JPH04367503A - Concentration of chlorine gas - Google Patents

Concentration of chlorine gas

Info

Publication number
JPH04367503A
JPH04367503A JP3141776A JP14177691A JPH04367503A JP H04367503 A JPH04367503 A JP H04367503A JP 3141776 A JP3141776 A JP 3141776A JP 14177691 A JP14177691 A JP 14177691A JP H04367503 A JPH04367503 A JP H04367503A
Authority
JP
Japan
Prior art keywords
chlorine
gas
adsorption
adsorption tower
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3141776A
Other languages
Japanese (ja)
Other versions
JP2909253B2 (en
Inventor
Teruo Hirayama
平山 照夫
Shinji Takenaka
竹中 慎司
Kunihiro Yamada
国博 山田
Yoshitsugu Jinno
神野 嘉嗣
Hiroyuki Ito
洋之 伊藤
Isao Kikuchi
菊地 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP3141776A priority Critical patent/JP2909253B2/en
Publication of JPH04367503A publication Critical patent/JPH04367503A/en
Application granted granted Critical
Publication of JP2909253B2 publication Critical patent/JP2909253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To concentrate chlorine in high concentration while preventing the leakage of chlorine from the system and effectively utilizing an adsorbent by connecting adsorption columns for a pressure-swing adsorption process in the form of cascade and utilizing the equilibrium adsorption state. CONSTITUTION:A chlorine-containing feed gas is supplied to a compressor 2, pressurized to an adsorption pressure and introduced through a change-over valve 3 into a column 4a among the adsorption columns 4a to 4d until the column reaches equilibrium state with chlorine. Chlorine is adsorbed by this process to an adsorbent which preferentially adsorbs chlorine in the column. The treated gas is transferred through change-over valves 25, 26 to the column 4b to adsorb the residual chlorine and the obtained gas (exhaust gas) having undetectably low chlorine concentration is exhausted with a blower 7. In the above process, a part of the gas exhausted from the column 4b is passed through a flow-controlling mechanism 8 and a change-over valve 16 and introduced and charged into the column 4c. The column 4d is connected to a vacuum pump 10 and the adsorbent in the column is regenerated in an evacuated state. When a prescribed amount of chlorine is adsorbed in the column 4a, the supply of the feed gas into the column is stopped and the valve 13 is operated to evacuate the column and regenerate the adsorbent.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は圧力スイング吸着法を利
用する塩素の濃縮方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for concentrating chlorine using pressure swing adsorption.

【0002】0002

【従来の技術】塩素は非常に重要な工業中間原料で多く
の化学産業で使用されており、各所に塩素の分離のため
の設備が存在する。従来、塩素を含むガスより塩素を分
離する方法としては、ガスを加圧・冷却して液体塩素と
しガスより分離する方法や、塩素系有機溶剤に塩素を吸
収させた溶剤をストリッピングすることにより塩素を分
離する方法が知られている。
BACKGROUND OF THE INVENTION Chlorine is a very important industrial intermediate raw material and is used in many chemical industries, and equipment for separating chlorine exists in various places. Conventionally, methods for separating chlorine from chlorine-containing gas include pressurizing and cooling the gas to form liquid chlorine and separating it from the gas, or by stripping a chlorine-based organic solvent that absorbs chlorine. Methods of separating chlorine are known.

【0003】しかし、前者の方法は高圧ガスを取り扱う
ので、高価で保守管理の面倒なガス圧縮機や冷凍設備な
どが必要となり、特に塩素濃度の比較的低いガスより塩
素を分離する場合には、非常な高圧または極低温による
操作となり、設備費が増大する。また後者の方法は、通
常溶剤として四塩化炭素を使用するが、昨今のフロンガ
スによる環境問題により四塩化炭素の使用が禁止される
方向にあり、将来有効な方法と言えなくなった。
However, since the former method handles high-pressure gas, it requires gas compressors and refrigeration equipment that are expensive and difficult to maintain.Especially when separating chlorine from gas with a relatively low chlorine concentration, Operation requires extremely high pressure or extremely low temperatures, increasing equipment costs. The latter method usually uses carbon tetrachloride as a solvent, but due to recent environmental problems caused by fluorocarbon gas, the use of carbon tetrachloride is being banned, and it can no longer be considered an effective method in the future.

