JPH04370447A - Friction type power transmission device - Google Patents

Friction type power transmission device

Info

Publication number
JPH04370447A
JPH04370447A JP14297491A JP14297491A JPH04370447A JP H04370447 A JPH04370447 A JP H04370447A JP 14297491 A JP14297491 A JP 14297491A JP 14297491 A JP14297491 A JP 14297491A JP H04370447 A JPH04370447 A JP H04370447A
Authority
JP
Japan
Prior art keywords
friction roller
friction
roller
rollers
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14297491A
Other languages
Japanese (ja)
Inventor
Satoyuki Sato
智行 佐藤
Muneo Mizumoto
宗男 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14297491A priority Critical patent/JPH04370447A/en
Publication of JPH04370447A publication Critical patent/JPH04370447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Friction Gearing (AREA)

Abstract

PURPOSE:To provide the stable contact state of a friction roller even when the change of an interaxis distance is produced by wear and thermal deformation of the friction roller of a friction type power transmission device. CONSTITUTION:A friction roller 5 fixed on a rotary shaft 6 is supported to support bearings 7a and 7b and fixed to bearing holders 8a and 8b. The bearing holders 8a and 8b are mounted on device casings 4a and 4b such that they are movable in a direction to press friction rollers 1 and 5. The bearing holders 8a and 8b are pressed along grooves 11a and 11b formed in device casings 4a and 4b, through the force of resilient bodies 9a and 9b located between a device casing 10 and the bearing holders, and the friction roller 5 is forced into pressure contact with the friction roller 1. This constitution maintains the pressure contact state of the friction roller through resilient deformation of the resilient body even when a distance between the rotary shafts is changed by wear of the friction rollers and thermal deformation of the device casings.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、摩擦力により動力を伝
達する摩擦式動力伝達装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a friction type power transmission device that transmits power using frictional force.

【0002】0002

【従来の技術】従来の摩擦力を利用した動力伝達装置や
減速機,変速装置は、例えば、特開昭51−24460
 号公報に記載のように、可撓性の固定リングの復元力
等により摩擦ローラを圧接し摩擦力を得ている。また、
特開昭51−44761 号公報では、摩擦ローラの圧
接手段として弾性体を用いるとともに摩擦ローラと軸の
間に隙間を設け、摩耗による圧接状態の変化を解決しよ
うとしている。
[Prior Art] Conventional power transmission devices, reduction gears, and transmission devices that utilize frictional force are known, for example, from Japanese Patent Application Laid-Open No. 51-24460.
As described in the above publication, the friction roller is pressed against the friction roller by the restoring force of the flexible fixed ring to obtain the friction force. Also,
Japanese Patent Laid-Open No. 51-44761 uses an elastic body as the pressure contact means for the friction roller and provides a gap between the friction roller and the shaft in an attempt to solve the problem of changes in the contact state due to wear.

【0003】0003

【発明が解決しようとする課題】上記従来技術は、摩擦
ローラの摩耗による圧接状態の変化に対して考慮されて
はいるが、圧接する方向や、くさび効果の利用など圧接
方法として有効な方法とはいえず、特に熱変形等による
軸間距離が大きくなる方向には有効には動作しない可能
性がある。また、摩擦ローラと軸の間の隙間はバックラ
ッシュの問題がある。
[Problems to be Solved by the Invention] Although the above-mentioned prior art takes into consideration changes in the pressure welding state due to wear of the friction rollers, it is difficult to determine the direction of pressure welding and the utilization of the wedge effect, which is an effective method of pressure welding. No, it may not work effectively, especially in the direction where the distance between the axes increases due to thermal deformation or the like. Furthermore, the gap between the friction roller and the shaft has a problem of backlash.

【0004】本発明は、摩擦ローラの摩耗や熱変形によ
り摩擦ローラの軸間距離が変化しても、摩擦ローラの圧
接状態を保持すること及びバックラッシュのない摩擦式
動力伝達装置を得ることを目的とする。
The present invention aims to maintain the pressed state of the friction rollers even if the distance between the axes of the friction rollers changes due to wear or thermal deformation of the friction rollers, and to obtain a friction type power transmission device without backlash. purpose.

【0005】また、本発明は摩擦ローラ軸をそれぞれ片
側から支持することで、摩擦ローラの軸間距離を小さく
できるとともに摩擦ローラ径を小さくし、小型,軽量化
を図ることを目的とする。
Another object of the present invention is to support the friction roller shafts from one side, thereby reducing the distance between the shafts of the friction rollers, and reducing the diameter of the friction rollers, thereby achieving a reduction in size and weight.

【0006】また、本発明は摩擦ローラの押圧構造を簡
単にするとともに摩擦ローラの摩耗や熱変形により摩擦
ローラの軸間距離が変化しても、摩擦ローラの圧接状態
を保持すること及びバックラッシュのない摩擦式動力伝
達装置を得ることを目的とする。
Further, the present invention simplifies the pressing structure of the friction roller, and even if the distance between the axes of the friction roller changes due to wear or thermal deformation of the friction roller, it is possible to maintain the pressed state of the friction roller and to prevent backlash. The purpose of this invention is to obtain a friction type power transmission device that is free of friction.

【0007】また、本発明は宇宙または真空中で使用可
能な摩擦式動力伝達装置を得ることを目的とする。
Another object of the present invention is to obtain a friction type power transmission device that can be used in space or vacuum.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、一対の摩擦ローラのうち少なくとも片側の摩擦ロー
ラの回転軸を押圧する方向に移動可能に支持し、移動可
能とした摩擦ローラの回転軸を支持軸受を介して摩擦ロ
ーラの押圧方向に弾性体によりもう一方の摩擦ローラに
押圧する手段を設けたものである。
[Means for Solving the Problems] In order to achieve the above object, at least one of a pair of friction rollers is supported so as to be movable in the direction of pressing the rotating shaft of at least one of the friction rollers, and rotation of the friction roller is made movable. A means is provided for pressing the shaft against the other friction roller using an elastic body in the pressing direction of the friction roller via the support bearing.

