JPH04371244A - Controller for centrifugal separator - Google Patents

Controller for centrifugal separator

Info

Publication number
JPH04371244A
JPH04371244A JP17573691A JP17573691A JPH04371244A JP H04371244 A JPH04371244 A JP H04371244A JP 17573691 A JP17573691 A JP 17573691A JP 17573691 A JP17573691 A JP 17573691A JP H04371244 A JPH04371244 A JP H04371244A
Authority
JP
Japan
Prior art keywords
sludge
data
operating conditions
control
differential speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17573691A
Other languages
Japanese (ja)
Inventor
Hajime Tawara
肇 田原
Yuji Kai
祐司 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environment Co Ltd
Original Assignee
Nishihara Environmental Sanitation Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Sanitation Research Corp filed Critical Nishihara Environmental Sanitation Research Corp
Priority to JP17573691A priority Critical patent/JPH04371244A/en
Publication of JPH04371244A publication Critical patent/JPH04371244A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B13/00Control arrangements specially designed for centrifuges; Programme control of centrifuges

Landscapes

  • Centrifugal Separators (AREA)

Abstract

PURPOSE:To optimally operate a centrifugal separator at all times in conformity to the variations in the concn. and property of the supplied sludge by evaluating, judging and controlling the operating conditions such as the differential speed, centrifugal effect and supplies of sludge and chemicals from the control regulations derived from the data and the experience and knowledge base. CONSTITUTION:The data on the state factors measured by sensors S1-S12 for constantly monitoring the operating conditions are collected by a collection part 16 and stored in a storage part 17 can be recorded on a recorder 19 or indicated as a message. The present operating conditions are evaluated and judged from the control regulations derived from the presently collected data, stored data and experience and knowledge base to opportunely, independently or simultaneously control >=1 operating conditions among the speed NB of a differential motor 11, turning rate NM of an outer drum 1, centrifugal effect, amt. QO of sludge supplied by a sludge feed pump and amt. QS of chemicals supplied by a chemical pump to the optimum value, and the centrifugal separator is optimally operated in conformity to the variations in the property of supplied sludge.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、汚泥を固液分離して分
離液と脱水ケーキとを生成する遠心分離機のファジー理
論を用いた自動制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic control device using fuzzy theory for a centrifugal separator that separates sludge into solid and liquid to produce a separated liquid and a dehydrated cake.

【0002】0002

【従来の技術】図8は特開昭60−206458号や特
開昭63−319075号に示された従来の遠心分離機
を示す縦断面図であり、図において、1は外胴、2は内
胴(スクリュー胴)、3は固形物排出口、4は分離液排
出口、11は差速モータ、14は制御手段である。外胴
1には傾斜胴部1a側端部に固形物排出口3が、他方、
大径端部1bに分離液排出口4が設けられている。上記
内胴2には、その内部に汚泥等の被処理液Aを供給する
流入管5が配置され、また周面にはスクリュー6と、処
理液供給用の流出孔7とが設けられている。
2. Description of the Related Art FIG. 8 is a vertical sectional view showing a conventional centrifuge disclosed in Japanese Patent Application Laid-open Nos. 60-206458 and 63-319075. In the figure, 1 is an outer shell, 2 is a Inner cylinder (screw cylinder), 3 is a solid discharge port, 4 is a separated liquid discharge port, 11 is a differential speed motor, and 14 is a control means. The outer body 1 has a solid matter discharge port 3 at the end on the side of the inclined body part 1a;
A separated liquid outlet 4 is provided at the large diameter end 1b. An inflow pipe 5 for supplying a liquid A to be treated such as sludge is disposed inside the inner shell 2, and a screw 6 and an outflow hole 7 for supplying the treated liquid are provided on the circumferential surface. .

【0003】そして、上記外胴1の一方の軸にはメイン
モータ8に連動した駆動プーリ9が、他方の軸には内胴
(スクリュー胴)2と連結した遊星ギヤー等から成るギ
ヤボックス10が配置されている。そこで、外胴1はメ
インモータ8によって回転され、この回転はギヤボック
ス10を介して内胴2に伝えられ、外胴1とは同方向の
回転でかつ若干の回転差をもって回転される。差速モー
タ11には、差速モータ11の電流値で検出する検出器
12と、この検出値を予め設定した所定の範囲の値と比
較し、該設定値に近似するように該モータ11を制御す
るコントローラ13とから成る制御手段14が設けられ
ている。
A drive pulley 9 linked to a main motor 8 is mounted on one shaft of the outer shell 1, and a gear box 10 consisting of a planetary gear or the like connected to the inner shell (screw shell) 2 is mounted on the other shaft. It is located. Therefore, the outer shell 1 is rotated by the main motor 8, and this rotation is transmitted to the inner shell 2 via the gear box 10, which rotates in the same direction as the outer shell 1 and with a slight difference in rotation. The differential speed motor 11 is equipped with a detector 12 that detects the current value of the differential speed motor 11, and compares this detected value with a value in a predetermined range set in advance, and adjusts the motor 11 so as to approximate the set value. A control means 14 comprising a controller 13 is provided.

【0004】差速モータ11にかかる電流値は、汚泥の
種類、プール内の固形物量によって変化する。
The current value applied to the differential speed motor 11 changes depending on the type of sludge and the amount of solid matter in the pool.

【0005】流入管5から内胴2内へ流入した汚泥等の
被処理液Aは、矢印に示すように、流入孔7から外胴1
内へ供給され、ここで遠心力により固液分離される。そ
して分離液は一端の分離液排出口4から溢流排出され、
他方沈殿固形物はスクリュー羽根6によって他端へ掻き
寄せられ、排出口3から脱水ケーキとして排出される。 差速モータ11の電流値を検出し、該モータ11の回転
を所定の範囲の値に制御する制御手段14により常に最
適な差速に制御するので、固形物の堆積量を最適に保持
でき、しかも低含水率の脱水ケーキが得られるという効
率的な脱水が行える。
The liquid A to be treated such as sludge that has flowed into the inner shell 2 from the inflow pipe 5 flows through the inflow hole 7 into the outer shell 1 as shown by the arrow.
solid-liquid separation by centrifugal force. The separated liquid is then overflowed and discharged from the separated liquid outlet 4 at one end.
On the other hand, the precipitated solids are scraped to the other end by the screw blades 6 and discharged from the discharge port 3 as a dehydrated cake. Since the current value of the differential speed motor 11 is detected and the rotation of the motor 11 is always controlled to the optimum differential speed by the control means 14 which controls the rotation to a value within a predetermined range, the amount of solid matter deposited can be maintained at an optimum level. In addition, efficient dehydration can be achieved in that a dehydrated cake with a low moisture content can be obtained.

