JPH04367518A - Furnace wall of electric melting furnace for rockwool and construction of the wall - Google Patents

Furnace wall of electric melting furnace for rockwool and construction of the wall

Info

Publication number
JPH04367518A
JPH04367518A JP14179691A JP14179691A JPH04367518A JP H04367518 A JPH04367518 A JP H04367518A JP 14179691 A JP14179691 A JP 14179691A JP 14179691 A JP14179691 A JP 14179691A JP H04367518 A JPH04367518 A JP H04367518A
Authority
JP
Japan
Prior art keywords
refractory
wall
furnace
layer
sacrificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14179691A
Other languages
Japanese (ja)
Other versions
JP3131463B2 (en
Inventor
Kiyoyuki Kitayama
北山 清幸
Yasuo Sekizawa
関沢 靖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanabe Corp
Original Assignee
Tanabe Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Corp filed Critical Tanabe Corp
Priority to JP03141796A priority Critical patent/JP3131463B2/en
Publication of JPH04367518A publication Critical patent/JPH04367518A/en
Application granted granted Critical
Publication of JP3131463B2 publication Critical patent/JP3131463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:The most important characteristic of the present invention is to easily form a joint-free integrated refractory layer having excellent corrosion resistance on the inner surface of a furnace wall in contact with a molten material. CONSTITUTION:A sacrifice refractory wall 10 which dissipates according to the corrosion with a molten material 7 is formed at the frontmost part in a furnace by stacking sacrifice refractory blocks 10a. A true refractory wall 11 made of amorphous refractory 14 is formed outside of the sacrifice refractory layer 10. The true refractory wall 11 is burnt with the heat of the molten material 7 according to the dissipation of the sacrifice refractory layer 10 to form an integrated refractory wall. The wall constructed of the sacrifice refractory 10a is used as a frame for packing the amorphous refractory 14 and, at the same time, the wall is utilized as a protection layer for burning to gradually increase the burning temperature of the amorphous refractory 14 according to the dissipation of the sacrifice refractory wall caused by the corrosion in operation. The formation of a joint-free integrated refractory layer on the inner surface of a furnace wall 3, which has been considered difficult, can easily be performed by this process.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、ロックウール(岩綿
)を製造するために用いられるロックウール用電気溶融
炉にかかり、特にロックウ−ル用電気溶融炉の炉壁およ
びその炉壁の構築方法に関する。
[Industrial Application Field] The present invention relates to an electric rock wool melting furnace used for producing rock wool, and more particularly to the furnace wall of an electric rock wool melting furnace and the construction of the furnace wall. Regarding the method.

【0002】0002

【従来の技術】ロックウールの製造には、従来より、電
気溶融炉が用いられている。
BACKGROUND OF THE INVENTION Electric melting furnaces have conventionally been used in the production of rock wool.

【0003】すなわち、ロックウールは、玄武岩,安山
岩等の岩石、あるいは金属の精練滓、主として高炉スラ
グを原料とし、これに化学成分調整のための副原料とし
て珪石,ドロマイト,石灰等を添加して、電気溶融炉で
溶融し、この溶融物を製綿機に出湯して、吹製法又はス
ピニング法によって繊維化することで製造している。
[0003] Rock wool is made from rocks such as basalt and andesite, or metal smelting slag, mainly blast furnace slag, and is made by adding silica, dolomite, lime, etc. as auxiliary raw materials to adjust the chemical composition. It is manufactured by melting it in an electric melting furnace, tapping the melt into a cotton mill, and making it into fibers by blowing or spinning.

【0004】この電気溶融炉には、鋼製の炉殻の内側に
耐火壁を施工してなる炉体が用いられ、この炉体に備え
た複数本のカーボン電極で、直接、原料に通電すること
により、原料を加熱して溶融している。ところで、ロッ
クウールを製造する原料はそれ自体きわめて侵食性が強
い。そこで、ロックウール用の電気溶融炉には、直接、
溶融物に接し耐蝕性を必要とする炉壁の内面に、通常、
高温耐蝕性の高い耐火煉瓦を用いている。具体的には、
黒鉛煉瓦、炭化珪素系煉瓦、アルミナ酸化クロム煉瓦な
どを積重ねて構成した耐火壁を炉壁の内面に用いている
[0004] This electric melting furnace uses a furnace body made of a steel furnace shell with a fireproof wall built inside, and a plurality of carbon electrodes provided in this furnace body directly energize the raw material. This heats and melts the raw materials. By the way, the raw material from which rock wool is manufactured is itself extremely corrosive. Therefore, in the electric melting furnace for rock wool,
The inner surface of the furnace wall, which is in contact with the molten material and requires corrosion resistance, is usually
Uses firebricks that are highly resistant to high temperature corrosion. in particular,
A fireproof wall made of stacked graphite bricks, silicon carbide bricks, alumina chromium oxide bricks, etc. is used on the inner surface of the furnace wall.

【0005】しかし、この耐火壁は、電気溶融炉の操業
中、常に高温(1600℃前後)の溶融物による強い化
学的侵食作用と熱応力を受けているので、操業するにし
たがい侵食して次第に消耗する。ところが、侵食の進み
方は一様でない。
[0005] However, during the operation of the electric melting furnace, this refractory wall is constantly subjected to strong chemical erosion and thermal stress due to high-temperature (around 1600°C) molten material, so it gradually erodes and deteriorates as the electric melting furnace operates. exhaust. However, the progress of erosion is not uniform.