【0009】[0009]

【作用】一対の摩擦ローラのうち少なくとも片側の摩擦
ローラの回転軸を押圧する方向に移動可能に支持し、移
動可能とした摩擦ローラの回転軸を支持軸受を介して摩
擦ローラの押圧方向に弾性体によりもう一方の摩擦ロー
ラに押圧する手段を設けることにより、摩耗や熱変形に
よる軸間距離の変化に対し、弾性体の弾性力により摩擦
ローラの押圧状態を安定に保つことができるとともにバ
ックラッシュのない摩擦式動力伝達装置を得ることがで
きる。
[Operation] The rotating shaft of at least one friction roller of a pair of friction rollers is supported movably in the pressing direction, and the rotating shaft of the movable friction roller is elastically moved in the pressing direction of the friction roller via a support bearing. By providing a means for pressing the other friction roller with the body, the elastic force of the elastic body can maintain a stable pressing state of the friction roller against changes in the distance between the shafts due to wear or thermal deformation, and also prevents backlash. It is possible to obtain a friction type power transmission device without any friction.

【0010】0010

【実施例】本発明の実施例を以下に図を用いて説明する
。図1に本発明の一実施例の断面図を、図2に図1のI
I矢視図を、図3に図1のIII−III矢視断面図を
示す。 回転軸2に固定された摩擦ローラ1は、支持軸受3a及
び3bに支持され、装置筐体4a及び4bに固定される
。回転軸6に固定された摩擦ローラ5は、支持軸受7a
及び7bに支持され、軸受ホルダ8a及び8bに固定さ
れる。軸受ホルダ8a及び8bは、装置筐体4a及び4
bに、摩擦ローラ1及び5の押圧方向に移動可能に取り
付けられる。さらに、軸受ホルダ8a及び8bは装置筐
体10との間に設けられた弾性体9a及び9bにより、
装置筐体4a及び4bに設けられた溝11a,11c、
及び11b,11dに沿って押圧され、摩擦ローラ5は
摩擦ローラ1に圧接される。従って、摩擦ローラ1及び
5の摩耗や装置筐体4a及び4bの熱変形によって軸2
,6の間の距離が変化しても、弾性体9a,9bにより
摩擦ローラ1,5の圧接状態が維持できる。図1におい
て、12a,12bは軸2,6の移動を吸収するための
フレキシブルカップリングである。
[Embodiments] Examples of the present invention will be explained below with reference to the drawings. FIG. 1 shows a sectional view of one embodiment of the present invention, and FIG. 2 shows the I of FIG.
FIG. 3 shows a cross-sectional view taken along line III-III in FIG. 1. Friction roller 1 fixed to rotating shaft 2 is supported by support bearings 3a and 3b, and fixed to device housings 4a and 4b. The friction roller 5 fixed to the rotating shaft 6 has a support bearing 7a.
and 7b, and fixed to bearing holders 8a and 8b. The bearing holders 8a and 8b are connected to the device housings 4a and 4.
b, so as to be movable in the pressing direction of the friction rollers 1 and 5. Furthermore, the bearing holders 8a and 8b are provided with elastic bodies 9a and 9b between them and the device housing 10.
Grooves 11a and 11c provided in the device housings 4a and 4b,
and 11b, 11d, and the friction roller 5 is pressed against the friction roller 1. Therefore, due to wear of the friction rollers 1 and 5 and thermal deformation of the device housings 4a and 4b, the shaft 2
, 6 changes, the elastic bodies 9a, 9b can maintain the pressed state of the friction rollers 1, 5. In FIG. 1, 12a and 12b are flexible couplings for absorbing movement of the shafts 2 and 6.

【0011】図4は、図1の摩擦ローラ5の形状を変え
た一実施例の断面図である。本実施例は、摩擦ローラ5
aの外径部5aaを所定の曲率をもった凸状の曲面に形
成したものである。本実施例によれば、部品の加工精度
や軸2,6のねじれ等による影響を受けず摩擦ローラの
接触状態を一定に保つことができる。
FIG. 4 is a sectional view of an embodiment in which the shape of the friction roller 5 of FIG. 1 is changed. In this embodiment, the friction roller 5
The outer diameter portion 5aa of a is formed into a convex curved surface with a predetermined curvature. According to this embodiment, the contact state of the friction rollers can be maintained constant without being affected by the machining accuracy of the parts or the torsion of the shafts 2, 6.

【0012】図5は、図1の摩擦ローラ1,5の形状を
変えた一実施例の断面図である。本実施例は、摩擦ロー
ラ1aの外径部1aaを所定の曲率をもった凹状の曲面
に形成し、摩擦ローラ5aの外径部5aaを摩擦ローラ
1aの外径部1aaの曲率よりも所定分小さい曲率をも
った凸状の曲面に形成したものである。本実施例によれ
ば、部品の加工精度や軸2,6のねじれ等による影響を
受けず摩擦ローラの接触状態を一定に保つことができ、
摩擦ローラ1a,5aの接触面圧を低く抑えることがで
き、摩擦ローラ1a,5aの摩耗も少なくできる。
FIG. 5 is a sectional view of an embodiment in which the shapes of the friction rollers 1 and 5 of FIG. 1 are changed. In this embodiment, the outer diameter portion 1aa of the friction roller 1a is formed into a concave curved surface with a predetermined curvature, and the outer diameter portion 5aa of the friction roller 5a is formed by a predetermined portion smaller than the curvature of the outer diameter portion 1aa of the friction roller 1a. It is formed into a convex curved surface with a small curvature. According to this embodiment, the contact state of the friction rollers can be kept constant without being affected by the machining accuracy of the parts or the torsion of the shafts 2, 6, etc.
The contact pressure between the friction rollers 1a and 5a can be kept low, and the wear of the friction rollers 1a and 5a can also be reduced.