【0006】[0006]

【発明が解決しようとする課題】従来の遠心分離機の制
御装置は以上のように構成されているので、各々の制御
因子に対し個別に設定値制御(PI制御、PID制御)
を行っている。この設定値制御は、操作員が最適値を初
期値として入力することで行われているため、供給汚泥
の濃度変化や性状の変化によりこの設定値を変更する必
要があるなどの問題点があった。
[Problems to be Solved by the Invention] Since the conventional centrifuge control device is configured as described above, each control factor is individually controlled with a set value (PI control, PID control).
It is carried out. This set value control is carried out by the operator inputting the optimal value as the initial value, so there are problems such as the need to change the set value due to changes in the concentration or properties of the supplied sludge. Ta.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、供給汚泥の濃度変化や性状変化
に対し常に最適な運転状態への制御が可能となることを
目的とする。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to make it possible to always maintain optimal operating conditions in response to changes in the concentration and properties of supplied sludge.

【0008】[0008]

【課題を解決するための手段】この発明に係る遠心分離
機の制御装置は、所定の運転状態のパラメータの少なく
とも1つを監視できるセンサーを備えた遠心分離機で、
センサーからの運転状態データを収積した後、データを
蓄積し、運転状況を表示・記録できると共に、現在収集
しているデータや蓄積されたデータと経験知識ベースよ
り導かれた制御規則から、現在の運転状態を評価判断し
、差速・遠心効果・汚泥供給量・薬品供給量のうち1つ
以上の運転条件を、適時、単独あるいは同時に適量な値
を制御することで、速やかに、最適な運転条件を見出し
、かつ保持させる制御装置。
[Means for Solving the Problems] A centrifugal separator control device according to the present invention is a centrifugal separator equipped with a sensor capable of monitoring at least one parameter of a predetermined operating state,
After collecting driving status data from sensors, the data can be accumulated, and the driving status can be displayed and recorded. Evaluate and judge the operating status of the system, and control one or more of the operating conditions of differential speed, centrifugal effect, sludge supply amount, and chemical supply amount to appropriate values at the appropriate time, individually or simultaneously, to quickly optimize the operating conditions. A control device that finds and maintains operating conditions.

【0009】[0009]

【作用】この発明における遠心分離機の制御装置は、遠
心分離機の運転状態を監視しながらファジー理論を用い
たエキスパートシステムにより常に最適の運転状態にな
るように1つまたは複数の制御因子の設定値を自動的に
変更しながら設定値制御(PI制御)を行う。また、供
給汚泥の濃度変化や性状変化に対し自己調整(適合制御
)をしながら、常に最適な運転状態へ制御される(PI
D制御)。また、運転状態は常時監視され、過去の所定
時間のスパンでディスプレイ表示され、記録もされる。 記録された運転状態より運転状態の診断を行うためのデ
ータが作成される。また、メッセージで運転状態の状況
を表示することもできる。
[Operation] The centrifuge control device of the present invention monitors the operating state of the centrifuge and uses an expert system using fuzzy theory to set one or more control factors so that the operating state is always optimal. Performs set value control (PI control) while automatically changing values. In addition, while self-adjusting (adaptive control) to changes in the concentration and properties of the supplied sludge, it is always controlled to the optimal operating state (PI
D control). In addition, the operating status is constantly monitored, displayed on a display over a predetermined period of time in the past, and recorded. Data for diagnosing the driving condition is created from the recorded driving condition. It is also possible to display operating status through messages.

【0010】0010

【実施例】以下、この発明の一実施例を図について説明
する。図1において、16はデータを収積する収集部、
17は蓄積装置、18は表示装置、19は記録装置、2
0は判断、制御機能を有する人工知脳システム、S1〜
S12は各状態因子を測定するセンサーである。なお、
図中、従来の装置と同一の部分については、その説明を
省略する。遠心分離機の運転状態の制御の関連パラメー
タを以下のとおりとする。 出力パラメータ・・・操作因子(制御する項目)01:
差速モータ11回転数:NB 02:外胴8回転数:NM 03:汚泥供給ポンプ(汚泥供給量):QO04:薬品
供給ポンプ(薬品供給量):QS入力パラメータ・・・
状態因子(運転状態を表す項目)S1:外胴1軸回転数
:N1 S2:内胴2軸(ピニオン軸)回転数:N2S3:処理
対象物量(汚泥供給量):QOS4:脱水助剤量(薬品
供給量):QSS5:処理対象物(汚泥)濃度:C0 S6:脱水ケーキ含水率:C1 S7:分離液濃度:C2 S8:内胴2軸(ピニオン軸)トルク:B/DTS9:
差速モータ11電流値:B/DAmpS10:メインモ
ータ8電流値:M/MAmpS11:差速モータ11動
力:B/DKwS12:メインモータ8動力:M/MK
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 16 is a collection unit that collects data;
17 is a storage device, 18 is a display device, 19 is a recording device, 2
0 is an artificial intelligence brain system with judgment and control functions, S1~
S12 is a sensor that measures each state factor. In addition,
In the figure, descriptions of parts that are the same as those of the conventional device will be omitted. The related parameters for controlling the operating status of the centrifuge are as follows. Output parameter...operation factor (item to be controlled) 01:
Differential speed motor 11 rotation speed: NB 02: Outer shell 8 rotation speed: NM 03: Sludge supply pump (sludge supply amount): QO04: Chemical supply pump (chemical supply amount): QS input parameter...
Condition factors (items representing operating conditions) S1: Outer shell 1 shaft rotation speed: N1 S2: Inner shell 2 shaft (pinion shaft) rotation speed: N2 S3: Amount of material to be treated (sludge supply amount): QOS4: Dehydration aid amount ( Chemical supply amount): QSS5: Treatment target (sludge) concentration: C0 S6: Dehydrated cake water content: C1 S7: Separated liquid concentration: C2 S8: Inner shell 2 shafts (pinion shaft) torque: B/DTS9:
Differential speed motor 11 current value: B/DAmpS10: Main motor 8 current value: M/MAmpS11: Differential speed motor 11 power: B/DKwS12: Main motor 8 power: M/MK
lol

