JPH0437246B2 - - Google Patents

Info

Publication number
JPH0437246B2
JPH0437246B2 JP21561183A JP21561183A JPH0437246B2 JP H0437246 B2 JPH0437246 B2 JP H0437246B2 JP 21561183 A JP21561183 A JP 21561183A JP 21561183 A JP21561183 A JP 21561183A JP H0437246 B2 JPH0437246 B2 JP H0437246B2
Authority
JP
Japan
Prior art keywords
pressure
filter
amount
internal combustion
particulate matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21561183A
Other languages
Japanese (ja)
Other versions
JPS60108520A (en
Inventor
Mitsuhiro Kawagoe
Takeo Kume
Seishi Wataya
Setsuhiro Shimomura
Juji Kishimoto
Kazuji Shirasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Motors Corp filed Critical Mitsubishi Electric Corp
Priority to JP58215611A priority Critical patent/JPS60108520A/en
Publication of JPS60108520A publication Critical patent/JPS60108520A/en
Publication of JPH0437246B2 publication Critical patent/JPH0437246B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Fluid Pressure (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は自動車等の車両に設けられるデイーゼ
ルエンジンの排気系に設置されたフイルタに捕集
される微粒子の量を検出する装置に関するもので
ある。 デイーゼルエンジンの排気系にハニカム状セラ
ミツクあるいはワイヤメツシユ等によるフイルタ
を設け、該フイルタを排気ガスが通過するときに
排気ガス中に含まれている微粒子を捕集して、排
気ガスを浄化する方法が知られている。 ところが経時と共にフイルタに捕集された微粒
子によりフイルタが目詰りし、排気管内圧力が上
昇しエンジンの出力低減並びに燃料消費率が悪化
する等の問題があつた。そのため、フイルタの捕
集量を検出し、定期的にフイルタに捕集された微
粒子を燃焼してフイルタを再生するためにバーナ
等の加熱装置を起動させる必要があつたが、捕集
された微粒子の量が過多になると、微粒子自身の
反応熱によりフイルタが溶損し、また頻繁に加熱
装置を作動させると、該装置の耐久寿命、フイル
タの耐久寿命を損ねかつ燃費率も悪化するので、
捕集量の検出精度を高め、最も好適な再生時期を
正確に検出することが要求されている。 ところで、従来の微粒子の捕集量の検出方法と
しては、 (a) 走行距離、エンジン回転数等を積算しそれら
の値から微粒子の捕集量を推定する方法 (b) フイルタの圧損と予めエンジンの状態に応じ
て夫々設定したフイルタ基準圧損マツプ値とを
比較することにより、フイルタの微粒子の捕集
量を検出する方法 (c) エアフローメータによりエンジンへ吸入され
る吸入空気量(重量流量)を計測し、当該流量
(重量流量)とフイルタ圧損とから捕集量を推
定する方法 等がある。 しかしながら、上記(a)の方法では微粒子の発生
量及びフイルタの捕集率等を正確にシユミレート
することは至難であり、かつ火災発生装置による
フイルタの再生率が常に一定でないため、正確な
捕集量を検出することは不可能であつた。また、
上記(b)及び(c)の方法においては、エンジンの状態
に応じてパラメータの異なる数種類のマツプを必
要としたり、又排温補正を要し、応答性、精度に
問題がある等の不具合があつた。 次に、従来構造の一例として微粒子による目詰
りで生ずる圧損と、予めエンジンの状態に応じて
夫夫設定したフイルタ基準圧損マツプ値とを比較
することにより、フイルタの微粒子の捕集量を検
出する方法である上記(b)の従来例について第1図
に基づいて詳細に説明する。 第1図は従来から提案されている排圧計測によ
る微粒子捕集量検出装置の構成図である。1はデ
イーゼルエンジンで4は吸気管2と排気管3とを
連通する排気ガス再循環(以下EGRと称す)の
為の通路で、フイルタ6は該EGR通路4と排気
管3との結合部より後流の排気管に設置され、フ
イルタ6を通過した排気ガスは浄化されて、更に
後流の排気管7を経てマフラー(図示しない)へ
排出される。また、5はEGR制御バルブであり、
エンジンの運転状態に応じてEGR量の制御を行
なつている。 微粒子捕集量演算手段10はフイルタ6の前後
差圧を検出する差圧検出手段9の出力と、エンジ
ン回転数検出器11とアクセル開度検出器12の
出力とを受け、予めエンジン回転数とアクセル開
度とにより、フイルタ基準圧損マツプ値として記
憶された所定の圧損に対して差圧検出手段9の出
力を比較し、捕集量の検出を行う様に構成されて
いる。 ところが、フイルタ前後差圧はフイルタ6を通
過する排気ガス流量に依存し、しかも排気ガス流
量は排気ガス温度に依存することとなる。このた
め、車両等に用いられているデイーゼルエンジン
の様に常時運転条件が変化するものにおいては、
機関回転数とアクセル開度をパラメータとして、
フイルタ前後差圧を予め記憶された所定値との比
較において微粒子捕集量を検出する場合には、エ
ンジンの運転状態におけるフイルタ基準圧損マツ
プを様々な運転状態において設ける必要がある等
の不具合があつた。更に、EGR通路4に設けら
れたEGR制御バルブ5によりEGR量の調整を行
なうと、エンジン回転数とアクセル開度のみでは
排気ガス流量が定まらなくなるため、EGR調整
時には微粒子捕集量を検出できない等の不具合が
あつた。 本発明は、上記不具合に鑑みなされたもので、
機関の運転状態が常時変化する場合にも、又
EGRガス流量が調整されているときでも排気温
度の補正をすることなく、容易に微粒子の捕集量
を検出する装置を提供することを目的とするもの
である。以下、本発明の一実施例を第2図に基づ
いて説明する。14はフイルタ6の下流側に近接
して配置された固定絞り部であり、本実施例にお
いてはフイルタ6を通過した排気ガスは全て上記
絞り部14を通過する様に構成されている。16
は圧力センサであり、同センサ16の信号は
CPU18に入力される。そして、フイルタ6の
上流側圧力P1は圧力通路20,22及び24を
介して圧力センサ16に導びかれ、またフイルタ
6と固定絞り部14との間の圧力P2は圧力通路
26,22及び24を介して圧力センサ14に導
びかれ、更に固定絞り部14の下流側圧力P3
圧力通路28,24を介して圧力センサ16に導
びかれる様に構成されている。そして、圧力セン
サ16において測定された圧力P1,P2,P3
CPU18に入力し、CPU18でフイルタの圧損
△Pf=(P1−P2)、及び固定絞り圧損△Pp=(P2
P3)を求め、更に△Pfと△Ppの圧損比を求めるこ
とにより、フイルタ6の微粒子捕集量を検出でき
るものである。 更に、30及び32は上記圧力P1,P2及びP3
を選択的に圧力センサ16に供給するための切換
用三方ソレノイドバルブであり、CPU18から
の信号により適宜切換え制御されている。従っ
て、上記ソレノイドバルブ30,32を切換える
ことにより、一個の圧力センサにより、各排気圧
力P1,P2及びP3を測定することができる構成と