【0013】図6は、図1の摩擦ローラ1,5と軸2,
6との嵌合部に球面軸受を用いた一実施例である。球面
軸受12a,13bはそれぞれ軸2,6に固定され、摩
擦ローラ1b,5bは、それぞれ球面軸受13a,13
bを介して取り付けられる。また、摩擦ローラ1b,5
bは、球面軸受13a,13bを中心として軸2,6を
含む面内方向には自由に回転可能であるが、球面軸受1
3a,13bの回転止め13aa,13baにより、摩
擦ローラ1b,5bの回転方向の運動は拘束されている
。本実施例によれば、部品の加工精度や軸2,6のねじ
れ等による影響を受けず摩擦ローラの接触状態を一定に
保つことができる。
FIG. 6 shows the friction rollers 1 and 5 and shaft 2 of FIG.
This is an example in which a spherical bearing is used in the fitting part with 6. Spherical bearings 12a, 13b are fixed to shafts 2, 6, respectively, and friction rollers 1b, 5b are fixed to spherical bearings 13a, 13, respectively.
It is attached via b. In addition, friction rollers 1b, 5
b is freely rotatable in the in-plane direction including the shafts 2 and 6 around the spherical bearings 13a and 13b, but the spherical bearing 1
The movement of the friction rollers 1b, 5b in the rotational direction is restricted by the rotation stops 13aa, 13ba of the friction rollers 1b, 13b. According to this embodiment, the contact state of the friction rollers can be maintained constant without being affected by the machining accuracy of the parts or the torsion of the shafts 2, 6.

【0014】図7は、本発明における回転軸の支持方法
の一実施例であり、図8は図7のVIII 矢視図、図
9は図7のIX矢視図である。摩擦ローラ22は、回転
軸23に固定され、回転軸23は、装置筐体31,32
,33に固定された軸受ホルダ27a,27bのころ軸
受25a,25bで支持される。摩擦ローラ20は、回
転軸21に固定され、回転軸21は、軸受ホルダ26a
,26bのころ軸受24a,24bで支持される。軸受
ホルダ26a,26bは、装置筐体31,32に設けら
れた案内溝31a,32a及び31b,32bに従い、
摩擦ローラ20,22を押圧する方向にのみ移動可能に
保持される。摩擦ローラ20,22は、装置筐体30と
軸受ホルダ26a,26bの間の弾性体28a,28b
及び29a,29bにより圧接される。本実施例によれ
ば、部品の加工精度や軸2,6のねじれ等による影響を
受けず摩擦ローラの接触状態を一定に保つことができる
とともに、摩擦ローラの径が小さい場合でも、支持軸受
を取り付けるために回転軸の径を小さくしたり、支持軸
受の位置を段違いにしなくてすむため、コンパクトで高
い支持剛性を得ることができる。
FIG. 7 shows an embodiment of the method for supporting a rotating shaft according to the present invention, FIG. 8 is a view taken along arrow VIII in FIG. 7, and FIG. 9 is a view taken along arrow IX in FIG. The friction roller 22 is fixed to a rotating shaft 23, and the rotating shaft 23 is connected to the device housings 31, 32.
, 33 are supported by roller bearings 25a, 25b of bearing holders 27a, 27b fixed to the bearings 27a, 27b. The friction roller 20 is fixed to a rotating shaft 21, and the rotating shaft 21 is attached to a bearing holder 26a.
, 26b are supported by roller bearings 24a, 24b. Bearing holders 26a, 26b follow guide grooves 31a, 32a and 31b, 32b provided in device housings 31, 32,
It is held movable only in the direction of pressing the friction rollers 20, 22. Friction rollers 20, 22 are elastic bodies 28a, 28b between device housing 30 and bearing holders 26a, 26b.
and 29a, 29b. According to this embodiment, the contact state of the friction rollers can be kept constant without being affected by the machining accuracy of the parts or the torsion of the shafts 2 and 6, and even if the diameter of the friction rollers is small, the support bearings can be maintained. Since there is no need to reduce the diameter of the rotating shaft or to position the support bearing at different levels for installation, it is possible to obtain a compact structure and high support rigidity.

【0015】図10は、摩擦ローラ側に押圧手段を設け
た一実施例の断面図である。回転軸52,53は、それ
ぞれ支持軸受54a,54b、及び55a,55bによ
り装置筐体58,59に回転自由に固定される。摩擦ロ
ーラ50は回転軸52に固定され、摩擦ローラ50の外
径部は、凸状に傾斜面60a,60bが形成されている
。摩擦ローラ51a,51bは、それぞれ摩擦ローラ5
0の傾斜面60a,60bに対応する傾斜面61a,6
1bをもち、回転軸53の軸方向には自由に移動可能で
あり、回転方向の運動は回転止め57により拘束されて
いる。また、摩擦ローラ51a,51bは、複数個の弾
性体56により接続され、摩擦ローラ51a,51b間
には引張力が働いている。従って、複数個の弾性体56
のばね力により、摩擦ローラ50の傾斜面60aは、摩
擦ローラ51aの傾斜面61aに圧接され、摩擦ローラ
50の傾斜面60bは、摩擦ローラ51bの傾斜面61
bに圧接される。本実施例によれば、部品の加工精度や
軸52,53のねじれ等による影響を受けず摩擦ローラ
の接触状態を一定に保つことができる。
FIG. 10 is a sectional view of an embodiment in which pressing means is provided on the friction roller side. The rotating shafts 52, 53 are rotatably fixed to device housings 58, 59 by support bearings 54a, 54b, and 55a, 55b, respectively. The friction roller 50 is fixed to a rotating shaft 52, and the outer diameter portion of the friction roller 50 is formed with convex inclined surfaces 60a and 60b. Friction rollers 51a and 51b are respectively friction rollers 5
Inclined surfaces 61a, 6 corresponding to inclined surfaces 60a, 60b of 0
1b, and is freely movable in the axial direction of the rotating shaft 53, and movement in the rotational direction is restrained by a rotation stopper 57. Further, the friction rollers 51a and 51b are connected by a plurality of elastic bodies 56, and a tensile force is applied between the friction rollers 51a and 51b. Therefore, a plurality of elastic bodies 56
Due to the spring force of
b. According to this embodiment, the contact state of the friction rollers can be kept constant without being affected by the processing accuracy of the parts or the twisting of the shafts 52, 53.