【0011】次に動作について説明する。図1におい
て、運転状態を常時監視するセンサーS1〜S12によ
り測定された状態因子の測定データは、収集部16によ
り収積された後、蓄積装置17により蓄積される。また
、運転状態は記録装置19に記録されることもできるし
、メッセージで表示もされる。現在収集しているデータ
や蓄積されたデータ及び経験知識ベースより導かれた制
御規則から、現在の運転状態を評価判断し、差速モータ
11回転数:NB、外胴1回転数:NM、遠心効果、汚
泥供給ポンプ(汚泥供給量):QO 、薬品ポンプ(薬
品供給量):QS のうち1つ以上の運転条件を適時、
単独あるいは同時に適量の値が制御される。
Next, the operation will be explained. In FIG. 1, measurement data of state factors measured by sensors S1 to S12 that constantly monitor the driving state are collected by a collection unit 16 and then stored by a storage device 17. Further, the operating state can be recorded in the recording device 19 or displayed as a message. Evaluate and judge the current operating condition from the control rules derived from currently collected data, accumulated data, and experience knowledge base, and determine the differential speed motor 11 rotation speed: NB, outer shell 1 rotation speed: NM, centrifugal Effect, sludge supply pump (sludge supply amount): QO, chemical pump (chemical supply amount): QS.
Appropriate values are controlled singly or simultaneously.

【0012】ここで、上記にも述べ、本発明の特徴であ
る「人工知脳20が、■現在収集したデータ、または現
在収集したデータ及び過去に収集したデータ、及び■知
識ベースより経験則を用いて現在の運転状態に対して最
適のNB、NM、QS 、QO を決定する。」につい
て順次説明する。
[0012] Here, as mentioned above and which is a feature of the present invention, the artificial intelligence brain 20 calculates empirical rules from ■ currently collected data, or currently collected data and past collected data, and ■ knowledge base. NB, NM, QS, and QO are determined to be optimal for the current operating condition.'' will be explained in sequence.

【0013】遠心分離機は01:差速モータ回転数NB
 を操作することにより、 S2:内胴2軸(ピニオン軸)回転数:N2が変化し、
差速(B/D=(N1−N2)/η)が変化(ηは減速
比)、その結果、 S6:脱水ケーキ含水率:C1 S7:分離液濃度:C2 S8:内胴2軸(ピニオン軸)トルク:B/DTS9:
差速モータ11電流値:B/DAmpS11:差速モー
タ11動力:B/DKwが相互に関連し変化し運転状態
の把握が可能になる。
[0013] Centrifugal separator is 01: Differential speed motor rotation speed NB
By operating S2: Inner shell 2 shaft (pinion shaft) rotation speed: N2 changes,
The differential speed (B/D=(N1-N2)/η) changes (η is the reduction ratio), and as a result, S6: Dehydrated cake moisture content: C1 S7: Separated liquid concentration: C2 S8: Inner shell 2 shafts (pinion Shaft) Torque: B/DTS9:
Differential speed motor 11 current value: B/DAmpS11: Differential speed motor 11 power: B/DKw change in relation to each other, making it possible to grasp the operating state.

【0014】同様に、02:外胴1回転数NM を操作
すると、 S1:外胴1回転数:N1 S2:内胴2軸(ピニオン軸)回転数:N2S6:脱水
ケーキ含水率:C1 S7:分離液濃度:C2 S8:内胴2軸(ピニオン軸)トルク:B/DTS9:
差速モータ11電流値:B/DAmpS10:メインモ
ータ8電流値:M/MAmpS11:差速モータ11動
力:B/DKwS12:メインモータ8動力:M/MK
wが変化する。
Similarly, when 02: Outer shell 1 rotation speed NM is operated, S1: Outer shell 1 rotation speed: N1 S2: Inner shell 2 shaft (pinion shaft) rotation speed: N2 S6: Water content of dehydrated cake: C1 S7: Separated liquid concentration: C2 S8: Inner shell 2 shafts (pinion shaft) torque: B/DTS9:
Differential speed motor 11 current value: B/DAmpS10: Main motor 8 current value: M/MAmpS11: Differential speed motor 11 power: B/DKwS12: Main motor 8 power: M/MK
w changes.

【0015】03:汚泥供給ポンプQO を操作すると
、S3:処理対象物(汚泥)量:QO S6:脱水ケーキ含水率:C1 S7:分離液濃度:C2 S8:内胴2軸トルク:B/DT S9:差速モータ11電流値:B/DAmpS10:メ
インモータ8電流値:M/MAmpS11:差速モータ
11動力:B/DKwS12:メインモータ8動力:M
/MKwが変化する。
03: When the sludge supply pump QO is operated, S3: Amount of material to be treated (sludge): QO S6: Water content of dehydrated cake: C1 S7: Concentration of separated liquid: C2 S8: Inner cylinder 2-shaft torque: B/DT S9: Differential speed motor 11 current value: B/DAmpS10: Main motor 8 current value: M/MAmpS11: Differential speed motor 11 power: B/DKwS12: Main motor 8 power: M
/MKw changes.

【0016】04:薬品供給ポンプQS を操作すると
、S4:脱水助剤(薬品)量:QS S6:脱水ケーキ含水率:C1 S7:分離液濃度:C2 S8:内胴2軸トルク:B/DT S9:差速モータ11電流値:B/DAmpS10:メ
インモータ8電流値:M/MAmpS11:差速モータ
11動力:B/DKwS12:メインモータ8動力:M
/MKwが変化する。
04: When the chemical supply pump QS is operated, S4: Dehydration aid (chemical) amount: QS S6: Dehydration cake moisture content: C1 S7: Separated liquid concentration: C2 S8: Inner shell 2-axis torque: B/DT S9: Differential speed motor 11 current value: B/DAmpS10: Main motor 8 current value: M/MAmpS11: Differential speed motor 11 power: B/DKwS12: Main motor 8 power: M
/MKw changes.

