JPH04367504A - Concentration of chlorine gas - Google Patents

Concentration of chlorine gas

Info

Publication number
JPH04367504A
JPH04367504A JP3141780A JP14178091A JPH04367504A JP H04367504 A JPH04367504 A JP H04367504A JP 3141780 A JP3141780 A JP 3141780A JP 14178091 A JP14178091 A JP 14178091A JP H04367504 A JPH04367504 A JP H04367504A
Authority
JP
Japan
Prior art keywords
chlorine
gas
column
adsorption
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3141780A
Other languages
Japanese (ja)
Other versions
JP2909254B2 (en
Inventor
Teruo Hirayama
平山 照夫
Shinji Takenaka
竹中 慎司
Kunihiro Yamada
国博 山田
Yoshitsugu Jinno
神野 嘉嗣
Hiroyuki Ito
洋之 伊藤
Isao Kikuchi
菊地 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP3141780A priority Critical patent/JP2909254B2/en
Publication of JPH04367504A publication Critical patent/JPH04367504A/en
Application granted granted Critical
Publication of JP2909254B2 publication Critical patent/JP2909254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To perform efficient desorption of chlorine at an industrially attainable vacuum degree by simultaneously carrying out the purging and evacuation in a desorption stage of a pressure-swing adsorption process. CONSTITUTION:A chlorine-containing feed gas is supplied to a compressor 2, pressurized to an adsorption pressure and introduced through a change-over valve 3 to a column 4a of adsorption columns 4a to 4c to effect the adsorption of chlorine to an adsorbent capable of preferentially adsorbing chlorine in the chlorine-containing gas. The obtained chlorine-free gas is passed through a change-over valve 5 and a valve 6 and exhausted by a blower 7. In the above process, a part of the treated gas discharged from the column 4a is passed through a flow-controlling mechanism 8 and a change-over valve 9 and introduced and charged into the column 4b. The column 4c is connected to a vacuum pump 10. A part of the above treated gas is introduced through the mechanism 8 and a change-over valve 16 into the column 4c and the adsorbent in the column is regenerated in an evacuated and purged state. When a prescribed amount of chlorine is adsorbed in the column 4a, the supply of the feed gas into the column is stopped and the valve 13 is operated to introduce the treated gas from the column 4b into the column 4a and regenerate the adsorbent in the same manner as the above process.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は圧力スイング吸着法を利
用する塩素の濃縮方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for concentrating chlorine using pressure swing adsorption.

【0002】0002

【従来の技術】塩素は非常に重要な工業中間原料で多く
の化学産業で使用されており、各所に塩素の分離のため
の設備が存在する。従来、塩素を含むガスより塩素を分
離する方法としては、ガスを加圧・冷却して液体塩素と
しガスより分離する方法や、塩素系有機溶剤に塩素を吸
収させた溶剤をストリッピングすることにより塩素を分
離する方法が知られている。
BACKGROUND OF THE INVENTION Chlorine is a very important industrial intermediate raw material and is used in many chemical industries, and equipment for separating chlorine exists in various places. Conventionally, methods for separating chlorine from chlorine-containing gas include pressurizing and cooling the gas to form liquid chlorine and separating it from the gas, or by stripping a chlorine-based organic solvent that absorbs chlorine. Methods of separating chlorine are known.

【0003】しかし前者の方法は、高圧ガスを取り扱う
ので高価で保守管理の面倒なガス圧縮機や冷凍設備など
が必要となり、特に塩素濃度の比較的低いガスより塩素
を分離する場合には非常な高圧または極低温による操作
となり設備費が増大する。
However, since the former method handles high-pressure gas, it requires expensive and difficult-to-maintain gas compressors and refrigeration equipment, and is extremely difficult to use, especially when separating chlorine from gases with relatively low chlorine concentrations. Operation under high pressure or cryogenic temperatures increases equipment costs.

【0004】また後者の方法は、通常溶剤として四塩化
炭素を使用するが、昨今のフロンガスによる環境問題に
より四塩化炭素の使用が禁止される方向にあり将来でも
有効な方法とは言えなくなった。
The latter method usually uses carbon tetrachloride as a solvent, but the use of carbon tetrachloride is now being prohibited due to recent environmental problems caused by fluorocarbon gas, so it can no longer be considered an effective method in the future.

【0005】[0005]

【発明が解決しようとする課題】塩素を含有するガスよ
り塩素を分離する方法の一つに圧力スイング吸着法があ
る。この分離法の脱着工程では吸着剤に吸着した塩素を
脱着させる際、高真空度減圧下で脱着を行う必要がある
。しかし、工業規模においてこの高真空度を達成するに
は、技術的、経済的に問題が残る。本発明は圧力スイン
グ吸着法の脱着工程をパージと減圧を同時に行うことに
より、工業規模で達成できる真空度で塩素を効率的に脱
着する方法を提供することにある。
One of the methods for separating chlorine from a chlorine-containing gas is the pressure swing adsorption method. In the desorption step of this separation method, when chlorine adsorbed on the adsorbent is desorbed, it is necessary to perform the desorption under high vacuum and reduced pressure. However, there remain technical and economical problems in achieving this high degree of vacuum on an industrial scale. An object of the present invention is to provide a method for efficiently desorbing chlorine at a degree of vacuum that can be achieved on an industrial scale by simultaneously performing purging and depressurization in the desorption step of the pressure swing adsorption method.