【0016】図11は、図10の摩擦ローラの形状を変
えた一実施例の断面図である。摩擦ローラ65の外径部
は凹状に傾斜面68a,68bが形成されている。摩擦
ローラ66a,66bは、それぞれ摩擦ローラ65の傾
斜面68a,68bに対応する傾斜面69a,69bを
もち、回転軸53の軸方向には自由に移動可能であり、
回転方向の運動は回転止め70により拘束されている。 また、摩擦ローラ66a,66b間は、複数個の弾性体
67により接続されており、複数個の弾性体67のばね
力により、摩擦ローラ66aの傾斜面69aは、摩擦ロ
ーラ65の傾斜面68aに圧接され、摩擦ローラ66b
の傾斜面69bは、摩擦ローラ65の傾斜面68に圧接
される。本実施例によれば、部品の加工精度や軸52,
53のねじれ等による影響を受けず摩擦ローラの接触状
態を一定に保つことができる。
FIG. 11 is a sectional view of an embodiment in which the shape of the friction roller of FIG. 10 is changed. The outer diameter portion of the friction roller 65 is formed with concave inclined surfaces 68a and 68b. The friction rollers 66a and 66b have inclined surfaces 69a and 69b corresponding to the inclined surfaces 68a and 68b of the friction roller 65, respectively, and are freely movable in the axial direction of the rotating shaft 53.
Movement in the rotational direction is restricted by a rotation stopper 70. Further, the friction rollers 66a and 66b are connected by a plurality of elastic bodies 67, and the spring force of the plurality of elastic bodies 67 causes the inclined surface 69a of the friction roller 66a to connect with the inclined surface 68a of the friction roller 65. The friction roller 66b is pressed against the friction roller 66b.
The inclined surface 69b is pressed against the inclined surface 68 of the friction roller 65. According to this embodiment, the machining accuracy of the parts, the shaft 52,
The contact state of the friction rollers can be kept constant without being affected by twisting of the roller 53 or the like.

【0017】図12は、摩擦ローラの形状と摩擦ローラ
の押圧手段を変えた一実施例の断面図である。摩擦ロー
ラ82は回転軸80に固定され、回転軸80は支持軸受
87a,87bにより、回転自由に装置筐体89a,8
9bに固定されている。摩擦ローラ82の外径部は、凸
状に所定の曲率をもつ曲面86が形成されている。摩擦
ローラ83a,83bの外径部には、それぞれ摩擦ロー
ラ82の曲面に対応する傾斜面90a,90bが形成さ
れており、摩擦ローラ83a,83bは、回転軸81の
軸方向に自由に移動可能であり、回転方向の運動は回転
止め91により拘束されている。摩擦ローラ83aは、
軸81に固定されたストッパ84aと摩擦ローラ83a
の間に設けられた弾性体85aにより回転軸方向に押圧
され、摩擦ローラ83aの傾斜面90aは摩擦ローラ8
2の外径部の曲面86に圧接される。また、摩擦ローラ
83bは、軸81に固定されたストッパ84bと摩擦ロ
ーラ83bの間に設けられた弾性体85bにより回転軸
方向に押圧され、摩擦ローラ83bの傾斜面90bは摩
擦ローラ82の外径部の曲面86に圧接される。本実施
例において、摩擦ローラ82の接触面86、又は摩擦ロ
ーラ83a,83bの接触面90a,90bが摩耗して
も弾性体85a,85bにより押圧されるため、摩擦ロ
ーラ83と83a,83bの接触状態は一定に保たれる
。 また、熱変形などにより回転軸80,81の軸間距離が
変化しても、弾性体85a,85bが変化分を回転軸方
向に吸収するため、摩擦ローラの接触状態は一定に保た
れる。
FIG. 12 is a sectional view of an embodiment in which the shape of the friction roller and the means for pressing the friction roller are changed. The friction roller 82 is fixed to a rotating shaft 80, and the rotating shaft 80 can freely rotate around the device casings 89a, 8 by means of support bearings 87a, 87b.
It is fixed at 9b. The outer diameter portion of the friction roller 82 is formed with a convex curved surface 86 having a predetermined curvature. Inclined surfaces 90a, 90b corresponding to the curved surfaces of the friction roller 82 are formed on the outer diameter portions of the friction rollers 83a, 83b, respectively, and the friction rollers 83a, 83b can freely move in the axial direction of the rotating shaft 81. The movement in the rotational direction is restrained by a rotation stopper 91. The friction roller 83a is
A stopper 84a fixed to the shaft 81 and a friction roller 83a
The inclined surface 90a of the friction roller 83a is pressed in the direction of the rotation axis by the elastic body 85a provided between the friction roller 8
It is pressed against the curved surface 86 of the outer diameter portion of No. 2. Further, the friction roller 83b is pressed in the rotation axis direction by an elastic body 85b provided between a stopper 84b fixed to the shaft 81 and the friction roller 83b, and the inclined surface 90b of the friction roller 83b is It is pressed against the curved surface 86 of the section. In this embodiment, even if the contact surface 86 of the friction roller 82 or the contact surfaces 90a, 90b of the friction rollers 83a, 83b are worn, they are pressed by the elastic bodies 85a, 85b. The state remains constant. Further, even if the distance between the rotating shafts 80, 81 changes due to thermal deformation or the like, the elastic bodies 85a, 85b absorb the change in the direction of the rotating shafts, so that the contact state of the friction rollers is maintained constant.

