JPH04369850A - Total reflection x-ray microdiffractometry - Google Patents

Total reflection x-ray microdiffractometry

Info

Publication number
JPH04369850A
JPH04369850A JP3146374A JP14637491A JPH04369850A JP H04369850 A JPH04369850 A JP H04369850A JP 3146374 A JP3146374 A JP 3146374A JP 14637491 A JP14637491 A JP 14637491A JP H04369850 A JPH04369850 A JP H04369850A
Authority
JP
Japan
Prior art keywords
wafer
ray
diffraction
crystal
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3146374A
Other languages
Japanese (ja)
Other versions
JP2967609B2 (en
Inventor
Tomohisa Kitano
北野 友久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3146374A priority Critical patent/JP2967609B2/en
Publication of JPH04369850A publication Critical patent/JPH04369850A/en
Application granted granted Critical
Publication of JP2967609B2 publication Critical patent/JP2967609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To enable fine crystal defects located near the surface of an Si wafer to be observed through a microdiffractometric manner. CONSTITUTION:Taking advantage of the continuity of synchrotron radiation 11 in wavelength and the asymmetrical reflection of the radiation 11 from a (100) Si wafer 17, X-ray 14 is Bragg-diffracted by the (100) Si wafer 17 under such a condition that the incident angle of X-ray 17 to the wafer 17 is smaller than a critical angle. Thereafter, the (100) Si wafer 17 is set at an angle where the diffracted radiation is at the base of its peak through a goniometer 16, and then the surface of the wafer 17 is observed through a picture film 19 in a microdiffractometric manner.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、Siウェハー表面極く
近傍の微小な結晶欠陥を検出するための表面敏感な全反
射X線回折顕微方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-sensitive total reflection X-ray diffraction microscopy method for detecting minute crystal defects very close to the surface of a Si wafer.

【0002】0002

【従来の技術】Siウェハー内に存在する結晶欠陥(例
えば、空孔、格子間原子、転位、積層欠陥、析出、偏析
、表面研磨歪み等)は、半導体デバイス特性に悪影響を
及ぼす。特に、近年の超集積回路に代表される半導体デ
バイスは、高集積化・多層膜化しつつあり、応力集中、
イオン注入、ドライエッチング等の外部要因により新た
な結晶欠陥がSiウェハーに発生しやすい環境にある。 これら結晶欠陥は、半導体のバンド構造における禁制体
中に深い準位を形成する傾向にあり、キャリアの生成・
再結合中心となりえる。従来、Siウェハー内の結晶欠
陥の場所的分布の模様を観察するために様々なX線の回
折現象を用いたX線回折顕微方法が提案されてきた。し
かしながら、表面極く近傍のX線の消衰距離よりも十分
に小さな歪み場しか有しない結晶欠陥の観察に適した方
法は、存在していない。
2. Description of the Related Art Crystal defects (eg, vacancies, interstitial atoms, dislocations, stacking faults, precipitation, segregation, surface polishing distortion, etc.) existing in Si wafers have an adverse effect on semiconductor device characteristics. In particular, semiconductor devices such as recent ultra-integrated circuits are becoming more highly integrated and multilayered, resulting in stress concentration,
The environment is such that new crystal defects are likely to occur in Si wafers due to external factors such as ion implantation and dry etching. These crystal defects tend to form deep levels in forbidden bodies in the band structure of semiconductors, causing carrier generation and
It can be a recombination center. Conventionally, X-ray diffraction microscopy methods using various X-ray diffraction phenomena have been proposed in order to observe the pattern of the local distribution of crystal defects within a Si wafer. However, there is no method suitable for observing crystal defects that have a strain field that is sufficiently smaller than the extinction distance of X-rays very close to the surface.