【0006】すなわち、一般に侵食は耐火煉瓦の目地の
部分で著しい。具体的には、目地の部分で侵食が始まる
と、その部分がえぐられるように侵食が進行する。この
とき他の部分の侵食は軽い。近時では、耐火煉瓦の表面
の仕上加工により、目地の部分の侵食に対する抵抗力を
つけることも行なわれているが、それでも同様な侵食が
見られる。
[0006] Generally, erosion is significant at the joints of refractory bricks. Specifically, when erosion begins at the joint, the erosion progresses as if that area is being gouged out. At this time, the erosion in other parts is light. In recent years, the surface of refractory bricks has been finished to make them more resistant to erosion at the joints, but similar erosion is still observed.

【0007】この結果、他の部分は十分に使用に耐える
状態であるのに、目地の部分だけが深くえぐられてしま
うので、他の部分の状況、すなわち他の部分が健全であ
るにもかかわらず、補修が必要となる。
[0007] As a result, only the joint area is deeply gouged out even though the other parts are in good condition to withstand use, so even though the other parts are healthy, However, repair is required.

【0008】ところが、煉瓦などの補修は、煉瓦積作業
における目地の施工上、侵食の激しい部分のみを新しい
煉瓦に置き換えることは不可能で、どうしても全体を取
り替えなければならない。つまり、他の部分の状況にか
かわらず、耐火煉瓦の目地の部分とその近傍の侵食状況
によって、耐火壁の寿命が決定されてしまう。
However, when repairing bricks, etc., it is impossible to replace only the heavily eroded portions with new bricks due to the construction of joints during bricklaying work, and the entire brick must be replaced. In other words, the lifespan of a fireproof wall is determined by the erosion conditions of the joints of the firebrick and its vicinity, regardless of the condition of other parts.

【0009】このため、高価な耐火物の消費が多い問題
がある上、保守のために行われている炉体の耐火壁の施
工し直しの回数も多くなる問題がある。特に、耐火壁の
修理は、高温の溶融物を抜取り炉壁が十分に冷えてから
、熟練を要する煉瓦積みを行なう都合上、多くの時間と
労力が必要となるので、上記問題点は重要である。
[0009] Therefore, there is a problem that expensive refractories are consumed a lot, and the number of times that the refractory wall of the furnace body has to be rebuilt for maintenance is also increased. In particular, repairing fireproof walls requires a lot of time and labor, as the high-temperature molten material must be extracted and the furnace walls have sufficiently cooled before bricklaying, which requires skill, is required, so the above problem is important. be.

【0010】そこで、例えば合金鉄炉で行われている構
造を適用して、溶融物と接する耐火壁の層を目地のない
不定形の耐火物(粉、顆粒など)で構成することが考え
られる。
[0010] Therefore, it is conceivable to apply the structure used in ferroalloy furnaces, for example, and to construct the layer of the refractory wall in contact with the molten material with an irregularly shaped refractory material (powder, granules, etc.) without joints. .

【0011】[0011]

【発明が解決しようとする課題】この不定形の耐火物を
用いる場合、施工には例えば鋼板製の型枠を炉壁の最前
部に設け、この型枠とこの外側の耐火物との間に不定形
の耐火物を充填する必要がある。しかも、不定形の耐火
物の焼成には、何等の方法で、この充填した不定形の耐
火物を加熱して、長時間をかけて少しづつ温度を上げな
がら乾燥させ、高温で一定時間保持することが要求され
る。
[Problem to be Solved by the Invention] When using this irregularly shaped refractory, a formwork made of, for example, a steel plate is provided at the forefront of the furnace wall, and a It is necessary to fill it with an amorphous refractory. Furthermore, in order to fire an irregularly shaped refractory, the filled irregularly shaped refractory is heated, dried while gradually raising the temperature over a long period of time, and then held at a high temperature for a certain period of time. This is required.

【0012】ところで、合金鉄炉の場合は、いわゆるゼ
−ダ−ベルグ式電極が初期焼成を必要とするところから
、その初期焼成を利用して不定形の耐火物の焼成も同時
に行なっている。
By the way, in the case of a ferroalloy furnace, since the so-called Soederberg type electrode requires initial firing, the initial firing is used to simultaneously fire an irregularly shaped refractory.

【0013】すなわち、これは不定形の耐火物の層を炉
壁の内面にもつ(鋼板型枠を使用)炉体を設け、この炉
体内に原料を入れ、初期通電として電力の投入を低レベ
ルから徐々に増やして加熱するもので、このときの加熱
で電極と不定形の耐火物との焼成を行なうようにしてい
る。
[0013] In other words, this involves providing a furnace body with a layer of irregularly shaped refractories on the inner surface of the furnace wall (using a steel plate formwork), placing raw materials into the furnace body, and inputting electricity at a low level for initial energization. The heating temperature is gradually increased from the initial temperature, and the heating at this time is used to sinter the electrode and the amorphous refractory.