【0018】図13は、摩擦ローラの押圧手段を変えた
一実施例の断面図であり、図14は、図13のXIV 
矢視図であり、図15は、無負荷時の摩擦ローラ103
を示す。摩擦ローラ105は回転軸102に固定され、
回転軸102は支持軸受107a,107bにより装置
筐体108a,108bに回転自由に固定されている。 また、摩擦ローラ103は回転軸101に固定され、回
転軸101は支持軸受106a,106bにより装置筐
体108a,108bに回転自由に固定されている。摩
擦ローラ103は内リング109,外リング110及び
複数の弾性体104からなる。複数の弾性体104の両
端は全て内リング109と外リング110に固定され、
外リング110は内リングに対し摩擦ローラ103の半
径方向に弾性支持されるとともに、内リング109に対
し外リング110の回転方向の運動は弾性体104によ
り拘束されている。さらに、回転軸101と回転軸10
2の軸間距離を所定の位置に設けることで、摩擦ローラ
103は、回転軸101に対し偏芯して取り付けられる
ため、弾性体104の弾性変形により、摩擦ローラ10
3は摩擦ローラ105に圧接される。本実施例において
、摩擦ローラ103の外リング110、又は摩擦ローラ
105が摩耗しても、弾性体104により押圧されるた
め、摩擦ローラ103と摩擦ローラ105の接触状態は
一定に保たれる。また、熱変形などにより回転軸101
と102の軸間距離が変化しても、弾性体104の弾性
変形により摩擦ローラ103と摩擦ローラ105の接触
状態は一定に保たれる。
FIG. 13 is a sectional view of an embodiment in which the pressing means of the friction roller is changed, and FIG.
FIG. 15 is a view in the direction of arrows, and FIG. 15 shows the friction roller 103 when no load is applied.
shows. Friction roller 105 is fixed to rotating shaft 102,
The rotating shaft 102 is rotatably fixed to the device housings 108a, 108b by support bearings 107a, 107b. Further, the friction roller 103 is fixed to a rotating shaft 101, and the rotating shaft 101 is rotatably fixed to device housings 108a and 108b by support bearings 106a and 106b. The friction roller 103 includes an inner ring 109, an outer ring 110, and a plurality of elastic bodies 104. Both ends of the plurality of elastic bodies 104 are all fixed to the inner ring 109 and the outer ring 110,
The outer ring 110 is elastically supported by the inner ring in the radial direction of the friction rollers 103, and the rotational movement of the outer ring 110 with respect to the inner ring 109 is restrained by the elastic body 104. Furthermore, the rotating shaft 101 and the rotating shaft 10
By providing an interaxial distance of 2 at a predetermined position, the friction roller 103 is mounted eccentrically with respect to the rotating shaft 101. Therefore, due to the elastic deformation of the elastic body 104, the friction roller 10
3 is pressed against the friction roller 105. In this embodiment, even if the outer ring 110 of the friction roller 103 or the friction roller 105 wears out, the contact state between the friction roller 103 and the friction roller 105 is maintained constant because it is pressed by the elastic body 104. In addition, due to thermal deformation etc., the rotating shaft 101
Even if the distance between the axes of and 102 changes, the contact state between the friction rollers 103 and 105 is kept constant due to the elastic deformation of the elastic body 104.

【0019】図16は、摩擦ローラの一実施例である。 回転軸114に固定された内リング113と外リング1
11は弾性部材112により接続されている。さらに内
リング113と弾性部材112及び外リング111と弾
性部材112は固定されているため、摩擦ローラ115
の半径方向には弾性支持され、内リングに対し外リング
の回転方向の運動は拘束される。
FIG. 16 shows an embodiment of the friction roller. Inner ring 113 and outer ring 1 fixed to rotating shaft 114
11 are connected by an elastic member 112. Furthermore, since the inner ring 113 and the elastic member 112 and the outer ring 111 and the elastic member 112 are fixed, the friction roller 115
The outer ring is elastically supported in the radial direction, and rotational movement of the outer ring with respect to the inner ring is restricted.

【0020】図17は、図16の摩擦ローラ115を図
13の摩擦ローラ103の変わりに用いた一実施例の断
面図、図18は、図17のXVIII 矢視図である。 摩擦ローラ105は回転軸102に固定され、回転軸1
02は支持軸受107a,107bにより装置筐体10
8a,108bに回転自由に固定される。また、摩擦ロ
ーラ115は、回転軸114に固定され、支持軸受10
6a,106bにより装置筐体108a,108bに回
転自由に固定される。また、摩擦ローラ115は、回転
軸115に対し偏芯して取り付けられるため、弾性部材
112の弾性変形により、摩擦ローラ115は摩擦ロー
ラ105に圧接される。本実施例において、摩擦ローラ
115の外リング111、又は摩擦ローラ105が摩耗
しても、弾性体112により押圧されるため、摩擦ロー
ラ115と摩擦ローラ105の接触状態は一定に保たれ
る。 また、熱変形などにより回転軸114と102の軸間距
離が変化しても、弾性部材112の弾性変形により摩擦
ローラ115と摩擦ローラ105の接触状態は一定に保
たれる。
FIG. 17 is a sectional view of an embodiment in which the friction roller 115 of FIG. 16 is used in place of the friction roller 103 of FIG. 13, and FIG. 18 is a view taken along the arrow XVIII in FIG. The friction roller 105 is fixed to the rotating shaft 102 and
02 is connected to the device housing 10 by support bearings 107a and 107b.
8a and 108b for free rotation. Further, the friction roller 115 is fixed to the rotating shaft 114 and the support bearing 10
6a and 106b, it is rotatably fixed to device housings 108a and 108b. Furthermore, since the friction roller 115 is mounted eccentrically with respect to the rotating shaft 115, the friction roller 115 is pressed against the friction roller 105 due to the elastic deformation of the elastic member 112. In this embodiment, even if the outer ring 111 of the friction roller 115 or the friction roller 105 wears out, the contact state between the friction roller 115 and the friction roller 105 is maintained constant because it is pressed by the elastic body 112. Further, even if the distance between the rotating shafts 114 and 102 changes due to thermal deformation or the like, the contact state between the friction rollers 115 and 105 is maintained constant due to the elastic deformation of the elastic member 112.