【0017】つまり、S1〜S12を監視することによ
り現在の遠心分離機の運転状態が判断でき、操作因子0
1〜04を操作したときの制御結果の判断材料として利
用する。またS1〜S12より現在の運転状態を判断し
次の操作を行うために「操作因子01〜02の何を、ど
れだけの量(操作量の決定)変更するか?」の決定を行
う。
That is, by monitoring S1 to S12, the current operating state of the centrifuge can be determined, and the operation factor is 0.
It is used as a basis for determining the control results when operating 1 to 04. Further, the current operating state is determined from S1 to S12, and in order to perform the next operation, it is determined "which of the operating factors 01 to 02 should be changed and by how much (determination of the operating amount)?".

【0018】以上の関係を表わすと図7のようになる。FIG. 7 shows the above relationship.

【0019】次に、『知識ベース』、『経験則』につい
て具体的な考え方について説明する。まず、『知識ベー
ス』について述べる。遠心分離機の運転状態を把握する
ために、個々の状態因子について、「現在の運転状態が
良いのか?」、「悪いのか?」を判断するために個々の
値について小さい度合い、または、普通の度合い、大き
い度合いがどれくらいか?という適合度を換算する必要
がある。この換算の基準を『知識ベース』という。ファ
ジー理論やエキスパートシステムでは通常メンバーシッ
プ関数と呼ばれている部分に相当する。
[0019] Next, a concrete concept regarding the ``knowledge base'' and ``empirical rules'' will be explained. First, let's talk about the "knowledge base." In order to understand the operating status of the centrifuge, we examine each status factor to determine whether the current operating status is good or bad. How big is the degree? It is necessary to convert the goodness of fit. This conversion standard is called a "knowledge base." In fuzzy theory and expert systems, this corresponds to what is usually called the membership function.

【0020】知識ベースにおいては、それぞれの状態因
子、制御因子について、その程度を定義する方法は例え
ば次のような方法がある。 I型・・・三角形を用いる方法 図2に示すように、個々の状態因子、制御因子について
例えば脱水ケーキ含水率のメンバーシップは、■小さい
値をPSSとし頂点を76%とする72%〜78%の範
囲の水分と定義する。 ■少し小さい値をPSとし頂点を78%とする76%〜
80%の範囲の水分と定義する。 ■普通の値をPMとし頂点を80%とする78%〜82
%の範囲の水分と定義する。 ■少し大きい値をPBとし頂点を82%とする80%〜
84%の範囲の水分と定義する。 ■大きい値をPBBとし頂点を84%とする82%〜8
6%の範囲の水分と定義する。 この時、その入力値が(脱水ケーキ含水率)78.5%
とすると、上記の知識ベースと照らし合わせて脱水ケー
キ含水率(C1)はPSの適合度が0.75であり、か
つPMの適合度が0.25である、と表現する。
In the knowledge base, the following methods are available for defining the degree of each state factor and control factor. Type I...Method using triangles As shown in Figure 2, for each condition factor and control factor, for example, the membership of the water content of the dehydrated cake is ■72% to 78, with the smaller value being PSS and the apex being 76%. Defined as moisture in the range of %. ■76%~ where PS is a slightly smaller value and the apex is 78%.
Defined as moisture in the range of 80%. ■78% to 82 with the normal value as PM and the peak as 80%
Defined as moisture in the range of %. ■80% ~ with a slightly larger value as PB and the apex as 82%
Defined as moisture in the range of 84%. ■82% to 8 where the larger value is PBB and the apex is 84%
Defined as moisture in the range of 6%. At this time, the input value is (dehydrated cake moisture content) 78.5%
Then, in comparison with the above knowledge base, the moisture content of the dehydrated cake (C1) is expressed as follows: the suitability of PS is 0.75, and the suitability of PM is 0.25.

【0021】図3に示すように、それぞれの状態因子の
メンバーシップに極端な2つの値(例えばPSB,PS
G)を定義し、ある条件から適合率ωを導き、その適合
値(PSω)を採用し、汚泥性状、濃度の変動に対し調
整する適応制御を用いることもある(適応制御)。
As shown in FIG. 3, the membership of each state factor has two extreme values (for example, PSB, PS
G), derive the compatibility rate ω from a certain condition, adopt the compatibility value (PSω), and use adaptive control to adjust to changes in sludge properties and concentration (adaptive control).

【0022】また、場合によっては三角形の頂点が2つ
ある(広い)台形型を用いたり、5段階(PSS,PS
,PM,PB,PBB)だけでなく、3段階(PS,P
M,PB)で行うこともある。
[0022] In some cases, a trapezoidal shape with two triangle vertices (wide) is used, or a trapezoidal shape with 5 stages (PSS, PS
, PM, PB, PBB) as well as three stages (PS, P
M, PB).

【0023】II 型・・・単調カーブを用いる方法I
型の複数の三角形ではなく図4のようなメンバーシップ
を用いる方法でややPである度合い、ややNである度合
いとして適合度を表わす。脱水ケーキ含水率の含水率(
C1)を例にとると含水率の低い適合度をC1(P)と
すると、
Type II: Method I using a monotone curve
By using membership as shown in FIG. 4 instead of using multiple triangles of a type, the degree of conformity is expressed as the degree to which the shape is slightly P or the degree to which it is slightly N. Water content of dehydrated cake water content (
Taking C1) as an example, if the fitness with low moisture content is C1(P),

【0024】[0024]

【数1】 を用いる。同様に含水率の高い適合度、含水率(N)は
[Equation 1] is used. Similarly, the degree of suitability with high water content, water content (N), is

【0025】[0025]

【数2】 で表わせる。このとき、係数a,bを後述する経験則を
用いて変更することによりその適合度を変え(自己調整
機能)、汚泥性状や濃度変動に対応し遠心分離機を最適
状態で運転を行う。
It can be expressed as [Equation 2]. At this time, by changing the coefficients a and b using empirical rules described later, the degree of adaptation is changed (self-adjustment function), and the centrifuge is operated in an optimal state in response to changes in sludge properties and concentration.