【0014】この場合、還元反応が電極周辺から進行し
て、同部分に溶湯の部分が形成されるものの、合金鉄炉
は炉壁の耐火壁と電極との間がかなり離れているもので
あり、さらに吸熱反応であることから耐火壁の近傍では
、溶解せずに粉状を保っている原料の部分と半溶融の部
分とが存在する。つまり、合金鉄炉によると、耐火壁は
高温にさらされないので、型枠を使用した構造が採用で
き、また焼成も適性な温度の推移で行なえる。
[0014] In this case, although the reduction reaction proceeds from the vicinity of the electrode and a molten metal portion is formed in the same area, in a ferroalloy furnace there is a considerable distance between the refractory wall of the furnace wall and the electrode. Furthermore, since it is an endothermic reaction, there are parts of the raw material that remain undissolved and remain in powder form and parts that are semi-molten near the firewall. In other words, according to the iron alloy furnace, the refractory walls are not exposed to high temperatures, so a structure using formwork can be adopted, and firing can be performed at an appropriate temperature transition.

【0015】ところが、ロックウ−ル用電気溶融炉によ
ると、電極は焼成済みの黒鉛電極を使用し、炉体も比較
的小さい。しかも、原料を溶解するだけであるから、通
電を始めて電極周辺で原料が溶けると溶解が急速に進み
、耐火壁まで溶融物で満たされる。
However, according to the electric melting furnace for rock wool, fired graphite electrodes are used as electrodes, and the furnace body is also relatively small. Moreover, since the raw material is only melted, once the current is turned on and the raw material melts around the electrode, the melting progresses rapidly and the fireproof wall is filled with the molten material.

【0016】このため、ロックウ−ル用電気溶融炉では
、鋼板ような溶解する材質で構成された型枠は使用でき
ない。しかも、耐火壁は急速に温度上昇するので、適性
な焼成もできない。つまり、合金鉄炉の技術をロックウ
−ル用電気溶融炉にそのまま用いることはできない。
[0016] For this reason, a formwork made of a meltable material such as a steel plate cannot be used in an electric rock wool melting furnace. Moreover, the temperature of the fireproof walls rises rapidly, making it impossible to fire them properly. In other words, the technology of the ferroalloy furnace cannot be directly applied to the electric melting furnace for rock wool.

【0017】また、不定形の耐火物の焼成に際し、バ−
ナ−等の燃焼装置を用いて加熱焼成することも考えられ
るが、これも加熱温度を長時間をかけて徐々に上昇させ
ることが困難な上、全体を均一に加熱することが難しい
という問題がある。
[0017] Also, when firing amorphous refractories, bar
It is also possible to heat and sinter using a combustion device such as a burner, but this also has the problem that it is difficult to gradually increase the heating temperature over a long period of time, and it is also difficult to heat the whole body uniformly. be.

【0018】それ故、ロックウ−ル用電気溶融炉の分野
においては、溶融物と接する耐火壁の層を目地のない不
定形の耐火物で構成することは難しいとされ、これを容
易に実現できる技術が強く要望されている。
Therefore, in the field of electric melting furnaces for rock wool, it is considered difficult to construct the layer of the refractory wall in contact with the molten material with an irregularly shaped refractory material without joints, but this can be easily realized. Technology is in strong demand.

【0019】[0019]

【発明が解決しようとする課題】この発明は、このよう
な事情に着目してなされたもので、その目的とするとこ
ろは、溶融物と接する炉壁の内面に、容易に耐食性に優
れる目地のない一体型の耐火層を形成することができる
ロックウ−ル用電気溶融炉の炉壁およびその炉壁の構築
方法を提供することにある。
[Problems to be Solved by the Invention] The present invention was made in view of the above-mentioned circumstances, and its purpose is to easily form joints with excellent corrosion resistance on the inner surface of the furnace wall that comes into contact with the molten material. It is an object of the present invention to provide a furnace wall of an electric melting furnace for rock wool, which can form an integral refractory layer without the need for an integral refractory layer, and a method for constructing the furnace wall.

【0020】[0020]

【課題を解決するための手段】上記目的を達成するため
に請求項1に記載のロックウール用電気溶融炉の炉壁は
、炉内に臨む最前部に、犠牲耐火物の積上げにより構成
された、溶融物による侵食を受けるにしたがい消失可能
な第1の耐火層を設け、この耐火層の外側に、不定形の
耐火物よりなり、前記犠牲耐火物の消失にしたがい溶融
物の熱で焼成されて一体型の耐火壁が形成する第2の耐
火層を設けたことにある。
[Means for Solving the Problems] In order to achieve the above object, the furnace wall of the electric melting furnace for rock wool according to claim 1 is constructed by stacking sacrificial refractories at the front end facing into the furnace. , a first refractory layer that can be dissipated as it is eroded by the molten material is provided, and on the outside of this refractory layer, the first refractory layer is made of an amorphous refractory that is fired by the heat of the molten material as the sacrificial refractory disappears. The second refractory layer is formed by an integral refractory wall.

【0021】請求項2に記載のロックウ−ル用電気溶融
炉の炉壁の構築方法は、犠牲耐火物を積上げて構成され
る層を炉内に臨む最前部に構成し、この外側に不定形の
耐火物を充填して炉壁を構成した後、操業時を行ない、
その操業に伴って前記犠牲耐火物を介して前記不定形の
耐火物に加えられる溶融物の熱で前記不定形の耐火物が
焼成され、かつ前記犠牲耐火物が溶融物の侵食で消失さ
れることにより、溶融物と接する部分に一体型の耐火壁
を形成することにある。
[0021] In the method for constructing the furnace wall of an electric melting furnace for rock wool according to claim 2, a layer formed by stacking sacrificial refractories is constructed at the forefront facing into the furnace, and an irregularly shaped layer is formed on the outside of this layer. After filling the furnace wall with refractories, the operation is carried out.
During the operation, the amorphous refractory is sintered by the heat of the molten material applied to the amorphous refractory through the sacrificial refractory, and the sacrificial refractory is destroyed by erosion of the molten material. The purpose of this is to form an integral refractory wall in the part that comes into contact with the melt.