【0004】0004

【発明が解決しようとする課題】塩素を含有するガスよ
り塩素を分離する方法の一つに圧力スイング吸着法(以
下、PSA法と略する)がある。しかし、この分離法に
は次のような問題点がある。 (1)吸着塔が塩素で平衡吸着状態に達する前にガス供
給を停止するため、吸着塔上部の吸着剤の一部は未使用
のままである。 (2)吸着塔が塩素で平衡吸着状態に達する前にガス供
給を停止するため、吸着塔上部の塩素未吸着の吸着剤に
他成分のガスが吸着し塩素濃度が低下する。 (3)吸着塔出口側からわずかではあるが塩素がもれる
。 本発明の目的は上記の問題点がなく、塩素を含有するガ
スより塩素を効率的に分離し濃縮する方法を提供するこ
とにある。
One of the methods for separating chlorine from a chlorine-containing gas is the pressure swing adsorption method (hereinafter abbreviated as PSA method). However, this separation method has the following problems. (1) Since gas supply is stopped before the adsorption tower reaches an equilibrium adsorption state with chlorine, a portion of the adsorbent at the top of the adsorption tower remains unused. (2) Since gas supply is stopped before the adsorption tower reaches an equilibrium adsorption state with chlorine, gases of other components are adsorbed to the adsorbent in the upper part of the adsorption tower, which has not yet adsorbed chlorine, and the chlorine concentration decreases. (3) A small amount of chlorine leaks from the adsorption tower outlet side. An object of the present invention is to provide a method for efficiently separating and concentrating chlorine from a chlorine-containing gas without the above-mentioned problems.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記の問
題点を有しない塩素ガスの濃縮方法について鋭意検討し
、塩素を吸着しうる吸着剤を充填した吸着塔をカスケー
ド連結し、塩素を含有する原料ガスを第1吸着塔が塩素
で平衡吸着状態に達するまで導入して塩素を吸着させ、
その間第2吸着塔は第1吸着塔出側口から流出する塩素
を僅かに含有するガス中の塩素を吸着することにより、
吸着工程の吸着塔から塩素をもらさずに吸着させ、その
後脱着することにより高濃度の塩素濃縮が可能であるこ
とを見出し、本発明に至った。
[Means for Solving the Problems] The present inventors have made extensive studies on a method for concentrating chlorine gas that does not have the above-mentioned problems, and have developed a method for concentrating chlorine gas by cascading adsorption towers filled with an adsorbent capable of adsorbing chlorine. Introducing a raw material gas containing chlorine into the first adsorption tower until it reaches an equilibrium adsorption state with chlorine, adsorbing chlorine,
Meanwhile, the second adsorption tower adsorbs chlorine in the gas containing a small amount of chlorine flowing out from the outlet of the first adsorption tower.
It was discovered that it is possible to concentrate chlorine to a high concentration by adsorbing chlorine without losing it from the adsorption tower in the adsorption step and then desorbing it, leading to the present invention.