【0003】0003

【発明が解決しようとする課題】従来のX線回折顕微法
装置では、X線Siウェハーへの侵入深さが数μm程度
と大きく、深さ方向の平均的な情報しか得ることができ
ず、近年の浅い接合において半導体デバイスが要求する
表面極く近傍の結晶欠陥の情報を得ることが不可能であ
るという欠点があった。また、得られた回折像は、完全
性の高い結晶性を有する場合において得られる動力学的
回折効果に基づいているものであり、微小な歪み場を有
する結晶欠陥を観察することは不可能であった。本発明
は、このような従来の欠点を除去せしめて、表面極く近
傍の微小な結晶欠陥をX線回折顕微法的に観察するため
の方法を提供することにある。
[Problems to be Solved by the Invention] In conventional X-ray diffraction microscopy equipment, the penetration depth of X-rays into a Si wafer is as large as several μm, and only average information in the depth direction can be obtained. In recent years, shallow junctions have had the disadvantage that it is impossible to obtain information on crystal defects very close to the surface, which is required by semiconductor devices. Furthermore, the obtained diffraction image is based on the dynamic diffraction effect obtained when the material has highly perfect crystallinity, and it is impossible to observe crystal defects with minute strain fields. there were. The object of the present invention is to eliminate such conventional drawbacks and provide a method for observing minute crystal defects very close to the surface using X-ray diffraction microscopy.

【0004】0004

【課題を解決するための手段】本発明の全反射X線回折
顕微方法は、シンクロトロン放射光の波長の連続性とS
i結晶からのブラック回折を有する光学系において、S
i結晶からの回折ピークの裾の角度位置で回折顕微法的
に撮影する方法である。
[Means for Solving the Problems] The total internal reflection X-ray diffraction microscopy method of the present invention achieves wavelength continuity of synchrotron radiation light and S
In an optical system with black diffraction from an i crystal, S
This is a method of photographing using diffraction microscopy at the angular position of the tail of the diffraction peak from the i-crystal.

【0005】[0005]

【実施例】シンクロトロン放射光は、強力な連続の波長
を有し、回折現象を用いた結晶欠陥評価用のX線源とし
て大変有用なものである。本発明は、このシンクロトロ
ン放射光の特徴を有効に利用したものである。
EXAMPLE Synchrotron radiation has a powerful continuous wavelength and is very useful as an X-ray source for evaluating crystal defects using diffraction phenomena. The present invention effectively utilizes the characteristics of synchrotron radiation.