【0022】[0022]

【作用】請求項1、請求項2に記載の発明によると、犠
牲耐火物で構成した層を不定形の耐火物を充填するため
の型枠とする。と同時に、この層を焼成用保護層として
も活用して、操業時におけるこの層の侵食による消失か
ら、不定形の耐火物は長時間をかけて徐々に上昇させ高
温で一定に保持するといった最適な焼成が行われるよう
になる。これにより、溶融物と接する炉壁の内面には、
目地のない一体型の耐食性に優れる耐火層が形成される
。つまり、目地の部分での局所的な侵食を防いで、耐火
物全体の侵食を平均化する。
According to the invention as set forth in claims 1 and 2, the layer made of the sacrificial refractory is used as a formwork for filling an irregularly shaped refractory. At the same time, this layer can also be used as a protective layer for firing, and to prevent this layer from disappearing due to erosion during operation, it can be used to gradually raise the temperature of irregularly shaped refractories over a long period of time and maintain it at a constant high temperature. The firing process began to take place. As a result, the inner surface of the furnace wall in contact with the melt is
A seamless, integrated fireproof layer with excellent corrosion resistance is formed. In other words, it prevents local erosion at the joints and averages out the erosion of the entire refractory.

【0023】したがって、ロックウ−ル用電気溶融炉の
寿命を延ばすことができる。しかも、犠牲耐火壁自身を
不定型の耐火物を充填する型枠として用いている上、焼
成は電力の投入、原料の散布など格別な考慮を必要とし
ないで通常の初期操業と同様の作業を行なえばよいから
、容易な作業で、目地のない一体型の耐火物を形成でき
る利点をもつ。
[0023] Therefore, the life of the electric melting furnace for rock wool can be extended. Moreover, the sacrificial refractory wall itself is used as a formwork for filling irregularly shaped refractories, and firing can be carried out in the same way as in normal initial operations without the need for special considerations such as inputting electricity or dispersing raw materials. This method has the advantage of being able to form an integrated refractory without any joints with a simple process.

【0024】[0024]

【実施例】以下、この発明を図1および図3に示す一実
施例にもとづいて説明する。図1はロックウール用電気
溶融炉の全体の断面を示し、図中1は炉体である。炉体
1は、例えば鋼製の炉殻2の内側に耐火物の壁を施工し
て、炉壁3および炉底4を構成してなる。また炉体1の
上部の開口には炉蓋5が設けられている。そして、この
炉蓋5を貫通して、複数本、例えば2本の黒鉛電極6,
6が設けられている。これにより、図示しない注入口か
らロックウールの原料を炉内に入れて、黒鉛電極6,6
から原料に通電することにより、原料を溶融できるよう
になっている。図1はこの溶融物7を貯溜した状態を示
している。なお、8は炉内に入れて、まだ溶解していな
い原料、9は炉底4に溜った酸化鉄(溶融鉄)を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on an embodiment shown in FIGS. 1 and 3. FIG. 1 shows a cross section of the entire electric melting furnace for rock wool, and 1 in the figure is the furnace body. The furnace body 1 includes a furnace wall 3 and a furnace bottom 4 formed by constructing a refractory wall inside a furnace shell 2 made of steel, for example. Further, a furnace cover 5 is provided in the upper opening of the furnace body 1 . Then, a plurality of graphite electrodes 6, for example, two graphite electrodes 6,
6 is provided. As a result, rock wool raw material is introduced into the furnace from an injection port (not shown), and the graphite electrodes 6, 6
By passing electricity through the raw material, the raw material can be melted. FIG. 1 shows the state in which this melt 7 is stored. Note that 8 indicates raw material that has been put into the furnace and has not yet been melted, and 9 indicates iron oxide (molten iron) accumulated at the bottom 4 of the furnace.

【0025】この炉体1の炉壁3には、局所的な侵食を
抑制するための構造が用いられている。図2にその環状
に構成された炉壁3の耐火壁構造が拡大されて示されて
いる。
The furnace wall 3 of the furnace body 1 has a structure for suppressing local erosion. FIG. 2 shows an enlarged view of the fireproof wall structure of the annular furnace wall 3.

【0026】炉壁3の耐火壁の構造について説明すれば
、これは炉内に臨む最前部から炉殻2に向って、犠牲耐
火壁10(第1の耐火層)、不定形の耐火物で構成され
た真耐火壁11(第2の耐火層)、断熱耐火壁12、緩
衝断熱層13の複数の層を形成した壁からなる。
To explain the structure of the refractory wall of the furnace wall 3, it consists of a sacrificial refractory wall 10 (first refractory layer), an amorphous refractory layer, and a The wall is composed of a plurality of layers including a true fireproof wall 11 (second fireproof layer), a heat-insulating fireproof wall 12, and a buffer heat-insulating layer 13.