なつている。 また、固定絞り部14は、フイルタ6に所定量
の微粒子が捕集された状態における排気抵抗と略
同等の排気抵抗を有する様に絞り量が決められて
おり、後述する理由によりフイルタ6に所定量の
微粒子が捕集された状態での検出精度を向上させ
ている。 更に、固定絞り部14を消音器又は消熱器と兼
用させることにより、部品の共用化が図れるもの
である。また、圧力測定時期を排気圧力が通常状
態より高圧となる状態、例えばエンジンの高速回
転域の状態において測定することにより、各部品
のばらつきにより生じる誤差、電子制御装置内で
の演算で生じる誤差等が微粒子捕集量の検出値に
与える影響を小さくすることができるものであ
る。 次に、圧力センサ16により検出された排気圧
力P1,P2及びP3よりフイルタ6における微粒子
捕集量の検出原理について説明する。 ここで、フイルタ上流側圧力:P1,フイルタ
上流側密度:ρ1,フイルタ下流側圧力:P2,フイ
ルタ下流側密度:ρ2,固定絞り下流側圧力:P3
固定絞りの相当絞り:Ao,フイルタ相当絞り:
Af,排気ガス流量:Gとすると、 G=Af√2(121 =AD√2(232 (1) ∴P1−P2/P2−P3=(AD/Af2・ρ2/ρ1(2) ここで、ρ2/ρ1≒一定とすれば(フイルタの上
流側及び下流側での圧力及び温度がエンジン状態
によつて異なるが、圧力及び温度の変化率がフイ
ルタの上流側及び下流側で略同様に変化するもの
と仮定できるため)、AD=const.となるので、 フイルタの圧損/固定絞り部の圧損 =△Pf/△Pp=k・△Af 2(k:const.)(3) ここでフイルタ相当絞りAfは微粒子捕集量MP
のみにより略決定されることが本発明者の実験よ
り明らかとされているので(△Pf/△Pp)は、フ
イルタの微粒子捕集量MPのみの関数となり、圧
損比(△Pf/△Pp)を求めることにより、微粒子
捕集量MPを検出することができるものである。 なお、第3図に微粒子捕集量0g及び15gの夫夫
におけるフイルタ圧損△Pf及び固定絞り圧損△Pp
との関係を実験により求めた結果を示した。第3
図の実験結果から微粒子捕集量が一定の場合には
圧損比(△Pf/△Pp)が略一定(第3図において
傾きが略一定である。)であることが判る。 更に、第4図はフイルタ6の微粒子捕集量MP
と圧損比(△Pf/△Pp)との関係を示したもので
あり、同図において、例えばMP=10gの時再生を
開始したい場合にはMP=10gに対応する圧損比K
(定数)を求めておき、電子制御装置10におい
て計測した圧損比がKの値より大きな場合には、
図示していないフイルタ加熱装置等のフイルタ再
生装置を作動させる信号が出力される様に構成さ
れている。 次に、部品のばらつき、センサ特性のばらつき
及び電子計算器の演算で生じる誤差により、演算
結果に生じる誤差について説明する。 誤差及びばらつきの要因としては次のものが考
えられる。 (1) 部品による圧損ばらつき
The present invention relates to a device for detecting the amount of particulates collected in a filter installed in the exhaust system of a diesel engine installed in a vehicle such as an automobile. A method is known in which a filter made of honeycomb ceramic or wire mesh is installed in the exhaust system of a diesel engine, and when the exhaust gas passes through the filter, it collects fine particles contained in the exhaust gas and purifies the exhaust gas. It is being However, over time, the filter became clogged with particulates collected in the filter, causing problems such as an increase in the pressure inside the exhaust pipe, resulting in a reduction in engine output and a worsening of the fuel consumption rate. Therefore, it was necessary to detect the amount of particles collected by the filter and periodically activate a heating device such as a burner to burn the particles collected on the filter and regenerate the filter. If the amount is too large, the filter will melt due to the reaction heat of the particles themselves, and if the heating device is operated frequently, the durable life of the device and the filter will be impaired, and the fuel efficiency will also deteriorate.
There is a need to improve the accuracy of detecting the amount of trapped material and to accurately detect the most suitable regeneration time. By the way, conventional methods for detecting the amount of trapped particles include (a) a method of integrating travel distance, engine speed, etc., and estimating the amount of trapped particles from those values; (b) a method of calculating the amount of trapped particles by calculating the pressure drop of the filter and the engine speed in advance. A method of detecting the amount of particulates collected by the filter by comparing the filter standard pressure drop map values set according to the conditions of There is a method of estimating the collected amount from the flow rate (weight flow rate) and filter pressure loss. However, with method (a) above, it is extremely difficult to accurately simulate the amount of fine particles generated and the filter collection rate, etc., and the regeneration rate of the filter by the fire generator is not always constant, so accurate collection It was impossible to detect the amount. Also,