【0006】[0006]

【課題を解決するための手段】塩素ガスを分離する方法
として用いられる手段に圧力スイング吸着法がある。こ
の方法の脱着工程では吸着剤に吸着した塩素を脱着させ
る際、高真空度減圧で脱着を行う必要がある。しかし、
工業規模においてこの高真空度を達成するのは、技術的
、経済的に問題が残る。そこで本発明者らは、工業的に
望ましい減圧度で塩素を効率的に脱着することができな
いかという点について鋭意検討し、工業的な減圧度で塩
素を脱着することが可能であることを見出し本発明に至
った。
[Means for Solving the Problems] A pressure swing adsorption method is used as a method for separating chlorine gas. In the desorption step of this method, when desorbing chlorine adsorbed on the adsorbent, it is necessary to perform the desorption under high vacuum and reduced pressure. but,
Achieving this high degree of vacuum on an industrial scale remains technically and economically problematic. Therefore, the present inventors conducted extensive research into whether it was possible to efficiently desorb chlorine at an industrially desirable degree of vacuum, and found that it was possible to desorb chlorine at an industrially desirable degree of vacuum. This led to the present invention.

【0007】本発明の方法が適用される塩素を含有する
ガスには塩素以外のガスとしては、酸素・窒素・二酸化
炭素・一酸化炭素・水素・アルゴン・メタンなどの炭化
水素等が存在してよいが、圧力スイング吸着法でこれら
を含むガスから塩素を分離するには、これらのガスと吸
着剤との吸着親和力が塩素に対する場合より充分に差が
あるものを選択する必要がある。そこで本発明に使用す
る塩素の吸着剤としては、合成および天然ゼオライト、
非ゼオライト系多孔質酸性酸化物や活性炭および分子ふ
るいカーボンのような炭素質吸着剤が選択される。
[0007] In the chlorine-containing gas to which the method of the present invention is applied, gases other than chlorine include hydrocarbons such as oxygen, nitrogen, carbon dioxide, carbon monoxide, hydrogen, argon, and methane. However, in order to separate chlorine from gases containing these gases by pressure swing adsorption, it is necessary to select an adsorbent that has a sufficiently different adsorption affinity between these gases and adsorbent than for chlorine. Therefore, the chlorine adsorbents used in the present invention include synthetic and natural zeolites,
Carbonaceous adsorbents such as non-zeolitic porous acid oxides, activated carbon and molecular sieve carbon are selected.

【0008】たとえばゼオライトとしては、A型、X型
、Y型、L型、ZSM型、天然モルデナイトなどが挙げ
られるが、好ましくは、X型、Y型、L型、ZSM型で
あり、特に好ましくは高ケイ素含有のゼオライトである
[0008] Examples of zeolite include A type, is a high silicon content zeolite.

【0009】非ゼオライト系多孔質酸性酸化物としては
、アルミナ、シリカ、シリカアルミナ、チタニア、マグ
ネシア等が挙げられる。活性炭としては、果実殻系・木
材系・石炭系・石油系などが吸着剤として使用できが、
この中でも分子ふるいカーボン、ヤシ殻活性炭が好まし
い。これらの吸着剤に対しては塩素は前記の各ガスに比
較しより強い親和力を有しているので、これらの吸着剤
を充填した吸着塔に塩素を含有するガスを導入すると塩
素が他のガスより優先的に吸着されるので、吸着塔のガ
ス出口側では塩素濃度の低いガスが、時にはほとんど検
出されない程度までのガスが得られる。
[0009] Examples of the non-zeolitic porous acidic oxide include alumina, silica, silica alumina, titania, and magnesia. As activated carbon, fruit shell-based, wood-based, coal-based, petroleum-based, etc. can be used as adsorbents.
Among these, molecular sieve carbon and coconut shell activated carbon are preferred. Chlorine has a stronger affinity for these adsorbents than the above-mentioned gases, so when a gas containing chlorine is introduced into an adsorption tower filled with these adsorbents, the chlorine is mixed with other gases. Since it is adsorbed more preferentially, a gas with a low chlorine concentration, sometimes almost undetectable, can be obtained on the gas outlet side of the adsorption tower.

【0010】吸着剤に吸着される塩素を含有するガスの
塩素濃度には特に制限はない。塩素濃度が低い場合には
、脱着による再生操作までの吸着時間は長く取ることが
できる。なお、この吸着操作の操作圧力は後の塩素の脱
着操作より高い圧力にする。
[0010] There is no particular limit to the chlorine concentration of the chlorine-containing gas adsorbed by the adsorbent. When the chlorine concentration is low, the adsorption time before the regeneration operation by desorption can be taken longer. Note that the operating pressure for this adsorption operation is higher than that for the subsequent chlorine desorption operation.