【0027】すなわち、犠牲耐火壁10は、例えば約1
500℃の温度に耐える普通の耐火煉瓦、具体的にはア
ルミナから構成された煉瓦10a(犠牲耐火物)を積重
ねて構成される。
That is, the sacrificial refractory wall 10 has a thickness of approximately 1
It is constructed by stacking ordinary refractory bricks 10a (sacrificial refractories) made of alumina that can withstand temperatures of 500°C.

【0028】断熱耐火壁12は、炉殻2の内面側に上記
したような普通の耐火煉瓦、例えばアルミナから構成さ
れた煉瓦12aを積重ねて構成される。そして、この積
重ねた煉瓦12aと炉殻2との間に形成された空間に、
緩衝断熱材、例えばカ−ボンスタンプ13cが充填され
、上記緩衝断熱層13を形成している。この緩衝断熱層
13にて、炉壁の熱膨張による変形を吸収するようにし
てある。
The heat insulating fireproof wall 12 is constructed by stacking the above-mentioned ordinary firebricks, for example bricks 12a made of alumina, on the inner surface of the furnace shell 2. In the space formed between the stacked bricks 12a and the furnace shell 2,
A buffer heat insulating material such as a carbon stamp 13c is filled to form the buffer heat insulating layer 13. This buffer heat insulating layer 13 is designed to absorb deformation due to thermal expansion of the furnace wall.

【0029】また真耐火壁11は、積重ねた煉瓦12a
と煉瓦10aとの間に形成した空間に、高温耐食性の高
い本来の壁を構成する不定形の耐火物、例えばアルミナ
酸化クロムの粉14(あるいは顆粒)を充填し、これら
を密となるよう外部から圧力を加えてなる。
[0029] Also, the true fireproof wall 11 is made of stacked bricks 12a.
The space formed between the brick 10a and the brick 10a is filled with an amorphous refractory, such as powder 14 (or granules) of alumina chromium oxide, which is highly resistant to high-temperature corrosion and constitutes the original wall. It is made by applying pressure from

【0030】そして、犠牲耐火壁10が侵食によって消
失するにしたがい、アルミナ酸化クロムの粉14を溶融
物7から伝わる熱で、徐々に均一に加熱するようにして
いる。つまり、犠牲耐火壁10の消失にしたがってアル
ミナ酸化クロムの粉14を最適に焼成して、目地のない
一体型の耐火層を形成するようにしてある。
As the sacrificial refractory wall 10 disappears due to erosion, the alumina chromium oxide powder 14 is gradually and uniformly heated by the heat transmitted from the melt 7. That is, as the sacrificial refractory wall 10 disappears, the alumina chromium oxide powder 14 is optimally fired to form an integral refractory layer with no joints.

【0031】つぎに、こうした炉壁3の構築方法につい
て説明すれば、これは、図3に示されるように、まず、
炉殻2から離間した炉底4の周側の地点に、アルミナの
煉瓦12aを適当な段数だけ積重ねる。ついで、炉殻2
の内面との間の空間にカ−ボンスタンプ13aを充填す
る。この作業を順次、繰返して所定の高さまで施工する
。これによって、断熱耐火層12と緩衝断熱層13とが
構成される。
Next, the method for constructing the furnace wall 3 will be explained. As shown in FIG.
A suitable number of alumina bricks 12a are stacked at a point on the circumferential side of the furnace bottom 4 that is spaced from the furnace shell 2. Next, furnace shell 2
A carbon stamp 13a is filled in the space between the inner surface and the inner surface of the carbon stamp 13a. This work is repeated one after another until the desired height is reached. This constitutes the heat insulating fireproof layer 12 and the buffer heat insulating layer 13.

【0032】この施工を終えたら、つぎに断熱耐火層1
2の前部側に所定の距離を隔てて、アルミナの煉瓦10
aを適当な段数だけ積重ねる。続いて、この煉瓦10a
と断熱耐火層12の煉瓦12aとの間の空間に、アルミ
ナ酸化クロムの粉14を充填し、これをならして密にす
る。これらの作業を順次、繰返し、所定の高さまで施工
する。これによって、犠牲耐火壁10と真耐火壁11と
が構成される。つまり、簡単には溶解しない犠牲耐火壁
10を型枠として用いて、真耐火壁11は構成される。 なお、施工後はガスバ−ナ−等を用いて充填した耐火物
を乾燥する(乾燥に必要な時間は2〜3日で、充填量よ
り異なる)。そして、このように構成された電気溶融炉
で初期操業に入る。すると、目地のない一体型の耐火壁
が炉壁3の内面に形成される。
[0032] After completing this construction, next the insulation fireproof layer 1
Alumina bricks 10 are placed at a predetermined distance on the front side of 2.
Stack a by an appropriate number of stages. Next, this brick 10a
Alumina chromium oxide powder 14 is filled in the space between the brick 12a of the heat insulating fireproof layer 12, and the powder is leveled to make it dense. These operations are repeated one after another until the desired height is reached. As a result, the sacrificial refractory wall 10 and the true refractory wall 11 are constructed. That is, the true fireproof wall 11 is constructed using the sacrificial fireproof wall 10, which does not easily melt, as a formwork. After construction, the filled refractories are dried using a gas burner or the like (the time required for drying is 2 to 3 days, which varies depending on the amount filled). Then, the electric melting furnace configured as described above begins initial operation. Then, an integrated fireproof wall with no joints is formed on the inner surface of the furnace wall 3.