The above methods (b) and (c) require several types of maps with different parameters depending on the engine condition, require exhaust temperature correction, and have problems with response and accuracy. It was hot. Next, as an example of a conventional structure, the amount of particulates collected by the filter is detected by comparing the pressure drop caused by clogging with particulates with a filter reference pressure drop map value set in advance according to the engine condition. The conventional method (b) above will be explained in detail with reference to FIG. FIG. 1 is a block diagram of a conventionally proposed apparatus for detecting the amount of trapped particles by measuring exhaust pressure. 1 is a diesel engine, 4 is a passage for exhaust gas recirculation (hereinafter referred to as EGR) that communicates the intake pipe 2 and exhaust pipe 3, and the filter 6 is connected to the joint between the EGR passage 4 and the exhaust pipe 3. It is installed in the downstream exhaust pipe, and the exhaust gas that has passed through the filter 6 is purified and further discharged to the muffler (not shown) through the downstream exhaust pipe 7. Also, 5 is an EGR control valve,
The amount of EGR is controlled according to the operating status of the engine. The particulate collection amount calculation means 10 receives the output of the differential pressure detection means 9 that detects the differential pressure across the filter 6, the outputs of the engine rotation speed detector 11 and the accelerator opening degree detector 12, and calculates the engine rotation speed in advance. Depending on the accelerator opening degree, the output of the differential pressure detection means 9 is compared with a predetermined pressure loss stored as a filter reference pressure loss map value, and the collected amount is detected. However, the differential pressure across the filter depends on the flow rate of the exhaust gas passing through the filter 6, and moreover, the flow rate of the exhaust gas depends on the exhaust gas temperature. For this reason, in engines where operating conditions constantly change, such as diesel engines used in vehicles,
Using engine speed and accelerator opening as parameters,
When detecting the amount of trapped particulates by comparing the differential pressure across the filter with a predetermined value stored in advance, there are problems such as the need to provide filter reference pressure drop maps for various engine operating conditions. Ta. Furthermore, when the EGR amount is adjusted by the EGR control valve 5 installed in the EGR passage 4, the exhaust gas flow rate cannot be determined only by the engine speed and accelerator opening, so the amount of collected particulates cannot be detected during EGR adjustment. There was a problem. The present invention was made in view of the above problems, and
Even when the operating condition of the engine changes constantly,
It is an object of the present invention to provide a device that easily detects the amount of captured particles without correcting the exhaust temperature even when the EGR gas flow rate is adjusted. Hereinafter, one embodiment of the present invention will be described based on FIG. 2. Reference numeral 14 denotes a fixed constriction section disposed close to the downstream side of the filter 6, and in this embodiment, all the exhaust gas that has passed through the filter 6 is configured to pass through the constriction section 14. 16