【0026】III 型・・・特性カーブを用いる方法
図5のように、II 型の単調カーブをそれぞれの状態
因子、制御因子の特性を表わしたカーブを用いて差速が
高い適合度、含水率が低い適合度などを表わすこともあ
る。 高い(悪い)含水率の適合度:C1(B)=f(x)低
い(良い)含水率の適合度:C1(G)=g(x)ここ
で、状態を分かりやすくC1(H)(高い)、C1(L
)(低い)と表現することもある。同様にf(x),g
(x)の係数を変えることにより自己調整することもあ
る。
Type III...method using characteristic curves As shown in Figure 5, type II monotone curves are used to express the characteristics of each state factor and control factor, and the difference speed is high in conformity and water content. may also indicate low fitness. Suitability for high (bad) water content: C1(B) = f(x) Suitability for low (good) water content: C1(G) = g(x) Here, the state can be easily understood by C1(H)( high), C1(L
) (low). Similarly, f(x), g
It may also be self-adjusted by changing the coefficient of (x).

【0027】また、これらはその値そのものを用いるだ
けでなく、場合によってはその値の前回の値、または数
回前の値を用いて1階差や2階差をとり、変化の傾向と
して定義する場合もある。
[0027] In addition to using the value itself, in some cases, the previous value of that value or the value several times before is used to calculate the first or second difference, and is defined as a trend of change. In some cases.

【0028】次に、『経験則』について述べる。状態因
子より、運転状態を把握した後、操作因子の決定、操作
量の決定を行うための判断をするためのルールを経験則
という。一般のファジー理論ではプロダクションルール
と呼ばれる部分に相当する。
Next, "rules of thumb" will be described. Rules for making judgments to determine operating factors and operating amounts after understanding the operating state from state factors are called empirical rules. In general fuzzy theory, this corresponds to what is called a production rule.

【0029】この経験則と知識ベースを用いて遠心分離
機の運転状態を評価し、最適な運転状態を決定する。具
体的には、例えば次のような規則(ルール)から成り立
っている。 1)I型のタイプの知識ベースを用いたときここで経験
則 『もし  差速が低く  かつ分離液が悪い  ならば
  差速を少し上げる』を簡略化して次のように表わす
ものとする。   IF{[B/D:PS]&[C2:PB]}=>{
[△(NB):PS]}また、このとき、IF{〜}を
ルールの条件部、または前件部、=〉{〜}を結論部ま
たは後件部と呼ぶと、例えば、次のような経験則の集ま
りから成り立っている。                          
      :  IF{[B/D:PS]&[C2:
PM]}=>{[△(NB):PS]}…(R−1) 
 IF{[C1:PM]&[C2:PS]}=>{[△
(NB):NS]}…(R−2)  IF{[C1:P
S]&[C2:PS]}=>{[△(QS):NS]}
  IF{[B/DAmp:PBB]&[△B/DAm
p:PS]}=>{[△(NB):NB]}  IF{
[QS:PB]&[C2:PB]}         
                 =>{[△(QS
):NS]&[ω:NM]}            
                   :     
               ω:調整係数
[0029] Using this empirical rule and knowledge base, the operating conditions of the centrifuge are evaluated and the optimal operating conditions are determined. Specifically, it consists of the following rules. 1) When using Type I knowledge base, the empirical rule ``If the differential velocity is low and the separation liquid is bad, increase the differential velocity a little'' can be simplified and expressed as follows. IF {[B/D:PS]&[C2:PB]}=>{
[△(NB):PS]} Also, in this case, if IF{~} is called the conditional part or antecedent part of the rule, and =>{~} is called the conclusion part or consequent part, for example, It consists of a collection of empirical rules.
: IF {[B/D:PS] & [C2:
PM]}=>{[△(NB):PS]}...(R-1)
IF{[C1:PM]&[C2:PS]}=>{[△
(NB):NS]}...(R-2) IF{[C1:P
S] & [C2:PS]} => {[△(QS):NS]}
IF{[B/DAmp:PBB]&[△B/DAm
p:PS]}=>{[△(NB):NB]} IF{
[QS:PB] & [C2:PB]}
=>{[△(QS
):NS] & [ω:NM]}
:
ω: Adjustment coefficient

【003
0】2)同様にII型のタイプだと次のようになる。                          
      :  IF{[B/D:P]&[C2:N
]}=>{[△(NB):N]}  IF{[C1:P
]&[C2:N]}=>{[△(QS):B]}  I
F{[B/DAmp:P]&[△(B/DAmp):P
]}=>{[△(NB):N]}  IF{[QS:P
]&[C2:P]}=>{[△(QS):N]&[ω:
N]}                      
         :
003
0] 2) Similarly, for type II, the result is as follows.
: IF {[B/D:P] & [C2:N
]}=>{[△(NB):N]} IF{[C1:P
]&[C2:N]}=>{[△(QS):B]} I
F{[B/DAmp:P] & [△(B/DAmp):P
]}=>{[△(NB):N]} IF{[QS:P
]&[C2:P]}=>{[△(QS):N]&[ω:
N]}
:

【0031】3)同様にIII 
型のタイプだと次のようになる。                          
      :  IF{[B/D:H]&[C2:B
AD]}=>{[△(NB):BIG]}  IF{[
C1:BAD]&[C2:GOOD]}=>{[△(Q
S):L]}  IF{[B/DAmp:BIG]&[
△(B/DAmp):PS]}=>{[△(NB):H
]}  IF{[QS:BIG]&[C2:BAD]}
                         
     =>{[△(QS):NS]&[ω:NM]
}                        
       :H:高い、大きい BIG:大きい、速くする BAD:悪い PS:正で少し NM:負で中くらい
3) Similarly, III
The type is as follows.
: IF {[B/D:H] & [C2:B
AD]}=>{[△(NB):BIG]} IF{[
C1:BAD]&[C2:GOOD]}=>{[△(Q
S):L]} IF{[B/DAmp:BIG]&[
△(B/DAmp):PS]}=>{[△(NB):H
]} IF {[QS:BIG]&[C2:BAD]}

=>{[△(QS):NS]&[ω:NM]
}
:H: High, big BIG: Big, fast BAD: Bad PS: Positive and a little NM: Negative and medium

【0032】またこれらI型、II型、III 型を組
み合わせた複合型の経験則を用いたり、後件部に II
I 型で用いた特性カーブを用いることもある。
[0032] In addition, we may use a compound type empirical rule that combines types I, II, and III, or we may use II in the consequent.
The characteristic curve used for Type I may also be used.