【0021】図19は、宇宙用のマニピュレータに用い
た一実施例である。図19(b)は宇宙空間で作業を行
う軌道上作業船220であり、図19(a)はマニピュ
レータ213の動力伝達部の断面図であり、本発明にお
ける請求項1の実施例図1を適用したものである。図1
9(a)を用いて動作を説明する。モータ212の出力
は、フレキシブルカップリング211を介して入力軸2
03に伝達され、摩擦ローラ201及び摩擦ローラ20
2を通して出力軸204に伝達される。摩擦ローラ20
1の入力軸203は、支持軸受209a,209bによ
り軸受ホルダ205a,205bに回転自由に固定され
る。また、軸受ホルダ205a,205bは、軸受ホル
ダ205a,205bとマニピュレータ筐体210aの
間に設けられた弾性体206a,206bにより、案内
溝207a,207bに従い押圧され、摩擦ローラ20
1は摩擦ローラ202に圧接される。従って、モータ2
12の回転動力は、摩擦ローラ201,202により出
力軸204に伝達される。本実施例において、摩擦ロー
ラ201,202が摩耗しても、弾性体206a,20
6bにより常に押圧されるため、摩擦ローラ201と摩
擦ローラ202の接触状態は一定に保たれる。また、宇
宙空間で大きな温度変化を受け、熱変形などにより入力
軸203と出力軸204の軸間距離が変化しても、弾性
体206a,206bの弾性変形により摩擦ローラ20
1と摩擦ローラ202の接触状態は一定に保たれる。
FIG. 19 shows an embodiment used in a space manipulator. FIG. 19(b) shows an orbital work vessel 220 that performs work in outer space, and FIG. 19(a) is a sectional view of the power transmission section of the manipulator 213. It was applied. Figure 1
The operation will be explained using 9(a). The output of the motor 212 is connected to the input shaft 2 via the flexible coupling 211.
03, and the friction roller 201 and the friction roller 20
2 to the output shaft 204. Friction roller 20
The input shaft 203 of No. 1 is rotatably fixed to bearing holders 205a, 205b by support bearings 209a, 209b. Further, the bearing holders 205a, 205b are pressed along the guide grooves 207a, 207b by elastic bodies 206a, 206b provided between the bearing holders 205a, 205b and the manipulator housing 210a, and the friction roller 20
1 is pressed against the friction roller 202. Therefore, motor 2
12 is transmitted to the output shaft 204 by friction rollers 201 and 202. In this embodiment, even if the friction rollers 201 and 202 wear out, the elastic bodies 206a and 202
6b, the contact state between friction roller 201 and friction roller 202 is kept constant. Furthermore, even if the distance between the input shaft 203 and the output shaft 204 changes due to thermal deformation due to large temperature changes in space, the friction roller 20 can be
The contact state between the friction roller 1 and the friction roller 202 is kept constant.

【0022】図20は、図1の摩擦ローラの接触面の摺
動材として表面に複硼化物材料を用いた実施例の断面図
である。摩擦ローラ231,232は母材234,23
6の摺動面に耐摩耗材料である複硼化物材料233,2
35を施した一実施例である。摩擦ローラの接触面に複
硼化物材料を用いることにより、摩擦ローラの摩耗を抑
えることができ、装置の寿命を長くできる。また、母材
234,236は複硼化物材料で構成してもかまわない
FIG. 20 is a sectional view of an embodiment in which a complex boride material is used as the sliding material on the contact surface of the friction roller shown in FIG. Friction rollers 231, 232 are base materials 234, 23
Compound boride material 233,2 which is a wear-resistant material on the sliding surface of 6
This is an example in which 35 was applied. By using a complex boride material on the contact surface of the friction roller, wear of the friction roller can be suppressed and the life of the device can be extended. Furthermore, the base materials 234 and 236 may be made of a complex boride material.

【0023】[0023]

【発明の効果】本発明によれば、摩擦ローラが摩耗して
も、弾性体の弾性力により、摩擦ローラの圧接状態が維
持される。また、熱変形等により摩擦ローラの軸間距離
が変化しても、弾性体の弾性力により、摩擦ローラの圧
接状態が維持される。また、バックラッシュのない摩擦
式動力伝達装置を得ることができる。
According to the present invention, even if the friction roller is worn out, the pressed state of the friction roller is maintained by the elastic force of the elastic body. Further, even if the distance between the axes of the friction roller changes due to thermal deformation or the like, the pressed state of the friction roller is maintained due to the elastic force of the elastic body. Moreover, a friction type power transmission device without backlash can be obtained.

【0024】また、本発明によれば、摩擦ローラの回転
軸の支持軸受を装置筐体に固定できるため、回転軸の取
付け位置精度を高くできるとともにまた、本発明によれ
ば、摩擦ローラの回転軸のねじれ等に対して摩擦ローラ
の接触状態を安定に保つことができる。
Further, according to the present invention, since the support bearing of the rotating shaft of the friction roller can be fixed to the device housing, the mounting position accuracy of the rotating shaft can be increased. The contact state of the friction roller can be maintained stably against twisting of the shaft.

