing current position measuring apparatus
JPH10332416A (en) * 1997-06-02 1998-12-18 Kansai Electric Power Co Inc:The Automatic moving body, automatic navigating ship, and automatic surveying ship for deposited sand of dam
KR100563757B1 (en) * 2006-01-23 2006-03-24 김은주 Methods to measure pondage
KR100826631B1 (en) * 2008-02-01 2008-05-02 (주) 일신하이텍 Gps receiving apparatus

Similar Documents

Publication Publication Date Title
US10168714B2 (en) GNSS and optical guidance and machine control
US8639416B2 (en) GNSS guidance and machine control
JP4012233B1 (en) Water bottom 3D image creation system and water bottom 3D image creation method
US6954175B1 (en) Accurate positioning of devices suspended underwater from a floating body
JP4756643B2 (en) Input material input method, input system, and construction method of water bottom structure
JPH04372812A (en) Method for preparing topographic map of bottom of water such as swamp and dam and depth measuring body therefor
KR20040092508A (en) System for investigation of river bottom topography and fluctuation using GPS and GPR
RU2303275C2 (en) Method for determination of co-ordinates of submerged objects
JP3590833B2 (en) Surveying system and surveying method using the surveying system
JP3234889B2 (en) Bathymetry system using GPS kinematic positioning method
JPH10206178A (en) Guiding system for moving body
JP3808055B2 (en) Mound formation input position prediction method, system, program, and mound formation input management method
JP3571585B2 (en) Position / depth measurement device of land preparation equipment such as ground improvement using GPS
JPH01216288A (en) Method for surveying submarine terrain
RU2786847C2 (en) Method for determination of spatial position of pipeline at underwater transition section
JPH10332825A (en) Method and system for surveying topography of seabed
JP2003014455A (en) Topographic surveying method
JPH0989556A (en) Sea bottom displacement measuring system
JP3494706B2 (en) Positioning device
JPH05164835A (en) Device for surveying and monitoring and method therefor
Green et al. Archaeological application of the HPASS (High Precision Acoustic Surveying System) to surveys of the HMSPandora wreck-site and the Roman bridge at Maastricht
JPS60109429A (en) Display device of cutter locus of pump dredging ship
CN117109540A (en) Method for collaborative marine surveying and mapping of mother ship and multiple unmanned ships
JP2001201346A (en) Surveying method and surveying device for object suspended in water
JPH03214012A (en) Apparatus for measuring completed pattern of block installation