【0006】以下、本発明の実施例について図面を参照
にして詳細に説明する。図1は、本発明による全反射X
線回折顕微法装置の一実施例を示す図である。符号11
は、連続光であるシンクロトロン放射光である。このシ
ンクロトロン放射光11は、スリット12によってX線
ビームサイズを成形された後、Siの(111)面を有
する結晶を設置した2結晶分光器13によって単色化さ
れる。この単色化されたX線14は、スリット15によ
ってビームサイズを成形された後、ω−2θ回転可能な
ゴニオメータ16のヘッドに設置された(100)Si
ウェハー17に入射する。(100)Siウェハー17
からの回折は、(100)表面に対して35.26°傾
いた格子面である422非対称反射を用いる。仮に、2
結晶分光器13によってシンクロトロン放射光11から
波長λ=1.29Aを持つX線14を選別し、ω−2θ
回転可能なゴニオメータ16によって、(100)Si
ウェハー17をX線14に対して入射角(θB −α)
を持つように設置すると、(100)Siウェハー17
の422非対称反射による回折線18を得ることができ
る。ここで、θB は回折角度であり35.58°を有
し、αは(100)表面と(422)面とのなす角であ
り、前記した35.26°の値を有する。そして、X線
14の(100)Siウェハー17への入射角は0.3
2°となる。この時、図2において計算された侵入深さ
曲線21が示すようにX線14の(100)Siウェハ
ー17内への侵入深さは数千A程度となる。2結晶分光
器13によって選別されたX線14の波長を、2結晶分
光器13をシンクロトロン放射光11に対して低角側に
逐次回転することによって僅かに短くすると、422非
対称反射面による回折角度θB はそれに追従して減少
する。その結果、(100)Siウェハー17からの回
折線18を見失うことなく、X線14の(100)Si
ウェハー17への入射角を減少させ、ついには全反射を
起こす臨界角θC よりも小さくすることが可能である
。これはシンクロトロン放射光の波長連続性とSi結晶
からの非対称反射とを有効に利用したものである。この
操作をX線14の波長がλ=1.284A近傍になるま
で行うと、X線14の(100)Siウェハー17への
入射角は0.13°となり、臨界角θC =0.18°
よりも小さくなる。この時、反射率曲線22が示すよう
にX線14の(100)Siウェハー上での反射率は1
近くになり、X線の場の強度曲線23が示すようにX線
の場の強さも十分大きい。また、侵入深さ曲線21が示
すようにX線14の(100)Siウェハー18内への
侵入深さは数十A程度となり、表面極く近傍の情報を得
ることができる。このように、(100)Siウェハー
17表面で全反射を起こした条件下で、(100)Si
ウェハー17からの回折線18を得ることが出来る。こ
こで、ω−2θ回転可能なゴニオメータ16によって(
100)Siウェハー17を回折線18のピークの裾の
角度位置に設置する。この配置では、完全性の高いバル
ク結晶からの動力学的回折強度は、極度に抑えられてお
り、表面極く近傍に存在する微小な結晶欠陥によって生
じる運動学的回折強度が相対的に増大している状況にあ
る。 この様な条件下のもとで、(100)Siウェハー17
の422非対称反射による回折線18を写真フィルム1
9で顕微法的に観察する。
[0006] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the total reflection X according to the present invention.
1 is a diagram showing an example of a line diffraction microscopy apparatus. code 11
is continuous synchrotron radiation light. This synchrotron radiation light 11 is shaped into an X-ray beam size by a slit 12, and then monochromated by a two-crystal spectrometer 13 equipped with a Si crystal having a (111) plane. This monochromated X-ray 14 is shaped into a beam size by a slit 15, and then placed in the head of a (100) Si rotatable goniometer 16.
The light is incident on the wafer 17. (100) Si wafer 17
The diffraction from the 422 asymmetric reflection, which is a lattice plane tilted 35.26° to the (100) surface, is used. If, 2
X-rays 14 with a wavelength λ=1.29A are selected from the synchrotron radiation 11 by a crystal spectrometer 13, and
The rotatable goniometer 16 allows (100)Si
Incident angle (θB −α) of the wafer 17 with respect to the X-ray 14
(100) Si wafer 17
Diffraction lines 18 due to 422 asymmetric reflections can be obtained. Here, θB is the diffraction angle and has a value of 35.58°, and α is the angle formed by the (100) surface and the (422) surface and has the above-mentioned value of 35.26°. The incident angle of the X-ray 14 on the (100) Si wafer 17 is 0.3
It becomes 2°. At this time, as shown by the calculated penetration depth curve 21 in FIG. 2, the penetration depth of the X-rays 14 into the (100) Si wafer 17 is approximately several thousand amps. When the wavelength of the X-rays 14 selected by the two-crystal spectrometer 13 is slightly shortened by sequentially rotating the two-crystal spectrometer 13 toward a lower angle with respect to the synchrotron radiation 11, diffraction by the asymmetric reflection surface 422 occurs. The angle θB decreases accordingly. As a result, without losing sight of the diffraction line 18 from the (100) Si wafer 17, the (100) Si
It is possible to reduce the angle of incidence on the wafer 17 until it becomes smaller than the critical angle θC at which total internal reflection occurs. This effectively utilizes the wavelength continuity of synchrotron radiation and the asymmetric reflection from the Si crystal. If this operation is carried out until the wavelength of the X-ray 14 becomes around λ = 1.284A, the incident angle of the X-ray 14 to the (100) Si wafer 17 becomes 0.13°, and the critical angle θC = 0.18°.
becomes smaller than At this time, as shown by the reflectance curve 22, the reflectance of the X-ray 14 on the (100) Si wafer is 1
As the X-ray field strength curve 23 shows, the X-ray field strength is also sufficiently large. Further, as shown by the penetration depth curve 21, the penetration depth of the X-ray 14 into the (100) Si wafer 18 is approximately several tens of amps, making it possible to obtain information very close to the surface. In this way, under the condition that total reflection occurs on the surface of the (100) Si wafer 17, the (100) Si
A diffraction line 18 from the wafer 17 can be obtained. Here, (
100) Place the Si wafer 17 at the angular position of the tail of the peak of the diffraction line 18. In this arrangement, the kinetic diffraction intensity from the highly perfect bulk crystal is extremely suppressed, and the kinetic diffraction intensity caused by minute crystal defects existing very close to the surface is relatively increased. I am in a situation where I am Under these conditions, (100) Si wafer 17
Diffraction line 18 due to 422 asymmetric reflection of photographic film 1
Observe microscopically in step 9.