【0011】操作温度は充填するゼオライトの種類・導
入ガスに含まれる塩素以外のガスの種類や経済的な問題
で決定される。たとえばY型ゼオライトを吸着剤として
使用し、同伴ガスに二酸化炭素が混合されている場合に
は、常温付近でも充分な塩素吸着を行なうことができる
。一方、充填物の劣化防止や設備の材質劣化を防止する
ために原料ガス中の水分は低い方が良く、1000pp
m以下が望ましい。
The operating temperature is determined by the type of zeolite to be filled, the type of gas other than chlorine contained in the introduced gas, and economic considerations. For example, when Y-type zeolite is used as an adsorbent and carbon dioxide is mixed in the accompanying gas, sufficient chlorine adsorption can be achieved even at around room temperature. On the other hand, in order to prevent the deterioration of the filling material and the deterioration of the material of the equipment, it is better to have a low moisture content in the raw material gas, 1000pp.
m or less is desirable.

【0012】吸着塔への塩素の吸着が進み、飽和状態に
近づいたところで原料としての塩素を含有するガスの吸
着塔への供給を停止する。続いて吸着塔の操作圧力を降
下させ、吸着している塩素およびその他のガスを脱着さ
せる。この時の脱着操作では真空ポンプ等による減圧脱
着とパージ脱着が同時に行われる。この減圧パ−ジ脱着
再生により、工業的に望ましい減圧度で吸着剤に強く吸
着される塩素を効率的に脱着することができる。また、
この脱着で必要なパージガス量は吸着剤に吸着している
塩素に比べわずかであり、塩素濃度への影響は小さい。 ここでのパージガスには吸着塔出側の処理済ガスを使用
しているが、経済的、設備的に有効であれば外部からパ
ージガスを用いてもよい。また、操作温度は任意である
が、基本的には吸着時の温度と同じにする方が経済的で
ある。もちろん経済的に有効であればいわゆるサーマル
スイング方式をとることも可能である。
When the adsorption of chlorine in the adsorption tower progresses and approaches saturation, the supply of the gas containing chlorine as a raw material to the adsorption tower is stopped. Subsequently, the operating pressure of the adsorption tower is lowered, and the adsorbed chlorine and other gases are desorbed. In the desorption operation at this time, depressurization desorption using a vacuum pump or the like and purge desorption are performed simultaneously. By this vacuum purge desorption regeneration, chlorine, which is strongly adsorbed by the adsorbent, can be efficiently desorbed at an industrially desirable degree of vacuum. Also,
The amount of purge gas required for this desorption is small compared to the chlorine adsorbed on the adsorbent, and the effect on the chlorine concentration is small. Although the treated gas from the output side of the adsorption tower is used as the purge gas here, purge gas may be used from outside if it is economically and economically effective. Further, although the operating temperature is arbitrary, it is basically more economical to set it to the same temperature as the temperature during adsorption. Of course, it is also possible to use a so-called thermal swing method if it is economically effective.

【0013】この脱着操作により導入ガスにおけるより
も塩素濃度の高いガスを得ることができるとともに塩素
を吸着した吸着剤は脱塩素されるので再生することがで
き、再び次の吸着操作を繰り返し行うことができる。次
に、工業規模におけるより具体的な形での実施の状態に
ついて説明する。図1はその形態を示す。
[0013] Through this desorption operation, it is possible to obtain a gas with a higher chlorine concentration than in the introduced gas, and since the adsorbent that has adsorbed chlorine is dechlorinated, it can be regenerated, and the next adsorption operation can be repeated again. Can be done. Next, the state of implementation in a more concrete manner on an industrial scale will be explained. FIG. 1 shows its form.

【0014】図1では塩素を含有する原料ガスは、管1
よりガス圧縮機2に送られ、ここで吸着圧力まで昇圧さ
れた後、切換弁3を経て、3基の吸着塔4a、4b、4
cの内の第1の吸着塔4aに送り込まれる。3基の吸着
塔4a、4b、4cには各々前出の塩素を優先的に吸着
する吸着剤が充填されており、加圧状態で導入された原
料ガス中の塩素が優先的に吸着され、吸着塔4aの出口
には塩素の含有率の低いガス、時にはほとんど検出でき
ない程度に低い塩素濃度のガス(以下処理済ガスとする
)が得られる。この脱塩素ガスは切換弁5、弁6を経て
ブロア7に送られ排出される。(吸着工程)。
In FIG. 1, the raw material gas containing chlorine is passed through pipe 1.
The gas is sent to the gas compressor 2, where it is increased in pressure to the adsorption pressure, and then passed through the switching valve 3 to the three adsorption towers 4a, 4b, 4.
It is sent to the first adsorption tower 4a of c. The three adsorption towers 4a, 4b, and 4c are each filled with an adsorbent that preferentially adsorbs chlorine, and the chlorine in the raw material gas introduced under pressure is preferentially adsorbed. At the outlet of the adsorption tower 4a, a gas with a low chlorine content, sometimes with a chlorine concentration so low as to be almost undetectable (hereinafter referred to as treated gas), is obtained. This dechlorinated gas is sent to a blower 7 via a switching valve 5 and a valve 6 and is discharged. (Adsorption process).