is a pressure sensor, and the signal of the sensor 16 is
It is input to the CPU 18. The upstream pressure P 1 of the filter 6 is guided to the pressure sensor 16 via the pressure passages 20 , 22 and 24 , and the pressure P 2 between the filter 6 and the fixed throttle part 14 is guided to the pressure sensor 16 via the pressure passages 20 , 22 and 24 . and 24 to the pressure sensor 14, and furthermore, the downstream pressure P3 of the fixed constriction portion 14 is configured to be guided to the pressure sensor 16 via pressure passages 28 and 24. Then, the pressures P 1 , P 2 , P 3 measured by the pressure sensor 16 are
The filter pressure loss △P f = (P 1 − P 2 ) and the fixed throttle pressure loss △P p = (P 2 − P 2 ) are input to the CPU 18.
P 3 ) and then the pressure drop ratio between ΔP f and ΔP p , the amount of particles collected by the filter 6 can be detected. Furthermore, 30 and 32 are the above pressures P 1 , P 2 and P 3
This is a three-way switching solenoid valve for selectively supplying pressure to the pressure sensor 16, and is appropriately switched and controlled by a signal from the CPU 18. Therefore, by switching the solenoid valves 30 and 32, each exhaust pressure P 1 , P 2 and P 3 can be measured using one pressure sensor. Further, the fixed throttle part 14 has a throttle amount determined so as to have an exhaust resistance approximately equal to the exhaust resistance when a predetermined amount of particulates are collected by the filter 6. Detection accuracy is improved when a fixed amount of fine particles are collected. Furthermore, by using the fixed throttle part 14 also as a muffler or a heat sink, parts can be shared. In addition, by measuring the pressure at a time when the exhaust pressure is higher than the normal state, for example when the engine is in the high-speed rotation range, errors caused by variations in each component and errors caused by calculations within the electronic control unit can be avoided. The effect of this on the detected value of the amount of trapped particles can be reduced. Next, the principle of detecting the amount of particulates collected in the filter 6 from the exhaust pressures P 1 , P 2 and P 3 detected by the pressure sensor 16 will be explained. Here, filter upstream pressure: P 1 , filter upstream density: ρ 1 , filter downstream pressure: P 2 , filter downstream density: ρ 2 , fixed throttle downstream pressure: P 3 ,
Fixed aperture equivalent aperture: Ao, filter equivalent aperture:
A f , exhaust gas flow rate: G, then G = A f √2 ( 12 ) 1 = A D √2 ( 23 ) 2 (1) ∴P 1 −P 2 /P 2 −P 3 = (A D /A f ) 2・ρ 21 (2) Here, if ρ 21 ≒constant (the pressure and temperature on the upstream and downstream sides of the filter differ depending on the engine condition) However, it can be assumed that the rate of change of pressure and temperature changes approximately the same on the upstream and downstream sides of the filter), so A D = const. Therefore, pressure loss of filter / pressure loss of fixed restrictor = △P f / △P p = k・△A f 2 (k: const.) (3) Here, the filter equivalent aperture A f is the amount of collected particles M P
It has been clear from experiments conducted by the present inventors that it is approximately determined by the amount of particles collected by the filter, M P , and the pressure drop ratio (△ P f /ΔP p ), the amount of trapped particles M P can be detected. In addition, Fig. 3 shows the filter pressure drop △P f and the fixed throttle pressure drop △P p in the case where the particle collection amount is 0g and 15g.