【0007】本発明は、(100)表面に対して25.
24°傾いた格子面である311非対称反射を用いても
同様な効果を発揮する。前記した手順を用いて、最終的
にシンクロトロン放射光11より1.404A近傍の波
長を選別すると、X線14の(100)Siウェハー1
7への入射角は、0.15°となり、臨界角0.20°
より小さくなる。その結果、(100)Siウェハー1
7表面で全反射を起こした条件下で、(100)Siウ
ェハー17からの回折線18を得ることが出来る。ここ
で、ω−2θ回転可能なゴニオメータ16によって(1
00)Siウェハー17を回折線18のピークの裾の角
度位置に設置し、写真フィルム19によって回折顕微法
的に撮影すれば、表面極く近傍に存在する微小な結晶欠
陥を観察することが出来る。
[0007] The present invention provides a 25.
A similar effect can be achieved using 311 asymmetric reflection, which is a lattice plane tilted by 24°. Using the procedure described above, when a wavelength near 1.404A is finally selected from the synchrotron radiation 11, the (100) Si wafer 1 of the X-ray 14 is selected.
The angle of incidence on 7 is 0.15°, and the critical angle is 0.20°.
become smaller. As a result, (100) Si wafer 1
Diffraction lines 18 from the (100) Si wafer 17 can be obtained under conditions where total reflection occurs on the surface of the (100) Si wafer 17. Here, (1
00) If the Si wafer 17 is placed at the angular position of the tail of the peak of the diffraction line 18 and photographed by diffraction microscopy using the photographic film 19, minute crystal defects existing very close to the surface can be observed. .

【0008】本発明は、(100)表面に対して、〈1
00〉方向に4°傾けられた表面を有するSiエピタキ
シャル結晶に対しても同様な効果を発揮する。この場合
、4°傾けられた〈100〉方向と垂直な084面によ
る非対称反射を用いるのが有効である。前記した手順を
用いて、最終的にシンクロトロン放射光11より、1.
086A近傍の波長を選別し、X線14のSiエピタキ
シャル結晶への入射角を、臨界角0.156°以下にし
、回折線18のピークの裾の角度位置で回折顕微法的に
撮影すれば、表面極く近傍に存在する微小な結晶欠陥を
観察することが出来る。
[0008] The present invention provides for the (100) surface with <1
A similar effect is exerted on a Si epitaxial crystal having a surface tilted by 4° in the 00> direction. In this case, it is effective to use asymmetric reflection by the 084 plane tilted by 4 degrees and perpendicular to the <100> direction. Using the procedure described above, the synchrotron radiation 11 is finally used to obtain 1.
If the wavelength near 086A is selected, the angle of incidence of the X-ray 14 on the Si epitaxial crystal is set to below the critical angle of 0.156°, and the image is photographed by diffraction microscopy at the angular position of the tail of the peak of the diffraction line 18, It is possible to observe minute crystal defects that exist very close to the surface.

【0009】[0009]