【0006】すなわち、  塩素を吸着しうる吸着剤を
充填した吸着塔をカスケード連結し、塩素を含有する原
料ガスを第1吸着塔が塩素で平衡吸着状態に達するまで
導入して塩素を吸着させ、その間第2吸着塔は第1吸着
塔出口側から流出する塩素を僅かに含有するガス中の塩
素を吸着することにより、吸着工程の吸着塔から塩素を
もらさずに吸着し、、第1吸着塔が塩素で平衡吸着状態
に達した後ガスの導入を停止し、ガス導入時よりも低い
圧力で脱着を行い、導入ガスの塩素濃度より高い塩素濃
度のガスを得るとともに吸着剤を再生することを特徴と
する塩素ガスの濃縮方法である。
That is, adsorption towers filled with an adsorbent capable of adsorbing chlorine are connected in cascade, and a raw material gas containing chlorine is introduced until the first adsorption tower reaches an equilibrium adsorption state with chlorine to adsorb chlorine. Meanwhile, the second adsorption tower adsorbs chlorine in the gas containing a small amount of chlorine flowing out from the outlet side of the first adsorption tower, thereby adsorbing chlorine without leaking chlorine from the adsorption tower in the adsorption process. After reaching an equilibrium adsorption state with chlorine, the introduction of gas is stopped, and desorption is performed at a lower pressure than when the gas was introduced to obtain a gas with a chlorine concentration higher than that of the introduced gas and to regenerate the adsorbent. This is a unique method for concentrating chlorine gas.

【0007】本発明の方法が適用される塩素を含有する
ガスには塩素以外のガスとして、酸素・窒素・二酸化炭
素・一酸化炭素・水素・アルゴン・メタンなどの炭化水
素等が存在してよいが、圧力スイング吸着法でこれらを
含むガスから塩素を分離するには、これらのガスと吸着
剤との吸着親和力が塩素に対する場合より充分に差があ
るものを選択する必要がある。
[0007] In the chlorine-containing gas to which the method of the present invention is applied, other gases than chlorine may include hydrocarbons such as oxygen, nitrogen, carbon dioxide, carbon monoxide, hydrogen, argon, and methane. However, in order to separate chlorine from gases containing these gases using the pressure swing adsorption method, it is necessary to select an adsorbent that has a sufficiently different adsorption affinity between these gases and adsorbent than for chlorine.

【0008】そこで本発明の方法に使用する塩素の吸着
剤としては、合成および天然ゼオライト、非ゼオライト
系多孔質酸性酸化物や活性炭および分子ふるいカーボン
のような炭素質吸着剤が選択される。たとえばゼオライ
トとしてはA型、X型、Y型、L型、ZSM型、天然モ
ルデナイトなどが挙げられるが、好ましくはX型、Y型
、L型、ZSM型であり、特に好ましくは高ケイ素含有
のゼオライトである。非ゼオライト系多孔質酸性酸化物
としては、アルミナ、シリカ、シリカアルミナ、チタニ
ア、マグネシア等があげられる。活性炭としては果実殻
活性炭が好ましい。
Therefore, as the chlorine adsorbent used in the method of the present invention, synthetic and natural zeolites, non-zeolitic porous acid oxides, and carbonaceous adsorbents such as activated carbon and molecular sieve carbon are selected. For example, zeolites include A-type, It is zeolite. Examples of the non-zeolitic porous acidic oxide include alumina, silica, silica alumina, titania, magnesia, and the like. The activated carbon is preferably fruit shell activated carbon.

【0009】これらの吸着剤に対しては、塩素は前記の
ガスに比較しより強い親和力を有しているので、これら
の吸着剤を充填した吸着塔に塩素を含有するガスを導入
すると塩素が他のガスよりも優先的に吸着されるので、
吸着塔のガス出口側では塩素濃度の低いガスが、時には
ほとんど検出されない程度までのガスが得られる。
Chlorine has a stronger affinity for these adsorbents than the above-mentioned gases, so when a gas containing chlorine is introduced into an adsorption tower filled with these adsorbents, chlorine is released. Because it is preferentially adsorbed over other gases,
On the gas outlet side of the adsorption tower, a gas with a low chlorine concentration, sometimes to an almost undetectable level, is obtained.