【0015】この時、第2の吸着塔4bでは、第1の吸
着塔4aから吐出した処理済ガスの一部が流量調節機構
8、切換弁9を経て第2の吸着塔4b内に導入され、こ
の塔内に圧力が処理済ガスによって高められる充圧工程
が実施されており、また第3の吸着塔4cではこの塔内
と真空ポンプ10が切換弁11,12aを経て接続され
、同時に吸着塔4aから吐出した処理済ガスの一部が流
量調節機構8、切換弁16を経て吸着塔4c内に導入さ
れ、この塔内の吸着剤が減圧パ−ジ状態で再生処理され
る再生工程が実施されている。
At this time, in the second adsorption tower 4b, a part of the treated gas discharged from the first adsorption tower 4a is introduced into the second adsorption tower 4b through the flow rate adjustment mechanism 8 and the switching valve 9. , a charging step is carried out in which the pressure inside this column is increased by the treated gas, and in the third adsorption column 4c, the inside of this column and a vacuum pump 10 are connected via switching valves 11 and 12a, and at the same time the adsorption A part of the treated gas discharged from the tower 4a is introduced into the adsorption tower 4c through the flow rate adjustment mechanism 8 and the switching valve 16, and the regeneration process is performed in which the adsorbent in this tower is regenerated in a reduced pressure purge state. It has been implemented.

【0016】そして所定量の塩素を吸着して飽和寸前と
なった吸着塔4aは、切換弁3の切り換えによって原料
ガスの導入が停止されると共に、切換弁13の切り換え
によって塔内が真空ポンプ10とが切換弁12aを経て
接続され、同時に吸着工程にある吸着塔4bから吐出し
た処理済ガスの一部が流量調節機構8、切換弁19を経
て吸着塔4a内に導入され、この塔内が減圧パージ状態
になり、吸着剤に吸着された塩素が脱着され吸着剤が再
生される(再生工程)。この再生工程で製品としての塩
素濃度の高いガスを真空ポンプ10の吐出口から得るこ
とができ、この塩素を高濃度に含有したガスは下流の消
費工程に送られる。
When the adsorption tower 4a has adsorbed a predetermined amount of chlorine and is on the verge of saturation, the switching valve 3 is switched to stop the introduction of raw material gas, and the switching valve 13 is switched to remove the inside of the tower from the vacuum pump 10. are connected via the switching valve 12a, and at the same time, a part of the treated gas discharged from the adsorption tower 4b which is in the adsorption process is introduced into the adsorption tower 4a via the flow rate adjustment mechanism 8 and the switching valve 19, and the inside of this tower is A reduced pressure purge state is entered, and the chlorine adsorbed on the adsorbent is desorbed and the adsorbent is regenerated (regeneration step). In this regeneration process, a gas with a high chlorine concentration as a product can be obtained from the discharge port of the vacuum pump 10, and this gas containing a high chlorine concentration is sent to a downstream consumption process.

【0017】この時第2の吸着塔4bでは、原料ガスが
切換弁14を経て導入され、この塔の出口から処理済ガ
スが吐出し、切換弁15、弁6を経てブロア7に送られ
排出される。また第3の吸着塔4cでは第2の吸着塔4
bから吐出される処理済ガスの一部が流量調節機構8、
切換弁16を経て導入され、この塔内の圧力が処理済ガ
スによって高められる充圧工程が実施されている。その
後第3の吸着塔4cでは切換弁17を経て原料ガスが導
入され、処理済ガスが切換弁18、弁6を経てブロア7
に送られ排出される。これと同時に第1の吸着塔4aで
は、第3の吸着塔4cから吐出される処理済ガスの一部
が流量調節機構8、切換弁19を経て導入され、この塔
内の圧力が処理済ガスによって高められる充圧工程が実
施されている。この時第2の吸着塔4bでは、切換弁1
4の切り換えにより原料ガスの導入が停止されると共に
、切換弁20の切り換えによって塔内が真空ポンプ10
とが切換弁12aを経て接続され、同時に吸着工程にあ
る吸着塔4cから吐出した処理済ガスの一部が流量調節
機構8、切換弁9を経て吸着塔4b内に導入され、この
塔内が減圧パージ状態になり、吸着剤に吸着された塩素
が脱着され、吸着剤が再生される。
At this time, the raw material gas is introduced into the second adsorption tower 4b through the switching valve 14, and the treated gas is discharged from the outlet of this tower, sent to the blower 7 through the switching valve 15 and valve 6, and discharged. be done. Further, in the third adsorption tower 4c, the second adsorption tower 4
A part of the processed gas discharged from b flows through the flow rate adjustment mechanism 8,
A charging step is carried out in which the pressure in this column is increased by the treated gas introduced via the switching valve 16. Thereafter, the raw material gas is introduced into the third adsorption tower 4c via the switching valve 17, and the treated gas passes through the switching valve 18 and valve 6, then blower 7.
is sent to and discharged. At the same time, in the first adsorption tower 4a, a part of the treated gas discharged from the third adsorption tower 4c is introduced through the flow rate adjustment mechanism 8 and the switching valve 19, and the pressure inside this tower is adjusted to the level of the treated gas. A charging process is carried out which increases the pressure by At this time, in the second adsorption tower 4b, the switching valve 1
By switching the switching valve 20, the introduction of the raw material gas is stopped, and by switching the switching valve 20, the inside of the column is switched to the vacuum pump 10.
are connected via the switching valve 12a, and at the same time, a part of the treated gas discharged from the adsorption tower 4c in the adsorption process is introduced into the adsorption tower 4b via the flow rate adjustment mechanism 8 and the switching valve 9, and the inside of this tower is A reduced pressure purge state is entered, chlorine adsorbed on the adsorbent is desorbed, and the adsorbent is regenerated.