【0025】また、本発明によれば、摩擦ローラの回転
軸のねじれや倒れに対しても片当たりがなく、摩擦ロー
ラの接触状態を安定に保つことができる。
Further, according to the present invention, even when the rotating shaft of the friction roller is twisted or fallen, there is no uneven contact, and the contact state of the friction roller can be maintained stably.

【0026】また、本発明によれば、回転軸の片側より
回転軸を支持することにより摩擦ローラの径を小さくす
ることができ、小型,軽量化が図れる。
Furthermore, according to the present invention, by supporting the rotating shaft from one side of the rotating shaft, the diameter of the friction roller can be reduced, making it possible to reduce the size and weight of the friction roller.

【0027】また、本発明によれば、押圧手段を摩擦ロ
ーラに設けることで押圧構造が簡単になる上に回転軸の
取付け位置精度を高くできるとともに摩擦ローラが摩耗
しても、弾性体の弾性力により、摩擦ローラの圧接状態
が維持される。また、熱変形等により摩擦ローラの軸間
距離が変化しても、弾性体の弾性力により、摩擦ローラ
の圧接状態が維持される。
Further, according to the present invention, by providing the pressing means on the friction roller, the pressing structure can be simplified, the mounting position accuracy of the rotating shaft can be increased, and even if the friction roller is worn, the elasticity of the elastic body can be maintained. The force maintains the friction roller in pressure contact. Further, even if the distance between the axes of the friction roller changes due to thermal deformation or the like, the pressed state of the friction roller is maintained due to the elastic force of the elastic body.

【0028】また、本発明によれば、摩擦ローラ摺動面
に真空中の耐摩耗材料である複硼化物材料を用いること
で摩擦ローラ摺動面の摩耗を抑えることができ、装置の
寿命を長くすることができる。特に宇宙用の摩擦式動力
伝達装置に有効である。
Furthermore, according to the present invention, by using a complex boride material, which is a wear-resistant material in vacuum, on the friction roller sliding surface, wear of the friction roller sliding surface can be suppressed, and the life of the device can be extended. It can be made longer. It is particularly effective for friction type power transmission devices for space use.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明における摩擦式動力伝達装置の断面図。FIG. 1 is a sectional view of a friction type power transmission device according to the present invention.

【図2】図1のII矢視図。FIG. 2 is a view taken in the direction of arrow II in FIG. 1.

【図3】図1のIII−III矢視断面図。FIG. 3 is a sectional view taken along the line III-III in FIG. 1;

【図4】図1の摩擦ローラの形状を変えた実施例の断面
図。
FIG. 4 is a sectional view of an embodiment in which the shape of the friction roller in FIG. 1 is changed.

【図5】図1の摩擦ローラの形状を変えた実施例の断面
図。
FIG. 5 is a sectional view of an embodiment in which the shape of the friction roller in FIG. 1 is changed.

【図6】図1の摩擦ローラの軸部を変えた実施例の断面
図。
FIG. 6 is a sectional view of an embodiment in which the shaft portion of the friction roller in FIG. 1 is changed.

【図7】摩擦ローラの支持軸受を変えた実施例の断面図
FIG. 7 is a sectional view of an embodiment in which the support bearing of the friction roller is changed.

【図8】図7のVIII 矢視図。FIG. 8 is a view along arrow VIII in FIG. 7;

【図9】図7のIX矢視図。9 is a view taken in the direction of the IX arrow in FIG. 7. FIG.

【図10】摩擦ローラに押圧手段を設けた実施例の断面
図。
FIG. 10 is a sectional view of an embodiment in which a friction roller is provided with a pressing means.

【図11】摩擦ローラに押圧手段を設けた実施例の断面
図。
FIG. 11 is a sectional view of an embodiment in which a friction roller is provided with a pressing means.

【図12】摩擦ローラに押圧手段を設けた実施例の断面
図。
FIG. 12 is a sectional view of an embodiment in which a friction roller is provided with a pressing means.

【図13】摩擦ローラに押圧手段を設けた実施例の断面
図。
FIG. 13 is a sectional view of an embodiment in which a friction roller is provided with a pressing means.

【図14】図13のXIV 矢視図。FIG. 14 is a view taken along arrow XIV in FIG. 13;

【図15】図13,図14の摩擦ローラの側面図。15 is a side view of the friction roller shown in FIGS. 13 and 14. FIG.

【図16】摩擦ローラ内に弾性部材を設けた実施例の側
面図。
FIG. 16 is a side view of an embodiment in which an elastic member is provided within the friction roller.

【図17】図16の摩擦ローラを用いた実施例の断面図
17 is a sectional view of an embodiment using the friction roller of FIG. 16.

【図18】図17のXVIII 矢視図。FIG. 18 is a view taken along arrow XVIII in FIG. 17;

【図19】本発明を宇宙用マニピュレータに用いた実施
例の断面図。
FIG. 19 is a sectional view of an embodiment in which the present invention is applied to a space manipulator.

【図20】摩擦ローラの接触面の摺動材として複硼化物
材料を用いた実施例の断面図。
FIG. 20 is a cross-sectional view of an example in which a complex boride material is used as the sliding material on the contact surface of a friction roller.