We have shown the results of an experiment to determine the relationship between Third
From the experimental results shown in the figure, it can be seen that when the amount of collected particles is constant, the pressure drop ratio (ΔP f /ΔP p ) is approximately constant (the slope is approximately constant in FIG. 3). Furthermore, Fig. 4 shows the amount of particles collected by the filter 6 M P
This figure shows the relationship between the pressure drop ratio (△P f /△P p ), and in the same figure, for example, if you want to start regeneration when M P = 10 g, the pressure drop ratio K corresponding to M P = 10 g is shown.
(constant), and if the pressure drop ratio measured in the electronic control unit 10 is larger than the value of K,
It is configured so that a signal for operating a filter regeneration device such as a filter heating device (not shown) is output. Next, a description will be given of errors occurring in the calculation results due to variations in parts, variations in sensor characteristics, and errors caused in calculations by the electronic calculator. The following factors can be considered as causes of errors and variations. (1) Pressure loss variation due to parts

【表】 (2) センサ特性のばらつき 本実施例においては、一つのセンサで必要圧力
を全て測定するものであり、更に演算のときに圧
力差を求めることによりセンサの特性によるばら
つきは完全に消去されてしまうものであり、この
ばらつきの要因は無視できるものである。 (3) 演算で生じる誤差 アナログ入力をデジタル変換する時に生ずる誤
差を±a/2mmHg(a:AD分解能)とすると、 (P1±a/2)−(P2±a/2)/(P2±a/2)−
(P3±a/2) =(P1−P2)±a/(P2−P3)±a=△Pf±a/△
Pp±a(4) となる。 従って上記(1)〜(3)の要因からノミナル特性のセ
ンサにおいて予想される相対誤差δは δ=|△Pf/△Pp−(1±εf)△Pf±a/(1±εp
)△Pp±a/△Pf/△Pp|(5) となり、この最大値δmaxは、 δmax=
(1+εf)△Pp・△Pf+a△Pp/(1−εp)△Pp・△
Pf−a△Pf−1(6) となる。 ここで、δmaxを最小とするためには、各ばら
つき要因のばらつき幅を小さく管理する他に、再
生トリガ時点でのフイルタ及び固定絞りの圧損△
Pf及び△Ppを極力大きくすることが有効である。
これは、上記式(6)に εf=0.14 εp=0.06 a=1.0mmHg/bit,a=2.0mmHg/bit を代入し、△Pp=△Pfと仮定して△Pp及び△Pf
値を変化させて式(6)によりδmaxを算出したグラ
フ(第5図)から明らかとなるものである。 すなわち、排気圧力が高くなる状態(例えばエ
ンジン回転数が高い状態)において再生判定を行
なうことにより誤差を少なくすることができるも
のである。 また、機関性能(燃費)から排圧(△Pf+△
Pp)が制限されることとなるが、排圧(△Pf+△
Pp)が一定のもとでは、上記式(6)に次の値を代入
することにより第6図に示す結果を得るものであ
る。 εf=0.14 εp=0.06 a=1.0mmHg/bit,a=2.0mmHg/bit △Pf+△Pp=100mmHg 第6図から、△Pf/△Pp≒1のとき最大誤差
δmaxが最小値となつていることが判り、更に0.5
≦△Pf/△Pp≦1.5においてδmaxは極めて小さな
値であることが判明する。すなわち、フイルタの
微粒子捕集量がフイルタ再生を必要とする設定量
となつた状態において、圧損比△Pf/△Ppが0.5
から1.5の範囲となる様にフイルタ又は固定絞り
部を設定することにより、再生時期判定の誤差を
小さくでき、判定精度を上げることができるもの
である。 従って、本発明によれば、フイルタと固定絞り
とが近接して設けられているのでフイルタ内と固
定絞り内での排気ガスの温度差が左程なく温度補
正が不要となるため、過度運転時も含め広範囲な
運転状態でフイルタの再生要否の判定を行なうこ
とができるものである。 更に、EGR等により排圧が変化したとしても、
フイルタ内の圧力及び固定絞り内の圧力が共に変
動するため、フイルタの再生要否の判定には影響
を与えることがなく、従来の欠点を解消できるも
のである。 また、本発明では、フイルタの圧損及び固定絞
りの圧損を同一の圧力センサにより計測している
ので、圧力センサの製造ばらつきにより生じる誤
差を解消することができ、より精度の高い判定が
行なえるものである。 なお、本発明の実施例においては、圧力センサ
を1個設けたものについて述べたが、圧力センサ
を2個設けてフイルタ及び固定絞りの圧損を夫々
測定することにより、運転過渡期の応答性がセン
サ1個を設けたものに比べて向上するものであ
る。更にまた、本発明の実施例ではフイルタ再生
開始時期の判断を例にして述べたが、再生終了時
期の判断更にはEGRの補正時期判断にも利用で
きるものである。