【0018】以下同様に、この一連操作を3基の吸着塔
4a、4b、4cについて交互に操り返すことによって
塩素を含有する原料ガスより塩素を分離し、原料ガス中
の塩素濃度以上の塩素濃度のガスを連続的に得ることが
できる。
Similarly, by repeating this series of operations alternately for the three adsorption towers 4a, 4b, and 4c, chlorine is separated from the chlorine-containing raw material gas, and the chlorine concentration is higher than the chlorine concentration in the raw material gas. of gas can be obtained continuously.

【0019】[0019]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。 実施例1 合成Y型ゼオライト(ZEOCHEM製)を夫々40g
を充填したステンレス製の吸着塔3塔中の第1吸着塔に
25〜30℃にて塩素(15%)・二酸化炭素(15%
)・ヘリウム(70%)の組成のガスを5atmの圧力
に調節して200ml/minで12分間通気した。 この間第1吸着塔から流出する処理済ガスをガスクロマ
トグラフ分析を行いガス組成を分析したところ塩素ガス
は100〜300ppm検出された。通気完了後、原料
ガスの供給を停止し再生工程に移る。再生は真空ポンプ
で第1吸着塔100mmHg  abs.の圧力におき
、同時に吸着工程にある第2吸着塔出側から得られる処
理済ガスの一部(5ml/min)を用いて第1吸着塔
へ吸着時と逆方向のガス流れでパージを5分間行い、塩
素ガスを脱着させた。脱着したガスを分析したところ塩
素濃度77%であり、この時吸着塔内の吸着ガス回収率
は99%であった。この脱着後の吸着カラムに再び初め
と同様の組成のガスを同条件で通気したところ、やはり
12分間は流出するガスの塩素濃度は100〜300p
pmであった。
[Examples] Next, the present invention will be explained in more detail with reference to Examples. Example 1 40g each of synthetic Y-type zeolite (manufactured by ZEOCHEM)
Chlorine (15%) and carbon dioxide (15%) were added to the first adsorption tower of three stainless steel adsorption towers filled with
)・Helium (70%) was adjusted to a pressure of 5 atm, and aerated at 200 ml/min for 12 minutes. During this time, the treated gas flowing out from the first adsorption tower was subjected to gas chromatography analysis to analyze the gas composition, and 100 to 300 ppm of chlorine gas was detected. After completion of ventilation, the supply of raw material gas is stopped and the process moves to the regeneration process. Regeneration is carried out using a vacuum pump at 100 mmHg abs. At a pressure of This was carried out for 1 minute to desorb the chlorine gas. Analysis of the desorbed gas revealed that the chlorine concentration was 77%, and the recovery rate of the adsorbed gas in the adsorption tower was 99%. When gas with the same composition as the initial one was passed through the adsorption column after desorption under the same conditions, the chlorine concentration of the gas flowing out for 12 minutes was still 100 to 300 p.
It was pm.

【0020】実施例2 合成Y型ゼオライト(ZEOCHEM製)を夫々40g
を充填したステンレス製の吸着塔3塔中の第1吸着塔に
25〜30℃にて塩素(15%)・二酸化炭素(15%
)・ヘリウム(70%)の組成のガスを5atmの圧力
に調節して200ml/minで12分間通気した。 この間第1吸着塔から流出する処理済ガスをガスクロマ
トグラフ分析を行いガス組成を分析したところ塩素ガス
は100〜300ppm検出された。
Example 2 40g of each synthetic Y-type zeolite (manufactured by ZEOCHEM)
Chlorine (15%) and carbon dioxide (15%) were added to the first adsorption tower of three stainless steel adsorption towers filled with
)・Helium (70%) was adjusted to a pressure of 5 atm, and aerated at 200 ml/min for 12 minutes. During this time, the treated gas flowing out from the first adsorption tower was subjected to gas chromatography analysis to analyze the gas composition, and 100 to 300 ppm of chlorine gas was detected.

【0021】通気完了後、原料ガスの供給を停止し再生
工程に移る。再生は真空ポンプで第1吸着塔を200m
mHg  abs.の圧力におき、同時に吸着工程にあ
る第2吸着塔出側から得られる処理済ガスの一部(5m
l/min)を用いて第1吸着塔へ吸着時と逆方向のガ
ス流れでパ−ジを5分間行い、塩素ガスを脱着させた。 脱着したガスを分析したところ塩素濃度67%であり、
この吸着塔内の吸着ガス回収率は80%であった。この
脱着後の吸着カラムに再び初めと同様の組成のガスを同
条件で通気したところ、やはり12分間は流出するガス
の塩素濃度は100〜300ppmであった。
[0021] After completion of ventilation, the supply of raw material gas is stopped and the process moves to the regeneration process. For regeneration, move the first adsorption tower 200m using a vacuum pump.
mHg abs. A portion of the treated gas (5 m
1/min) to the first adsorption tower for 5 minutes with a gas flow in the opposite direction to that during adsorption to desorb chlorine gas. Analysis of the desorbed gas revealed a chlorine concentration of 67%.
The recovery rate of adsorbed gas in this adsorption tower was 80%. When a gas having the same composition as the initial one was again passed through the adsorption column after desorption under the same conditions, the chlorine concentration of the gas flowing out for 12 minutes was still 100 to 300 ppm.