【符号の説明】[Explanation of symbols]

1,5…摩擦ローラ、2,6…回転軸、4a,4b,1
0…装置筐体、8a,8b…軸受ホルダ、9a,9b…
弾性体、11a,11b…案内溝、3a,3b,7a,
7b…支持軸受、12a,12b…フレキシブルカップ
リング。
1, 5... Friction roller, 2, 6... Rotating shaft, 4a, 4b, 1
0...Device housing, 8a, 8b...Bearing holder, 9a, 9b...
Elastic body, 11a, 11b...Guide groove, 3a, 3b, 7a,
7b...Support bearing, 12a, 12b...Flexible coupling.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】摩擦力を用いて動力を伝達する摩擦式動力
伝達装置において、一対の摩擦ローラのうち少なくとも
一方の摩擦ローラの回転軸を押圧する方向に移動可能に
支持し、前記一方の摩擦ローラの前記回転軸を支持軸受
を介して前記一方の摩擦ローラの押圧方向に弾性体によ
り他方の摩擦ローラに押圧する手段を設けたことを特徴
とする摩擦式動力伝達装置。
1. A friction type power transmission device that transmits power using frictional force, wherein the rotating shaft of at least one of a pair of friction rollers is supported movably in a pressing direction; A friction type power transmission device characterized in that means is provided for pressing the rotating shaft of the roller against the other friction roller by an elastic body in the pressing direction of the one friction roller via a support bearing.
JP14297491A 1991-06-14 1991-06-14 Friction type power transmission device Pending JPH04370447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14297491A JPH04370447A (en) 1991-06-14 1991-06-14 Friction type power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14297491A JPH04370447A (en) 1991-06-14 1991-06-14 Friction type power transmission device

Publications (1)

Publication Number Publication Date
JPH04370447A true JPH04370447A (en) 1992-12-22

Family

ID=15327990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14297491A Pending JPH04370447A (en) 1991-06-14 1991-06-14 Friction type power transmission device

Country Status (1)

Country Link
JP (1) JPH04370447A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256950A (en) * 2004-03-11 2005-09-22 Nissan Motor Co Ltd Friction transmitting device
WO2005121601A1 (en) * 2004-06-11 2005-12-22 Schaeffler Kg Friction wheel drive
JP2007024244A (en) * 2005-07-20 2007-02-01 Nissan Motor Co Ltd Friction transmission device
JP2009156318A (en) * 2007-12-26 2009-07-16 Nissan Motor Co Ltd Friction roller supporting structure of frictional transmission gear
JP2010033002A (en) * 2008-06-30 2010-02-12 Ricoh Co Ltd Decelerator, device for driving rotation body, device for driving image carrier and image forming apparatus
JP2010216533A (en) * 2009-03-16 2010-09-30 Ricoh Co Ltd Reduction gear, image carrier driving device, and image forming device
JPWO2009093570A1 (en) * 2008-01-23 2011-05-26 日産自動車株式会社 Friction roller transmission
WO2016194998A1 (en) * 2015-06-05 2016-12-08 Ntn株式会社 Power transmission roller

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256950A (en) * 2004-03-11 2005-09-22 Nissan Motor Co Ltd Friction transmitting device
JP4561133B2 (en) * 2004-03-11 2010-10-13 日産自動車株式会社 Friction transmission
WO2005121601A1 (en) * 2004-06-11 2005-12-22 Schaeffler Kg Friction wheel drive
JP2007024244A (en) * 2005-07-20 2007-02-01 Nissan Motor Co Ltd Friction transmission device
WO2007010364A3 (en) * 2005-07-20 2009-03-19 Nissan Motor Friction drive device
US8075444B2 (en) 2005-07-20 2011-12-13 Nissan Motor Co., Ltd. Friction drive device
JP2009156318A (en) * 2007-12-26 2009-07-16 Nissan Motor Co Ltd Friction roller supporting structure of frictional transmission gear
JPWO2009093570A1 (en) * 2008-01-23 2011-05-26 日産自動車株式会社 Friction roller transmission
JP5263173B2 (en) * 2008-01-23 2013-08-14 日産自動車株式会社 Friction roller transmission
JP2010033002A (en) * 2008-06-30 2010-02-12 Ricoh Co Ltd Decelerator, device for driving rotation body, device for driving image carrier and image forming apparatus
JP2010216533A (en) * 2009-03-16 2010-09-30 Ricoh Co Ltd Reduction gear, image carrier driving device, and image forming device
WO2016194998A1 (en) * 2015-06-05 2016-12-08 Ntn株式会社 Power transmission roller

Similar Documents

Publication Publication Date Title
JP2987518B2 (en) Anti-vibration tripod constant velocity universal joint
JPH05215141A (en) Tripod joint
GB2376725A (en) Bearings
JPH1163130A (en) Traction transmission gear
US20030217898A1 (en) Application device for a disk brake
JPH04370447A (en) Friction type power transmission device
BR9105856A (en) HYDRODINAMIC SUPPORTS HAVING SUPPORT FILLINGS WITH MOUNTED BEAM AND SEALED SUPPORT MOUNTS INCLUDING THE SAME
JPS60196425A (en) Pad-type journal bearing unit kept its bearing clearance in constant
CA2125818A1 (en) Thrust Bearings
JP2603679B2 (en) Spur gear transmission for driving roll outer frame
US4978325A (en) Tripod type constant velocity joint
JPH10159844A (en) Angle regulation mechanism for bearing
JPH06341431A (en) Variable pre-load device of rolling bearing
JPS632662Y2 (en)
JPH10122248A (en) Bearing support structure of rotary shaft and motor
JP3692330B2 (en) Micro traction drive
KR100228898B1 (en) Union structure of bearing for reducing vibration
JP3486992B2 (en) Toroidal type continuously variable transmission
JPH066739U (en) Hydrostatic gas bearing spindle device
JP2591434Y2 (en) Toroidal type continuously variable transmission
JP4569060B2 (en) Trunnion for half toroidal type continuously variable transmission
JPS632661Y2 (en)
JPH10238552A (en) Tripod type constant velocity universal joint
JPH11108137A (en) Traction transmitting device
JP2001193744A (en) Rotation supporting device for spindle in machine tool