【0033】制御因子の因子の操作量の決定知識ベース
、経験則より導かれた制御因子の操作量は、個々のルー
ルについて後件部の適合度は前件部の個々の適合度の最
小値をとる(AND演算)。次に各ルールごとの同じ制
御因子のメンバーシップについてその適合度の最大値を
とる(OR演算)。
Determining the amount of manipulation of the control factor The amount of manipulation of the control factor derived from the knowledge base and empirical rules is that for each rule, the fitness of the consequent part is the minimum value of the individual fitness of the antecedent part. (AND operation). Next, the maximum value of the fitness for the membership of the same control factor for each rule is taken (OR operation).

【0034】最後にそのメンバーシップについて重心合
成を行い、知識ベースより操作量に換算を行う。具体的
には、例えばI型の知識ベースを用いたときに前記(R
−1),(R−2)にルールが成立している場合、次の
ように行う。図6において、この時、 B/D のPSの適合度が  0.3 C2のPMの適合度が  0.8 C2のPSの適合度が  0.2 C1のPMの適合度が  0.6 とすると、 ルール(R−1)においてΔ(NB)のPSの適合度は
  0.3 ルール(R−2)においてΔ(NB)のNSの適合度は
  0.2 Δ(NB):差速モータの変化率 となる。ここで、Δ(NB)のPS(0.3)、NS(
0.2)を重心合成し知識ベースより2.0回転の増速
量を得る。
Finally, center-of-gravity synthesis is performed for the membership, and conversion into an operation amount is performed from the knowledge base. Specifically, for example, when using a type I knowledge base, the above (R
-1) and (R-2), the following procedure is performed. In Figure 6, at this time, the suitability of PS of B/D is 0.3, the suitability of PM of C2 is 0.8, the suitability of PS of C2 is 0.2, and the suitability of PM of C1 is 0.6. Then, in rule (R-1), the suitability of PS of Δ(NB) is 0.3 In rule (R-2), the suitability of NS of Δ(NB) is 0.2 Δ(NB): Differential speed motor is the rate of change. Here, PS (0.3) of Δ(NB), NS(
0.2) is combined with the center of gravity to obtain a speed increase of 2.0 rotations from the knowledge base.

【0035】同様にして、II 型、III 型の場合
にはそれぞれのルールの適合度の重み付き平均で与えら
れる。
Similarly, in the case of type II and type III, it is given by the weighted average of the fitness of each rule.

【0036】上記で説明したファジー理論を用いた遠心
分離機の制御以外の機能を列挙すれば、■運転状態を常
時監視する遠心分離機の制御装置である。運転状態を過
去1時間、2時間等のスパンでディスプレイ表示するこ
とで常時監視していなくても運転状態の把握が可能であ
り、状況の変化、運転状態の確認や制御性が一目で分か
る。
The functions other than centrifuge control using the fuzzy theory described above are listed below: (1) A centrifuge control device that constantly monitors the operating state. By displaying the operating status over a span of the past hour, two hours, etc., it is possible to understand the operating status without constant monitoring, and changes in the situation, confirmation of the operating status, and controllability can be seen at a glance.

【0037】■運転状態を記録できる遠心分離機の制御
装置である。運転状態を記録することで制御性の分析が
容易に行え、より新しい制御装置の開発に貢献する。
(2) A centrifuge control device that can record the operating status. By recording operating conditions, controllability can be easily analyzed, contributing to the development of newer control devices.

【0038】■記録された運転状態を現在の運転状態の
参考にしながら制御する遠心分離機の制御装置である。 1)運転開始後30分や、1時間後の定常時に入った(
制御が収束した)ときの運転条件を記録し、次回起動時
この記録された運転条件より起動することにより速く定
常運転に入ることが可能となる。 2)過去の最適値を記録し常に最適値付近で運転できる
よう自己調整を行いながら、最適値を更新する。
[0038] This is a control device for a centrifugal separator that controls the recorded operating state while referring to the current operating state. 1) It started during normal operation 30 minutes or 1 hour after the start of operation (
By recording the operating conditions at the time when the control has converged, and starting from the recorded operating conditions the next time, it is possible to enter steady operation more quickly. 2) Record the past optimum values and update the optimum values while making self-adjustments so that you can always operate near the optimum values.

【0039】■記録された運転状態より運転状態の診断
を行うためのデータを作り出す遠心分離機の制御装置で
ある。 運転状態を定時的にICカードに記録し過去の運転状態
、制御状態の分析ができる。
(2) A centrifugal separator control device that creates data for diagnosing the operating state from the recorded operating state. Driving conditions are periodically recorded on an IC card and past driving conditions and control conditions can be analyzed.

【0040】■運転状態を監視しながら最適な状態にな
るように自己調整しながら運転する遠心分離機の制御装
置である。 前記自己調整機能
(2) This is a control device for a centrifuge that operates while monitoring the operating state and self-adjusting itself to the optimum state. Self-adjustment function

【0041】■運転状態の状況をメッセージで表示する
遠心分離機の制御装置である。運転条件の自動的に変更
できない部分の要求メッセージ、異常運転の表示メッセ
ージを出せる。
[0041] ■ This is a centrifugal separator control device that displays the operating status in messages. It can issue request messages for parts of operating conditions that cannot be changed automatically, and display messages for abnormal operations.