[Table] (2) Variations in sensor characteristics In this example, one sensor measures all the required pressure, and by calculating the pressure difference during calculation, variations due to sensor characteristics are completely eliminated. Therefore, the cause of this variation can be ignored. (3) Error caused by calculation If the error caused when converting analog input to digital is ±a/2mmHg (a: AD resolution), then (P 1 ±a/2) - (P 2 ±a/2)/(P 2 ±a/2)-
(P 3 ±a/2) = (P 1 − P 2 ) ±a/(P 2 − P 3 ) ±a=△P f ±a/△
P p ±a(4). Therefore, from the factors (1) to (3) above, the relative error δ expected in a sensor with nominal characteristics is δ=|△P f /△P p −(1±ε f )△P f ±a/(1± ε p
) △P p ±a / △P f / △P p | (5), and this maximum value δmax is δmax=
(1+ε f )△P p・△P f +a△P p / (1−ε p )△P p・△
P f −a△P f −1(6). Here, in order to minimize δmax, in addition to managing the variation width of each variation factor to a small value, the pressure loss of the filter and fixed orifice at the time of the regeneration trigger △
It is effective to make P f and ΔP p as large as possible.
This can be done by substituting ε f =0.14 ε p =0.06 a=1.0mmHg/bit, a=2.0mmHg/bit into the above equation (6), and assuming that △P p =△P f , △P p and △ This becomes clear from the graph (Fig. 5) in which δmax is calculated using equation (6) while changing the value of P f . That is, errors can be reduced by performing regeneration determination in a state where the exhaust pressure is high (for example, when the engine speed is high). In addition, exhaust pressure (△P f +△
P p ) will be limited, but the exhaust pressure (△P f +△
When P p ) is constant, the results shown in FIG. 6 are obtained by substituting the following values into the above equation (6). ε f =0.14 ε p =0.06 a=1.0mmHg/bit, a=2.0mmHg/bit △P f +△P p =100mmHg From Figure 6, when △P f /△P p ≒1, the maximum error δmax is It turns out that it is the minimum value, and further increases it by 0.5
It turns out that δmax is an extremely small value when ≦△P f /△P p ≦1.5. In other words, when the amount of particles collected by the filter reaches the set amount that requires filter regeneration, the pressure drop ratio △P f /△P p is 0.5.
By setting the filter or the fixed aperture section so that the range is from 1.5 to 1.5, the error in determining the regeneration time can be reduced and the determination accuracy can be increased. Therefore, according to the present invention, since the filter and the fixed throttle are provided close to each other, the temperature difference between the exhaust gas inside the filter and the fixed throttle is small, and temperature correction is not necessary. It is possible to determine whether filter regeneration is necessary or not under a wide range of operating conditions. Furthermore, even if the exhaust pressure changes due to EGR etc.