【0033】すなわち、ロックウ−ル用電気溶融炉の作
用について説明すれば、玄武岩、安山岩等の岩石,ある
いは金属の精練滓,主として高炉スラグ、化学成分調整
のための珪石,ドロマイト,石灰等といった原料を注入
口(図示しない)から炉内に入れた後、黒鉛電極6,6
に通電する。これにより、原料は直接、通電により加熱
されて溶融する。この溶融物7が炉内に貯溜され、操業
を続けていくにしたがって生成される酸化鉄9が炉底4
に貯溜する。この初期操業の間、真耐火壁11は、犠牲
耐火壁10にて、溶融物7による化学的侵食作用と熱応
力とから保護される。
[0033] That is, to explain the operation of the electric melting furnace for rock wool, it can be used to process rocks such as basalt and andesite, or metal scouring slag, mainly blast furnace slag, and raw materials such as silica stone, dolomite, lime, etc. for chemical composition adjustment. is introduced into the furnace through the injection port (not shown), then the graphite electrodes 6, 6
energize. As a result, the raw material is directly heated and melted by electricity. This molten material 7 is stored in the furnace, and as the operation continues, iron oxide 9 is generated at the bottom of the furnace.
Store in. During this initial operation, the true refractory wall 11 is protected by the sacrificial refractory wall 10 from chemical attack by the melt 7 and from thermal stresses.

【0034】ここで、犠牲耐火壁10は普通のアルミナ
の煉瓦10aから構成されているから、このような操業
を続けていくにしたがって、犠牲耐火壁10は溶融物7
による化学的侵食作用と熱応力とを受けて侵食し、次第
に消耗する。これにより、犠牲耐火壁10は消失してい
く。具体的には、操業状況にもよるが、3〜4週間位で
犠牲耐火壁10は消失する。この間、犠牲耐火壁10を
介して真耐火壁11へ伝わる溶融物7の熱で、真耐火壁
11の耐火物が最適に焼成されていく。すなわち、最初
(初期操業)は犠牲耐火壁10の消耗がないので、真耐
火壁11に伝わる熱は小さく、比較的低温度から焼成が
開始されていく。
Here, since the sacrificial refractory wall 10 is composed of ordinary alumina bricks 10a, as the above-described operation continues, the sacrificial refractory wall 10 is made of molten material 7.
The material erodes due to chemical attack and thermal stress, and gradually wears out. As a result, the sacrificial firewall 10 disappears. Specifically, the sacrificial firewall 10 disappears in about 3 to 4 weeks, although it depends on the operating conditions. During this time, the heat of the molten material 7 transmitted to the true refractory wall 11 via the sacrificial refractory wall 10 optimally fires the refractory of the true refractory wall 11. That is, at the beginning (initial operation), there is no wear on the sacrificial refractory wall 10, so the heat transmitted to the true refractory wall 11 is small, and firing starts at a relatively low temperature.

【0035】ここで、真耐火壁11に伝わる熱は、犠牲
耐火壁10が侵食により消耗するにしたがって高くなる
から、焼成の温度は、犠牲耐火壁10が消耗するにした
がって高温となり、最後は高温で一定となる。
Here, the heat transmitted to the true refractory wall 11 increases as the sacrificial refractory wall 10 is consumed by erosion, so the firing temperature increases as the sacrificial refractory wall 10 is consumed, and finally reaches a high temperature. becomes constant.

【0036】これにより、アルミナ酸化クロム(不定型
の耐火物)は、長時間をかけて温度を徐々に上昇させて
高温で一定に保持するといった理想的な温度推移にした
がって焼成が行われる。
[0036] As a result, the alumina chromium oxide (amorphous refractory) is fired in accordance with an ideal temperature transition in which the temperature is gradually raised over a long period of time and kept constant at a high temperature.

【0037】この結果、犠牲耐火壁10が消失すると、
目地のない一体型の高耐食性の耐火物が形成され、この
目地のない一体型の耐火物で構成される耐火層が、それ
以降、犠牲耐火壁10に代って、本来の溶融物7と接す
る炉壁3の内面となる。
As a result, when the sacrificial fireproof wall 10 disappears,
A joint-free, monolithic, highly corrosion-resistant refractory is formed, and a refractory layer composed of this joint-free monolithic refractory is thereafter used in place of the sacrificial refractory wall 10 and with the original melt 7. This becomes the inner surface of the furnace wall 3 that is in contact with it.

【0038】このことは、従来で述べたような炉壁3の
耐火物の目地を原因とした局所的な侵食を防ぐことがで
き、炉壁3の溶融物7と接する耐火物全体の侵食を平均
化することができる。
[0038] This can prevent local erosion caused by the joints of the refractories of the furnace wall 3 as described in the prior art, and can prevent erosion of the entire refractory of the furnace wall 3 that is in contact with the molten material 7. Can be averaged.