【0042】上記の機能■,■,■,■を持たせるため
表示機能としてCRTまたは液晶、プラズマなどのディ
スプレイを搭載し、また、■,■,■,■,■の機能を
持たせるため、記録装置として、内部記憶装置やICカ
ード、フロッピーディスク、ハードディスク等の外部記
憶装置やプリンタ等の印刷装置を搭載している。
[0042] In order to have the above functions ■, ■, ■, ■, a display such as a CRT, liquid crystal, or plasma is installed as a display function, and in order to have the functions ■, ■, ■, ■, ■, As a recording device, an internal storage device, an external storage device such as an IC card, a floppy disk, or a hard disk, and a printing device such as a printer are installed.

【0043】[0043]

【発明の効果】以上のように、この発明によれば、遠心
分離機の運転状態を監視するセンサーを設け、該測定デ
ータを収積する収集部と、該データを蓄積する蓄積装置
と運転状況を表示する表示装置と記録装置と現在収集し
ているデータや蓄積されたデータ及び経験知識ベースよ
り導かれた制御規則から現在の運転状態を評価判断し、
差速・遠心効果・薬品供給量・汚泥供給量のうち1つ以
上の運転条件を適時、単独あるいは同時に適量な値を制
御する人工知脳システムを備えた構成にしたので、供給
汚泥の濃度変化や、性状変化に対し自己調整をしながら
、常に最適な運転状態へ、無人で制御が可能となる効果
がある。
As described above, according to the present invention, a sensor for monitoring the operating condition of a centrifugal separator is provided, a collecting section for collecting the measured data, an accumulating device for accumulating the data, and an operating condition. Evaluate and judge the current operating status from the display device and recording device that display the data, the currently collected data, the accumulated data, and the control rules derived from the experiential knowledge base.
The structure is equipped with an artificial intelligence system that controls one or more of the operating conditions of differential speed, centrifugal effect, chemical supply amount, and sludge supply amount to the appropriate value at the appropriate time, individually or simultaneously, so that changes in the concentration of the supplied sludge can be prevented. This has the effect of enabling unattended control to always maintain optimal operating conditions while self-adjusting to changes in properties.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例による遠心分離機の制御回
路を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a control circuit of a centrifugal separator according to an embodiment of the present invention.

【図2】この発明の一実施例による脱水ケーキ含水率の
適合度を示す図である。
FIG. 2 is a diagram showing the suitability of the water content of a dehydrated cake according to an embodiment of the present invention.

【図3】この発明の他の実施例による脱水ケーキ含水率
の適応制御による程度の定義をを示す図である。
FIG. 3 is a diagram showing the definition of the degree of adaptive control of the moisture content of the dehydrated cake according to another embodiment of the present invention.

【図4】この発明の他の実施例による脱水ケーキ含水率
の単調カーブを用いた程度の定義を示す図である。
FIG. 4 is a diagram showing the definition of degree using a monotonic curve of dehydrated cake moisture content according to another embodiment of the present invention.

【図5】この発明の他の実施例による脱水ケーキ含水率
の特性カーブを用いた程度の定義を示す図である。
FIG. 5 is a diagram showing the definition of degree using a characteristic curve of dehydrated cake water content according to another embodiment of the present invention.

【図6】この発明の一実施例による重心合成を説明する
図である。
FIG. 6 is a diagram illustrating center-of-gravity synthesis according to an embodiment of the present invention.

【図7】出力パラメータと入力パラメータの関係を示す
相関図である。
FIG. 7 is a correlation diagram showing the relationship between output parameters and input parameters.

【図8】従来の遠心分離機を示す縦断面図である。FIG. 8 is a longitudinal sectional view showing a conventional centrifuge.

【符号の説明】[Explanation of symbols]

1    外胴 2    内胴 6    スクリュー 8    メインモータ 11  差速モータ S1〜S12  センサー 16  収集部 17  蓄積装置 18  表示装置 19  記録装置 20  人工知脳システム 1 Outer body 2 Inner body 6 Screw 8 Main motor 11 Differential speed motor S1~S12 sensor 16 Collection Department 17 Accumulation device 18 Display device 19 Recording device 20 Artificial intelligence brain system

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  内胴と外胴との差速を制御して汚泥を
固液分離する遠心分離機の制御装置において、前記外胴
回転数/内胴駆動軸回転数・トルク/メインモータ電流
値/差速モータ電流値・動力/処理対象物/濃度/脱水
助剤量・脱水ケーキの含水率・濃度/分離液濃度の運転
状態の少なくとも1つを監視できるセンサーと、前記セ
ンサーにより測定されたデータを収積する収集部と、前
記データを蓄積する蓄積装置と、運転状況を表示する表
示装置と、前記運転状態を記録する記録装置と、現在収
集しているデータ・蓄積されたデータ・経験知識ベース
より導かれた制御規則から、現在の運転状態を評価判断
し、前記差速・遠心効果・汚泥供給量・薬品供給量のう
ち、1つ以上の運転条件を適時、単独あるいは同時に適
量な値を制御する人工知脳システムとを備えたことを特
徴とする遠心分離機の制御装置。
1. A control device for a centrifugal separator that separates sludge into solid and liquid by controlling the differential speed between an inner shell and an outer shell, wherein the outer shell rotation speed/inner shell drive shaft rotation speed/torque/main motor current. a sensor capable of monitoring at least one of the following operating conditions: value/differential speed motor current value/power/object to be processed/concentration/amount of dehydration aid/moisture content/concentration of dehydrated cake/concentration of separated liquid; a collection unit that collects the data, a storage device that stores the data, a display device that displays the driving status, a recording device that records the driving status, and currently collected data, accumulated data, Based on control rules derived from an experiential knowledge base, the current operating state is evaluated and determined, and one or more of the above-mentioned differential speed, centrifugal effect, sludge supply amount, and chemical supply amount are adjusted in a timely manner, individually or simultaneously in appropriate amounts. A control device for a centrifuge, characterized in that it is equipped with an artificial intelligence brain system that controls values.
JP17573691A 1991-06-21 1991-06-21 Controller for centrifugal separator Pending JPH04371244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17573691A JPH04371244A (en) 1991-06-21 1991-06-21 Controller for centrifugal separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17573691A JPH04371244A (en) 1991-06-21 1991-06-21 Controller for centrifugal separator