Since the pressure within the filter and the pressure within the fixed throttle both fluctuate, the determination of whether or not filter regeneration is necessary is not affected, and the drawbacks of the conventional method can be overcome. In addition, in the present invention, since the pressure loss of the filter and the pressure loss of the fixed orifice are measured by the same pressure sensor, it is possible to eliminate errors caused by manufacturing variations in pressure sensors, and more accurate judgment can be made. It is. Although the embodiment of the present invention has been described in which one pressure sensor is provided, by providing two pressure sensors and measuring the pressure drop of the filter and fixed throttle respectively, the responsiveness during the transient period of operation can be improved. This is an improvement over a system with only one sensor. Furthermore, in the embodiments of the present invention, the determination of the filter regeneration start time has been described as an example, but it can also be used to determine the regeneration end time and even to determine the EGR correction time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来構造の説明図、第2図は本発明の
概略説明図、第3図はフイルタの圧損と固定絞り
圧損とを比較した実験結果、第4図はフイルタと
固定絞りの圧損比と微粒子捕集量との関係を示す
実験結果、第5図及び第6図は圧損値に対する最
大誤差を示したものである。 エンジン……1、吸気管……2、排気管……
3、フイルタ……6、圧力検出手段……8、捕集
量検出手段……10、切換弁……24,26。
Fig. 1 is an explanatory diagram of the conventional structure, Fig. 2 is a schematic explanatory diagram of the present invention, Fig. 3 is an experimental result comparing the pressure loss of the filter and the fixed throttle pressure drop, and Fig. 4 is the pressure drop ratio of the filter and the fixed throttle. FIGS. 5 and 6 show the experimental results showing the relationship between the amount of trapped particles and the amount of trapped particles, and show the maximum error with respect to the pressure drop value. Engine...1, Intake pipe...2, Exhaust pipe...
3. Filter...6, Pressure detection means...8, Collection amount detection means...10, Switching valve...24, 26.

Claims (1)

【特許請求の範囲】 1 エンジンの排気系に設置され排気ガス中の微
粒子を捕集するフイルタの下流側に直列に配設さ
れた固定絞り部、上記フイルタの上流側の圧力と
同フイルタ及び上記絞り部間の圧力と上記絞り部
下流側の圧力とを検出する圧力検出手段、及び上
記圧力検出手段により検出された各圧力信号によ
り上記フイルタに捕集された微粒子の量を算出す
る捕集量検出手段を具備することを特徴とする内
燃機関の微粒子捕集量検出装置 2 上記捕集量検出手段は、上記フイルタの上流
側の圧力と同フイルタ及び上記絞り部間の圧力と
の差、及び同フイルタ及び上記絞り部間の圧力と
上記絞り部下流側の圧力の差の比を計算すること
により上記フイルタに捕集された微粒子の量を算
出することを特徴とする特許請求の範囲第1項に
記載の内燃機関の微粒子捕集量検出装置 3 上記圧力検出手段が、圧力センサと、上記フ
イルタの上流側、同フイルタ及び上記絞り部間、
及び上記絞り部下流側の各々と上記圧力センサと
を接続する圧力通路と、上記各通路を選択的に上
記圧力センサに連通する切り換え弁とを具備する
特許請求の範囲第1項に記載の内燃機関の微粒子
捕集量検出装置 4 上記固定絞り部が消音器または消熱器を兼用
している特許請求の範囲第1項に記載の内燃機関
の微粒子捕集量検出装置 5 フイルタの微粒子捕集量がフイルタ再生を必
要とする設定量となつた状態において、上記比が
0.5から1.5の範囲になるように上記フイルタ又は
固定絞り部を設定した特許請求の範囲第2項に記
載の内燃機関の微粒子捕集量検出装置 6 上記圧力検出手段は内燃機関の所定の運転状
態においてのみ圧力を検出する特許請求の範囲第
1項に記載の内燃機関の微粒子捕集量検出装置 7 上記所定の運転状態が、エンジンの排気圧力
が通常状態より高くなる様にした特許請求の範囲
第6項に記載の微粒子捕集量検出装置
[Scope of Claims] 1. A fixed constriction section arranged in series on the downstream side of a filter installed in the exhaust system of the engine to collect particulates in exhaust gas; pressure detection means for detecting the pressure between the constriction portions and the pressure on the downstream side of the constriction portion; and a collection amount for calculating the amount of particulates collected by the filter based on each pressure signal detected by the pressure detection means. An apparatus for detecting the amount of trapped particles in an internal combustion engine 2, characterized in that the trapped amount detecting means detects the difference between the pressure on the upstream side of the filter and the pressure between the filter and the constriction section, and Claim 1, characterized in that the amount of fine particles collected by the filter is calculated by calculating the ratio of the difference between the pressure between the filter and the constriction section and the pressure downstream of the constriction section. Particulate matter collection amount detection device 3 for an internal combustion engine according to paragraph 3, wherein the pressure detection means includes a pressure sensor, an upstream side of the filter, a space between the filter and the throttle section,