【発明の効果】以上説明したように本発明によれば、表
面から数十Aという極く近傍に存在する微小な結晶欠陥
をX線顕微法的に観察可能であり、これら結晶欠陥と半
導体デバイス特性の劣化との対比に有効な効果を有する
Effects of the Invention As explained above, according to the present invention, it is possible to observe minute crystal defects existing in the extremely close vicinity of several tens of amps from the surface using X-ray microscopy, and it is possible to observe these crystal defects and semiconductor devices. This has an effective effect in contrast with deterioration of characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明における条件下での計算結果である。FIG. 2 shows calculation results under the conditions of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  シンクロトロン放射光の波長の連続性
とSi結晶からの非対称反射とから構成された全反射条
件下でのSi結晶からのブロック回折を有する光学系に
おいて、Si結晶から回折ピークの裾の角度位置で撮影
する全反射X線回折顕微方法。
Claim 1: In an optical system having block diffraction from the Si crystal under total internal reflection conditions consisting of wavelength continuity of synchrotron radiation light and asymmetric reflection from the Si crystal, the diffraction peak from the Si crystal is A total internal reflection X-ray diffraction microscopy method that takes images at the angular position of the hem.
JP3146374A 1991-06-19 1991-06-19 Total reflection X-ray diffraction microscopy Expired - Fee Related JP2967609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3146374A JP2967609B2 (en) 1991-06-19 1991-06-19 Total reflection X-ray diffraction microscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3146374A JP2967609B2 (en) 1991-06-19 1991-06-19 Total reflection X-ray diffraction microscopy

Publications (2)

Publication Number Publication Date
JPH04369850A true JPH04369850A (en) 1992-12-22
JP2967609B2 JP2967609B2 (en) 1999-10-25

Family

ID=15406273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3146374A Expired - Fee Related JP2967609B2 (en) 1991-06-19 1991-06-19 Total reflection X-ray diffraction microscopy

Country Status (1)

Country Link
JP (1) JP2967609B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269130A (en) * 2009-04-24 2010-12-02 Toshiba Corp Magnetic resonance imaging apparatus and rf coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269130A (en) * 2009-04-24 2010-12-02 Toshiba Corp Magnetic resonance imaging apparatus and rf coil
US8773131B2 (en) 2009-04-24 2014-07-08 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and RF coil

Also Published As

Publication number Publication date
JP2967609B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
JP3813512B2 (en) Bonded substrate evaluation method and evaluation apparatus, and semiconductor device manufacturing method
Wilkinson et al. Quantitative deformation studies using electron back scatter patterns
US11003942B2 (en) Electron channeling pattern acquisition from small crystalline areas
CN109564884A (en) Surface defect with bulky grain monitoring and laser power control is examined
JPH04323545A (en) Method of total reflection x-ray diffraction microscopy
JPH04369850A (en) Total reflection x-ray microdiffractometry
Parsons et al. Influence of crystalline defects on 2-beam crystal lattice images-Experimental
US7209596B2 (en) Method of precision calibration of a microscope and the like
Huard et al. Bipolar outflow sources in the Serpens core: SVS 2 and SVS 20
Kidd et al. Infrared laser scanning microscopy in transmission: A new high‐resolution technique for the study of inhomogeneities in bulk GaAs
Kozaki et al. High-Resolution Video Display of X-Ray Topographs with the Divergent Laue Method
Hilgarth Direct observation of dislocations in GaP crystals
Prieur et al. Threading dislocations in silicon layer produced by separation by implanted oxygen process
JP2953735B2 (en) Total reflection X-ray diffraction microscopy method and diffraction microscopy apparatus
Beard Jr et al. High resolution imaging of electronic devices via x‐ray diffraction topography
JP2003188224A (en) Method for measuring dislocation pit density in compound semiconductor wafer
JPH02216042A (en) Reflected electron beam diffraction apparatus
JPH04301800A (en) X-ray diffraction microscopic device
Juleff et al. The Application of Berg-Barrett Skew Reflections for Observing Boron Diffusion-Induced Imperfections in Silicon Wafers
Hu et al. Direct atomic observation of Ge/(001) Si interfaces by image processing methods in high-resolution electron microscopy
Nemcsics et al. Makyoh topography study of the curvature and surface morphology of mismatched InGaAs/GaAs heterostructures
Miller et al. Analysis of growth related strain in Czochralski grown indium antimonide using x-ray anomalous transmission topography
Tromp In Situ Studies with Low-Energy Electron Microscopy
Hong et al. Determination of defect types of ZnSe-based epilayers by etch-pit configurations
Schulson Crystallographic aspects of scanning electron microscopy, the electron channeling pattern technique

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990721

LAPS Cancellation because of no payment of annual fees