Publications (1)

Publication Number Publication Date
JPH04371244A true JPH04371244A (en) 1992-12-24

Family

ID=16001351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17573691A Pending JPH04371244A (en) 1991-06-21 1991-06-21 Controller for centrifugal separator

Country Status (1)

Country Link
JP (1) JPH04371244A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1044723A1 (en) * 1999-03-29 2000-10-18 M-I Llc Centrifuge control system and method with operation monitoring and pump control
JP2013013848A (en) * 2011-07-01 2013-01-24 Nishihara Environment Co Ltd Centrifugal dehydrator and centrifugal dehydration method using the same
JP2020114569A (en) * 2019-01-17 2020-07-30 三機工業株式会社 Water content estimation method of dehydrated cake, and sludge treatment system
JP2021102195A (en) * 2019-12-25 2021-07-15 巴工業株式会社 Machine learning device, data processing system, inference device and machine learning method
EP4327948A1 (en) * 2022-08-22 2024-02-28 GEA Westfalia Separator Group GmbH Ai controlled decanter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281668A (en) * 1975-12-27 1977-07-08 Ebara Corp Centrifugal dewatering apparatus
JPS53138583A (en) * 1977-05-04 1978-12-04 Jackson Joseph Fenwick Centrifugal separator
JPS5665649A (en) * 1979-11-02 1981-06-03 Toshiba Corp Control apparatus of centrifugal dehydrator
JPS60161759A (en) * 1984-01-28 1985-08-23 Masami Imakado Centrifugal dehydration apparatus
JPS6249107A (en) * 1985-08-28 1987-03-03 Toshiba Corp Liquid fuel combustion device
JPS62102848A (en) * 1985-10-31 1987-05-13 Ishikawajima Harima Heavy Ind Co Ltd Method for controlling torque of decanter type centrifugal separator
JPS6459020A (en) * 1987-05-14 1989-03-06 Asea Brown Boveri Temperature measuring apparatus
JPH0215262A (en) * 1988-07-04 1990-01-18 Toyo Ink Mfg Co Ltd Method and device for forming image

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281668A (en) * 1975-12-27 1977-07-08 Ebara Corp Centrifugal dewatering apparatus
JPS53138583A (en) * 1977-05-04 1978-12-04 Jackson Joseph Fenwick Centrifugal separator
JPS5665649A (en) * 1979-11-02 1981-06-03 Toshiba Corp Control apparatus of centrifugal dehydrator
JPS60161759A (en) * 1984-01-28 1985-08-23 Masami Imakado Centrifugal dehydration apparatus
JPS6249107A (en) * 1985-08-28 1987-03-03 Toshiba Corp Liquid fuel combustion device
JPS62102848A (en) * 1985-10-31 1987-05-13 Ishikawajima Harima Heavy Ind Co Ltd Method for controlling torque of decanter type centrifugal separator
JPS6459020A (en) * 1987-05-14 1989-03-06 Asea Brown Boveri Temperature measuring apparatus
JPH0215262A (en) * 1988-07-04 1990-01-18 Toyo Ink Mfg Co Ltd Method and device for forming image

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1044723A1 (en) * 1999-03-29 2000-10-18 M-I Llc Centrifuge control system and method with operation monitoring and pump control
US6368264B1 (en) 1999-03-29 2002-04-09 M-I L.L.C. Centrifuge control system and method with operation monitoring and pump control
JP2013013848A (en) * 2011-07-01 2013-01-24 Nishihara Environment Co Ltd Centrifugal dehydrator and centrifugal dehydration method using the same
JP2020114569A (en) * 2019-01-17 2020-07-30 三機工業株式会社 Water content estimation method of dehydrated cake, and sludge treatment system
JP2021102195A (en) * 2019-12-25 2021-07-15 巴工業株式会社 Machine learning device, data processing system, inference device and machine learning method
EP4327948A1 (en) * 2022-08-22 2024-02-28 GEA Westfalia Separator Group GmbH Ai controlled decanter
WO2024042091A1 (en) * 2022-08-22 2024-02-29 Gea Westfalia Separator Group Gmbh Ai controlled decanter

Similar Documents

Publication Publication Date Title
US4662193A (en) Washing machine
US5857955A (en) Centrifuge control system
JPH04371244A (en) Controller for centrifugal separator
US20130118991A1 (en) Process and apparatus for controlling a filtration plant
CN106179629A (en) A kind of grinding chemical mechanical system of double-layered bucket wall
CN106179625A (en) A kind of grinding chemical mechanical system to spindle motor fuzzy control
CN106179626A (en) A kind of powder Two-way Cycle grinds chemical mechanical system
US5979584A (en) Four-wheel drive transfer case controller
CN106179627A (en) A kind of grinding chemical mechanical system of feeding speed fuzzy control
JPS6229158B2 (en)
JPH0754944A (en) Shift control device for continuously variable transmission for car
EP3927973B1 (en) Method for controlling the starting of an oil pump
US6896613B2 (en) Method of starting machinery
WO1999028040A1 (en) Method for regulating centrifuges for dehydrating wastewater sludge, using fuzzy logic
AU2004229032B2 (en) A control device for fluid separators in dental aspiration plants
JP7199233B2 (en) Method for estimating moisture content of dehydrated cake and sludge treatment system
CN106179630A (en) A kind of grinding chemical mechanical system of barrel temperature fuzzy control
CN106179631A (en) A kind of grinding chemical mechanical system of Double-directional rotary
US6030525A (en) Cost-orientated control of a regenerable filter
CN106111270A (en) A kind of grinding chemical mechanical system of many lodicules
JPH03113160A (en) Rattling noise of gear reducing device for gear type transmission
FR2614497A1 (en) DEVICE FOR REGULATING THE CLEANING OF A COMBINE HARVESTER
JPH0794209B2 (en) Control device for four-wheel drive vehicle
CN219970728U (en) Milk stirring storage tank stirring operation monitoring system
CN110871140B (en) System and method for recovering titanium tetrachloride from titanium tetrachloride suspension