【0039】それ故、電気溶融炉の寿命を延ばすことが
できる。しかも、犠牲耐火壁自身を不定型の耐火物を充
填する型枠として用いている上、焼成は電力の投入、原
料の散布など格別な考慮を必要としないで通常の初期操
業と同様の作業を行なえば均一にできるから、容易な作
業で、目地のない一体型の耐火物を形成できるものであ
る。
[0039] Therefore, the life of the electric melting furnace can be extended. Moreover, the sacrificial refractory wall itself is used as a formwork for filling irregularly shaped refractories, and firing can be carried out in the same way as in normal initial operations without the need for special considerations such as inputting electricity or dispersing raw materials. Since it can be done uniformly if done, it is possible to form a one-piece refractory without any joints with an easy operation.

【0040】なお、一実施例では真耐火壁を構成する耐
火物にアルミナ酸化クロムの粉を用いたが、これに限ら
ず、他の不定型の耐火物から真耐火壁を構成するように
してもよい。むろん、犠牲耐火物もアルミナ煉瓦に限ら
ず、他のブロック状の耐火物から構成してもよい。
[0040] In one embodiment, alumina chromium oxide powder was used as the refractory material constituting the true refractory wall, but the present invention is not limited to this, and the true refractory wall may be constructed from other irregularly shaped refractories. Good too. Of course, the sacrificial refractory is not limited to alumina bricks, and may be composed of other block-shaped refractories.

【0041】[0041]

【発明の効果】以上説明したように請求項1、請求項2
に記載の発明によれば、溶融物と接する炉壁の内面に、
容易に耐食性に優れる、目地のない一体型の耐火層を形
成することができる。これにより、目地の部分を原因と
した局所的な侵食を防いで、耐火物全体の侵食を平均化
することができる。
[Effect of the invention] As explained above, claims 1 and 2
According to the invention described in , on the inner surface of the furnace wall in contact with the molten material,
It is possible to easily form an integrated fireproof layer with excellent corrosion resistance and no joints. Thereby, local erosion caused by the joints can be prevented and erosion of the entire refractory can be averaged out.

【0042】よって、ロックウ−ル用電気溶融炉の寿命
を延ばすことができる。しかも、犠牲耐火壁自身を不定
型の耐火物を充填する型枠として用い、焼成は電力の投
入、原料の散布など格別な考慮を必要としないで通常の
初期操業と同様の作業を行なえばよいから、容易な作業
で、目地のない一体型の耐火物を形成できる。
[0042] Therefore, the life of the electric melting furnace for rock wool can be extended. Furthermore, the sacrificial refractory wall itself is used as a formwork for filling irregularly shaped refractories, and firing can be carried out in the same way as normal initial operations without the need for special considerations such as inputting electricity or dispersing raw materials. Therefore, it is possible to form a one-piece refractory without any joints with easy work.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例のロックウール用電気溶融
炉を示す断面図。
FIG. 1 is a sectional view showing an electric melting furnace for rock wool according to an embodiment of the present invention.

【図2】図1中のA部を拡大して示す炉壁の断面図。FIG. 2 is an enlarged cross-sectional view of the furnace wall showing part A in FIG. 1;

【図3】この発明の炉壁の構築方法を説明するための断
面図。
FIG. 3 is a sectional view for explaining the furnace wall construction method of the present invention.

【符号の説明】[Explanation of symbols]

1…炉体、2…炉殻、3…炉壁、4…炉底、6…黒鉛電
極、7…溶融物、10…犠牲耐火壁(第1の耐火層)、
10a…アルミナの煉瓦(犠牲耐火物)、11…真耐火
壁(第2の耐火層)、12…断熱耐火層、13…緩衝断
熱層、14…アルミナ酸化クロムの粉(不定型の耐火物
)。
DESCRIPTION OF SYMBOLS 1... Furnace body, 2... Furnace shell, 3... Furnace wall, 4... Furnace bottom, 6... Graphite electrode, 7... Melt, 10... Sacrificial refractory wall (first refractory layer),
10a...Alumina brick (sacrificial refractory), 11...True fireproof wall (second fireproof layer), 12...Insulating fireproof layer, 13...Buffer heat insulating layer, 14...Alumina chromium oxide powder (undefined refractory) .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  炉内に臨む最前部に設けられ、犠牲耐
火物の積上げにより構成された、溶融物による侵食を受
けるにしたがい消失可能な第1の耐火層と、この耐火層
の外側に設けられ、不定形の耐火物よりなり、前記犠牲
耐火物の消失にしたがい溶融物の熱で焼成されて一体型
の耐火壁が形成可能な第2の耐火層とを具備してなるこ
とを特徴とするロックウ−ル用電気溶融炉の炉壁。
Claim 1: A first refractory layer, which is provided at the forefront facing into the furnace and is composed of a stack of sacrificial refractories, and which can disappear as it is eroded by the molten material, and a first refractory layer provided outside the refractory layer and a second refractory layer which is made of an amorphous refractory and can be fired with the heat of the melt as the sacrificial refractory disappears to form an integral refractory wall. Furnace wall of electric melting furnace for rock wool.
【請求項2】  犠牲耐火物を積上げて構成される層を
炉内に臨む最前部に構成し、この外側に不定形の耐火物
を充填して炉壁を構成した後、操業時を行ない、その操
業に伴って前記犠牲耐火物を介して前記不定形の耐火物
に加えられる溶融物の熱で前記不定形の耐火物が焼成さ
れ、かつ前記犠牲耐火物が溶融物の侵食で消失されるこ
とにより、溶融物と接する部分に一体型の耐火壁を形成
することを特徴とするロックウ−ル用電気溶融炉の炉壁
の構築方法。
2. A layer consisting of sacrificial refractories piled up is constructed at the forefront facing the furnace, and after filling the outside of this layer with irregularly shaped refractories to construct the furnace wall, operations are carried out, During the operation, the amorphous refractory is sintered by the heat of the molten material applied to the amorphous refractory through the sacrificial refractory, and the sacrificial refractory is destroyed by erosion of the molten material. A method for constructing a furnace wall for an electric melting furnace for rock wool, characterized by forming an integral refractory wall in a portion that comes into contact with the molten material.
JP03141796A 1991-06-13 1991-06-13 Furnace wall of electric melting furnace for rock wool and method of constructing the furnace wall Expired - Lifetime JP3131463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03141796A JP3131463B2 (en) 1991-06-13 1991-06-13 Furnace wall of electric melting furnace for rock wool and method of constructing the furnace wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03141796A JP3131463B2 (en) 1991-06-13 1991-06-13 Furnace wall of electric melting furnace for rock wool and method of constructing the furnace wall