The internal combustion engine according to claim 1, further comprising a pressure passage connecting each of the downstream sides of the throttle portion and the pressure sensor, and a switching valve selectively communicating each passage with the pressure sensor. Particulate matter collection amount detection device for an engine 4 Particulate matter collection amount detection device for an internal combustion engine according to claim 1, wherein the fixed throttle portion also serves as a muffler or a heat quencher 5 Particulate matter collection in a filter When the amount reaches the set amount that requires filter regeneration, the above ratio is
The particulate matter collection amount detection device 6 for an internal combustion engine according to claim 2, wherein the filter or the fixed throttle part is set so that the pressure is in the range of 0.5 to 1.5. The particulate matter detection device 7 for an internal combustion engine according to claim 1, which detects the pressure only in the above-mentioned claim 7.The claim 7, wherein the predetermined operating state is such that the exhaust pressure of the engine is higher than the normal state. The device for detecting the amount of collected particles according to item 6
JP58215611A 1983-11-16 1983-11-16 Device for detecting trapping amount of fine particles in internal-combustion engine Granted JPS60108520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58215611A JPS60108520A (en) 1983-11-16 1983-11-16 Device for detecting trapping amount of fine particles in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58215611A JPS60108520A (en) 1983-11-16 1983-11-16 Device for detecting trapping amount of fine particles in internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS60108520A JPS60108520A (en) 1985-06-14
JPH0437246B2 true JPH0437246B2 (en) 1992-06-18

Family

ID=16675283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58215611A Granted JPS60108520A (en) 1983-11-16 1983-11-16 Device for detecting trapping amount of fine particles in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60108520A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581110B2 (en) * 1987-10-26 1997-02-12 いすゞ自動車株式会社 Reburning device for particulate trap
JPH01253522A (en) * 1988-03-31 1989-10-09 Matsushita Electric Ind Co Ltd Diesel exhaust gas purifying apparatus
JPH0621551B2 (en) * 1989-06-16 1994-03-23 いすゞ自動車株式会社 Particulate trap regeneration device
JP5141610B2 (en) * 2009-03-19 2013-02-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2019120222A (en) * 2018-01-10 2019-07-22 いすゞ自動車株式会社 Accumulation amount calculation device and accumulation amount calculation method

Also Published As

Publication number Publication date
JPS60108520A (en) 1985-06-14

Similar Documents

Publication Publication Date Title
US7104049B2 (en) Exhaust gas purifying system and regeneration end determining method
CN101006254B (en) Method of determining abnormality in particulate filter
US4492079A (en) Method and apparatus for detecting degree of clogging in particle trapping member of internal combustion engine
US7350350B2 (en) Exhaust gas purifying apparatus
US7587925B2 (en) Method for operating a sensor for recording particles in a gas stream and device for implementing the method
US7231761B2 (en) Exhaust gas purification system of internal combustion engine
KR100605836B1 (en) Filter control device
JP3750664B2 (en) Engine exhaust purification system
WO2010073511A1 (en) Method of diagnosing regeneration failure of exhaust purifying device
JP2008261287A (en) Filter clogging determination device of diesel engine
US7624571B2 (en) Exhaust gas purifying apparatus for internal combustion engine and method for estimating collected amount of exhaust particles
JP2007016684A (en) Particulate deposition amount estimating device
JPS6047937A (en) Particulate trap level measuring apparatus for diesel engine
JPH0437246B2 (en)
JPH08284644A (en) Exhaust particulate purifying device
JPH0726933A (en) Exhaust emission control device for internal combustion engine
JPH04325707A (en) Exhaust gas purifying device for engine
JPH03233126A (en) Exhaust gas purifier of engine
JPH1113455A (en) Diesel particulate filter device equipped with clogging detector
JP3608255B2 (en) Clogging detection method for exhaust gas purification device of internal combustion engine
JPH0192510A (en) Collection amount detecting device for particulate filter trap
JP2011226295A (en) Apparatus and method for failure detection of filter
JPH03199615A (en) Exhaust gas cleaner for engine
JP3557709B2 (en) Apparatus for regenerating trap for collecting exhaust particulates of internal combustion engine and method for detecting regeneration time
JPH06294317A (en) Regenerating timing detecting device of exhaust particulate collecting device for diesel engine