【0022】実施例3 合成13X型ゼオライト(富士デビソン製)を夫々40
gを充填したステンレス製の吸着塔3塔中の第1吸着塔
に60℃にて、塩素(15%)・二酸化炭素(15%)
・ヘリウム(70%)の組成のガスを5atmの圧力に
調節して200ml/minで6分間通気した。この間
第1吸着塔から流出する処理済ガスをガスクロマトグラ
フ分析を行いガス組成を分析したところ、塩素ガスは2
00〜500ppm検出された。
Example 3 Synthetic 13X type zeolite (manufactured by Fuji Davison) was used at 40
At 60°C, chlorine (15%) and carbon dioxide (15%) were added to the first adsorption tower of three stainless steel adsorption towers filled with
- A gas having a composition of helium (70%) was adjusted to a pressure of 5 atm and aerated at 200 ml/min for 6 minutes. During this time, gas chromatography analysis of the treated gas flowing out from the first adsorption tower was conducted to analyze the gas composition, and it was found that chlorine gas was
00 to 500 ppm was detected.

【0023】通気完了後、原料ガスの供給を停止し再生
工程に移る。再生は真空ポンプで第1吸着塔を100m
mHg  abs.の圧力におき、同時に吸着工程にあ
る第2吸着塔出側から得られる処理済ガスに一部(5m
l/min)を用いて、第1吸着塔へ吸着時と逆方向の
ガス流れでパージを5分間行い、塩素ガスを脱着させた
。 脱着したガスを分析したところ塩素濃度71%であり、
この時吸着塔内の吸着ガス回収率は99%であった。こ
の脱着後の吸着カラムに再び初めと同様の組成のガスを
同条件で通気したところ、やはり6分間は流出するガス
の塩素濃度は200〜500ppmであった。
[0023] After completion of ventilation, the supply of raw material gas is stopped and the regeneration process is started. For regeneration, move the first adsorption tower 100m using a vacuum pump.
mHg abs. At the same time, a portion of the treated gas (5 m
1/min), the first adsorption tower was purged for 5 minutes with a gas flow in the opposite direction to that during adsorption, and chlorine gas was desorbed. Analysis of the desorbed gas revealed a chlorine concentration of 71%.
At this time, the recovery rate of adsorbed gas in the adsorption tower was 99%. When a gas having the same composition as the initial one was again passed through the adsorption column after desorption under the same conditions, the chlorine concentration of the gas flowing out for 6 minutes was 200 to 500 ppm.

【0024】実施例4 ガス吸着用活性炭PCB(東洋カルゴン製)を夫々30
g充填したステンレス製の吸着塔3塔中の第1吸着塔に
60℃にて塩素(15%)・二酸化炭素(15%)・ヘ
リウム(70%)の組成のガスを5atmの圧力に調節
して200ml/minで6分間通気した。この間第1
吸着塔から流出する処理済ガスをガスクロマトグラフ分
析を行いガス組成の分析したところ塩素ガスは300〜
800ppm検出された。通気完了後原料ガスの供給を
停止し再生工程に移る。再生は真空ポンプで第1吸着塔
を100mmHg  abs.の圧力におき、同時に吸
着工程にある第2吸着塔出側から得られる処理済ガスの
一部(5ml/min)を用いて第1吸着塔へ吸着時と
逆方向のガス流れでパ−ジを5分間行い、塩素ガスを脱
着させた。脱着したガスを分析したところ塩素濃度71
%であり、この時吸着塔内の吸着ガス回収率は99%で
あった。この脱着後の吸着カラムに再び初めと同様の組
成のガスを同条件で通気したところ、やはり6分間は流
出するガスの塩素濃度は300〜800ppmであった
Example 4 Activated carbon PCB for gas adsorption (manufactured by Toyo Calgon) was used at 30% each.
A gas having a composition of chlorine (15%), carbon dioxide (15%), and helium (70%) was adjusted to a pressure of 5 atm at 60°C in the first adsorption tower of three stainless steel adsorption towers filled with g. and aerated at 200 ml/min for 6 minutes. During this time, the first
Gas chromatography analysis of the treated gas flowing out from the adsorption tower revealed that the gas composition was 300~300 chlorine gas.
800 ppm was detected. After completion of ventilation, the supply of raw material gas is stopped and the process moves to the regeneration process. For regeneration, the first adsorption tower was heated to 100 mmHg abs. using a vacuum pump. At a pressure of was carried out for 5 minutes to desorb chlorine gas. Analysis of the desorbed gas revealed a chlorine concentration of 71.
%, and the recovery rate of adsorbed gas in the adsorption tower was 99%. When a gas having the same composition as the initial one was again passed through the adsorption column after desorption under the same conditions, the chlorine concentration of the gas flowing out for 6 minutes was 300 to 800 ppm.