Publications (2)

Publication Number Publication Date
JPH04367518A true JPH04367518A (en) 1992-12-18
JP3131463B2 JP3131463B2 (en) 2001-01-31

Family

ID=15300342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03141796A Expired - Lifetime JP3131463B2 (en) 1991-06-13 1991-06-13 Furnace wall of electric melting furnace for rock wool and method of constructing the furnace wall

Country Status (1)

Country Link
JP (1) JP3131463B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106517A (en) * 2001-09-28 2003-04-09 Purometoron Technic Kk Furnace body structure
JP2004278862A (en) * 2003-03-13 2004-10-07 Fuji Electric Systems Co Ltd Reduction melting furnace of dc electric resistance type
WO2007020754A1 (en) * 2005-08-19 2007-02-22 Asahi Glass Company, Limited Molten glass conduit structure, and vacuum defoaming apparatus using said conduit structure
CN103608304A (en) * 2012-05-30 2014-02-26 旭硝子陶瓷株式会社 Crown structure
JP2018517562A (en) * 2015-03-24 2018-07-05 ベスビウス クルーシブル カンパニー Metallurgical vessel lined with constructed perforated structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106517A (en) * 2001-09-28 2003-04-09 Purometoron Technic Kk Furnace body structure
JP4674663B2 (en) * 2001-09-28 2011-04-20 プロメトロンテクニクス株式会社 Furnace structure
JP2004278862A (en) * 2003-03-13 2004-10-07 Fuji Electric Systems Co Ltd Reduction melting furnace of dc electric resistance type
WO2007020754A1 (en) * 2005-08-19 2007-02-22 Asahi Glass Company, Limited Molten glass conduit structure, and vacuum defoaming apparatus using said conduit structure
KR100922089B1 (en) * 2005-08-19 2009-10-16 아사히 가라스 가부시키가이샤 Molten glass conduit structure, and vacuum defoaming apparatus using said conduit structure
JP5109086B2 (en) * 2005-08-19 2012-12-26 旭硝子株式会社 Molten glass conduit structure and vacuum degassing apparatus using the conduit structure
CN103608304A (en) * 2012-05-30 2014-02-26 旭硝子陶瓷株式会社 Crown structure
CN103608304B (en) * 2012-05-30 2016-03-09 旭硝子陶瓷株式会社 Large vault canopy structure
JP2018517562A (en) * 2015-03-24 2018-07-05 ベスビウス クルーシブル カンパニー Metallurgical vessel lined with constructed perforated structure

Also Published As

Publication number Publication date
JP3131463B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
US8076255B2 (en) Castable refractory
CN110822895B (en) Fixed molten pool smelting furnace manufacturing process
JPH04367518A (en) Furnace wall of electric melting furnace for rockwool and construction of the wall
US2985442A (en) Refractory lining
CN107130080B (en) A kind of method for repairing and mending of external orifice of steel-tapping hole of converter brick breakage
CN209740966U (en) Hot-melting slag mineral wool electric furnace with condensing furnace lining
CN111778043A (en) Method for repairing tamping coke oven wall melting hole
US2336366A (en) Furnace
EP0729558B2 (en) Lining of a rotary furnace and brick used therefor
CN207231233U (en) A kind of refractory lining masonry construction for lifting Kaldo Furnace furnace life
JP4351715B2 (en) Tuna structure of melting furnace
CN109055639A (en) High thermal conductivity Long-life blast furnace hearth and bricking building method
US2174597A (en) Furnace wall and part thereof and method
WO1991017402A1 (en) Method of lining the side walls in a melting furnace
JP2000204405A (en) Operation of blast furnace
US2134248A (en) Furnace lining, especially of highly heated metallurgical furnaces and particularly to linings of furnace gas ports
KR100321033B1 (en) The Method for Repairing of Furnace's Tap Hole
JP4826323B2 (en) Refractory lining structure in rotary melting furnace and rotary melting furnace
JP6918377B1 (en) Metal molten metal furnace
CN110906740A (en) Ferronickel electric furnace with magnesium-carbon composite furnace lining
US3302352A (en) Glass furnace bottom wall construction
Coetzee et al. No tap-hole–No furnace
JPH0216982Y2 (en)
CN106288806B (en) metallurgical furnace
CN216513938U (en) Blast furnace tuyere large sleeve plugging device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11