【0025】実施例5 分子ふるいカーボンMSC(武田薬品製)を夫々30g
を充填したステンレス製の吸着塔3塔中の第1吸着塔に
60℃にて塩素(15%)・二酸化炭素(15%)・ヘ
リウム(70%)の組成のガスを5atmの圧力に調節
して、200ml/minで6分間通気した。この間第
1吸着塔から流出する処理済ガスをガスクロマトグラフ
分析を行いガス組成を分析したところ、塩素ガスは20
0〜500ppm検出された。
Example 5 30g of each molecular sieve carbon MSC (manufactured by Takeda Pharmaceutical)
A gas having a composition of chlorine (15%), carbon dioxide (15%), and helium (70%) was adjusted to a pressure of 5 atm at 60°C in the first adsorption tower of three stainless steel adsorption towers filled with and aerated at 200 ml/min for 6 minutes. During this time, gas chromatography analysis of the treated gas flowing out from the first adsorption tower was conducted to analyze the gas composition, and it was found that chlorine gas was
0 to 500 ppm was detected.

【0026】通気完了後、原料ガスの供給を停止し再生
工程に移る。再生は真空ポンプで第1吸着塔を100m
mHg  abs.の圧力におき、同時に吸着工程にあ
る第2吸着塔出側から得られる処理済ガスの一部(5m
l/min)を用いて第1吸着塔へ吸着時と逆方向のガ
ス流れでパージを5分間行い、塩素ガスを脱着させた。 脱着したガスを分析したところ塩素濃度79%であり、
この時吸着塔内の吸着ガス回収率は99%であった。こ
の脱着後の吸着塔に再び初めと同様の組成のガスを同条
件で通気したところ、やはり6分間は流出するガスの塩
素濃度は200〜500ppmであった。
[0026] After completion of ventilation, the supply of raw material gas is stopped and the process moves to the regeneration process. For regeneration, move the first adsorption tower 100m using a vacuum pump.
mHg abs. A portion of the treated gas (5 m
1/min) to the first adsorption tower for 5 minutes with a gas flow in the opposite direction to that during adsorption to desorb chlorine gas. Analysis of the desorbed gas revealed that the chlorine concentration was 79%.
At this time, the recovery rate of adsorbed gas in the adsorption tower was 99%. When gas having the same composition as the initial one was again passed through the adsorption tower after desorption under the same conditions, the chlorine concentration of the gas flowing out for 6 minutes was 200 to 500 ppm.

【0027】比較例1 合成Y型ゼオライト(ZEOCHEM製)を夫々40g
を充填したステンレス製の吸着塔3塔中の第1吸着塔に
25〜30℃にて塩素(15%)・二酸化炭素(15%
)・ヘリウム(70%)の組成のガスを5atmの圧力
に調節して200ml/minで12分間通気した。 この間第1吸着塔から流出する処理済ガスをガスクロマ
トグラフ分析を行いガス組成を分析したところ、塩素ガ
スは100〜300ppm検出された。
Comparative Example 1 40g of each synthetic Y-type zeolite (manufactured by ZEOCHEM)
Chlorine (15%) and carbon dioxide (15%) were added to the first adsorption tower of three stainless steel adsorption towers filled with
)・Helium (70%) was adjusted to a pressure of 5 atm, and aerated at 200 ml/min for 12 minutes. During this time, the treated gas flowing out from the first adsorption tower was subjected to gas chromatography analysis to analyze the gas composition, and 100 to 300 ppm of chlorine gas was detected.

【0028】通気完了後、原料ガスの供給を停止し、真
空ポンプで第1吸着塔を100mmHg  abs・の
圧力に5分間おき、塩素ガスを脱着させた。吸着したガ
スを分析したところ塩素濃度62%であり、この時吸着
塔内の吸着ガス回収率は62%であった。この脱着後の
吸着塔に再び初めと同様の組成のガスを同条件で通気し
たところ、やはり12分間は流出するガスの塩素濃度は
100〜300ppmであった。
After completion of ventilation, the supply of raw material gas was stopped, and the first adsorption tower was kept at a pressure of 100 mmHg abs· for 5 minutes using a vacuum pump to desorb chlorine gas. Analysis of the adsorbed gas revealed that the chlorine concentration was 62%, and the recovery rate of the adsorbed gas in the adsorption tower was 62%. When a gas having the same composition as the initial one was again passed through the adsorption tower after desorption under the same conditions, the chlorine concentration of the gas flowing out for 12 minutes was 100 to 300 ppm.

【0029】[0029]

【発明の効果】本発明は圧力スインガ吸着法を使用し、
特に減圧パージにより吸着剤に強く吸着する塩素を効率
よく脱着し塩素を含有するガスより塩素を容易に分離・
濃縮する方法を提供するもので、その工業的価値は非常
に大きい。本発明は塩素を利用する設備において付属設
備として実施される。
[Effect of the invention] The present invention uses a pressure swinger adsorption method,
In particular, vacuum purge effectively desorbs chlorine, which strongly adsorbs to the adsorbent, and easily separates chlorine from chlorine-containing gas.
It provides a method of concentration and has great industrial value. The present invention is implemented as an auxiliary equipment in equipment that utilizes chlorine.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を特に連続的に行うために複数の吸着塔
を用いる設備の模式図である。
FIG. 1 is a schematic diagram of an installation using a plurality of adsorption towers for carrying out the invention, particularly in a continuous manner.

【符号の説明】[Explanation of symbols]

1.  原料ガス供給管 2.  圧縮機 4a.4b.4c.  吸着塔 6.  弁 7.  ブロア 8.  流量調節機構 10.  真空ポンプ 1. Raw material gas supply pipe 2. Compressor 4a. 4b. 4c. Adsorption tower 6. Valve 7. Blower 8. Flow rate adjustment mechanism 10. Vacuum pump

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  塩素を吸着しうる吸着剤を充填した吸
着塔に、塩素を含有するガスを導入して塩素を吸着させ
、その後ガスの導入を停止し、吸着工程が終了した吸着
塔にパージガスを導入しつつ同時にガス導入時よりも低
い圧力下で脱着を行ない導入ガスの塩素濃度より高い塩
素濃度のガスを得るとともに吸着剤を再生することを特
徴とする塩素の濃縮方法。
Claim 1: A gas containing chlorine is introduced into an adsorption tower filled with an adsorbent capable of adsorbing chlorine to adsorb chlorine, and then the introduction of gas is stopped, and a purge gas is added to the adsorption tower after the adsorption process has been completed. A method for concentrating chlorine, which is characterized by introducing gas and simultaneously performing desorption under a pressure lower than that at the time of gas introduction to obtain a gas with a chlorine concentration higher than the chlorine concentration of the introduced gas and regenerating an adsorbent.
【請求項2】  塩素を吸着しうる吸着剤がゼオライト
である請求項1記載の方法。
2. The method according to claim 1, wherein the adsorbent capable of adsorbing chlorine is zeolite.
【請求項3】  塩素を吸着しうる吸着剤が非ゼオライ
ト系多孔質酸性酸化物である請求項1記載の方法。
3. The method according to claim 1, wherein the adsorbent capable of adsorbing chlorine is a non-zeolitic porous acidic oxide.
【請求項4】  塩素を吸着しうる吸着剤が活性炭であ
る請求項1記載の方法。
4. The method according to claim 1, wherein the adsorbent capable of adsorbing chlorine is activated carbon.
【請求項5】  活性炭が分子ふるいカーボンである請
求項4記載の方法。
5. The method according to claim 4, wherein the activated carbon is molecular sieve carbon.
JP3141780A 1991-06-13 1991-06-13 How to concentrate chlorine gas Expired - Lifetime JP2909254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3141780A JP2909254B2 (en) 1991-06-13 1991-06-13 How to concentrate chlorine gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3141780A JP2909254B2 (en) 1991-06-13 1991-06-13 How to concentrate chlorine gas

Publications (2)

Publication Number Publication Date
JPH04367504A true JPH04367504A (en) 1992-12-18
JP2909254B2 JP2909254B2 (en) 1999-06-23

Family

ID=15300000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3141780A Expired - Lifetime JP2909254B2 (en) 1991-06-13 1991-06-13 How to concentrate chlorine gas

Country Status (1)

Country Link
JP (1) JP2909254B2 (en)

Also Published As

Publication number Publication date
JP2909254B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JP3072129B2 (en) How to concentrate chlorine gas
EP1334758A1 (en) Gas separating and purifying method and its apparatus
JPH07265635A (en) Method for selective separation of component relatively strong in adsorbing power from component relatively weak in adsorbing power in feed material gas mixture
CA1188231A (en) Repressurization for pressure swing adsorption system
JPS6026571B2 (en) Method and apparatus for increasing the proportion of component gases in a gas mixture
JPH0429601B2 (en)
JP3902416B2 (en) Gas separation method
JP2007130611A (en) Pressure fluctuation adsorption type gas separation process and apparatus
EP3504157B1 (en) Cryogenic adsorption process for xenon recovery
JPS6272504A (en) Production of nitrogen having high purity
US6017382A (en) Method of processing semiconductor manufacturing exhaust gases
EP0354259B1 (en) Improved pressure swing adsorption process
JP4481112B2 (en) Pressure fluctuation adsorption type gas separation method and apparatus
US5626033A (en) Process for the recovery of perfluorinated compounds
JP2994843B2 (en) Recovery method of low concentration carbon dioxide
JP3080687B2 (en) How to concentrate chlorine gas
JPS621766B2 (en)
JP2909254B2 (en) How to concentrate chlorine gas
CA1176994A (en) Repressurization for pressure swing adsorption system
JPS621767B2 (en)
JP2909253B2 (en) How to concentrate chlorine gas
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
JPH05301011A (en) Method for concentrating gaseous hydrogen chloride
JP2587334B2 (en) Method of separating CO gas not containing CH4
US20050252374A1 (en) Adsorbent bed and process for removal of propane from feed streams

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13