【0010】本発明の方法では以下の点でPSA法の欠
点をカバーしている。従来のPSA法による塩素濃縮で
は、吸着塔への塩素の吸着が進み、平衡吸着状態になる
前に塩素を含有する原料ガスの吸着塔への供給を停止す
る。これは吸着塔に塩素が平衡吸着状態に近ずくまで原
料ガスを供給すると吸着塔出口側から塩素が破過してし
まい、この時に破過する塩素を回収するための除去塔等
の設備が新たに必要となるためである。平衡吸着状態前
に原料ガスの供給を停止した吸着塔内には塩素が吸着し
ていないボイド部が生じ、この部分に他のガスが残留す
る。従って再生時に得られる塩素はこの残留ガスのため
十分な濃度にはならない。
The method of the present invention overcomes the drawbacks of the PSA method in the following points. In chlorine concentration using the conventional PSA method, the adsorption of chlorine in the adsorption tower progresses, and the supply of the raw material gas containing chlorine to the adsorption tower is stopped before an equilibrium adsorption state is reached. This is because if feed gas is supplied to the adsorption tower until chlorine approaches an equilibrium adsorption state, chlorine will break through from the outlet of the adsorption tower. This is because it is necessary. In the adsorption tower where the supply of raw material gas is stopped before the equilibrium adsorption state is reached, a void portion is created in which chlorine is not adsorbed, and other gases remain in this portion. Therefore, the chlorine obtained during regeneration does not have a sufficient concentration due to this residual gas.

【0011】これに対し本発明の方法では、吸着塔をカ
スケード連結し、第1吸着塔が平衡状態になるまで塩素
を吸着させることにより、その間に破過した塩素は第2
吸着塔で吸着させる。このため吸着工程の系外に塩素が
もれる心配がない。さらに第1吸着塔では塩素で平衡吸
着状態になるまで原料ガスを供給するため、吸着塔内に
ボイド部がなくなり塩素以外のガスの残留はわずかとな
り再生時に得られる塩素は高濃度のものとなる。また平
衡吸着を行うことにより、吸着剤の未吸着部分がなくな
り吸着剤を有効に利用できる。
In contrast, in the method of the present invention, adsorption towers are connected in a cascade, and chlorine is adsorbed until the first adsorption tower reaches an equilibrium state, so that the chlorine that has broken through during that time is absorbed into the second adsorption tower.
Adsorb it in an adsorption tower. Therefore, there is no risk of chlorine leaking outside the adsorption process system. Furthermore, in the first adsorption tower, the raw material gas is supplied until an equilibrium adsorption state is reached with chlorine, so there are no voids in the adsorption tower, and only a small amount of gas other than chlorine remains, resulting in high concentration of chlorine obtained during regeneration. . Furthermore, by performing equilibrium adsorption, there is no unadsorbed portion of the adsorbent, and the adsorbent can be used effectively.

【0012】本発明方法の特徴は、平衡吸着状態を利用
した圧力スイング吸着法であるが、ここで述べる平衡吸
着状態とは、吸着剤へのガス吸着が進み平衡濃度に到達
後には吸着量の増加はなく吸着量は一定となる状態のこ
とであり、ある吸着温度および圧力条件下での平衡吸着
量は吸着剤により一定である(図1参照)。
The feature of the method of the present invention is a pressure swing adsorption method that utilizes an equilibrium adsorption state. The equilibrium adsorption state described here means that gas adsorption to the adsorbent progresses and after reaching the equilibrium concentration, the amount of adsorption decreases. This is a state in which the adsorption amount remains constant without increasing, and the equilibrium adsorption amount under a certain adsorption temperature and pressure condition is constant depending on the adsorbent (see FIG. 1).

【0013】吸着剤に吸着させる塩素を含有するガスの
塩素濃度には特に制限はないが、通常5〜80%塩素濃
度が適用される。塩素濃度が低い場合には脱着による再
生操作までの吸着時間は長く取ることができる。なおこ
の吸着操作の操作圧力は後の塩素の脱着操作より高い圧
力にする。操作温度は充填するゼオライトの種類・導入
ガスに含まれる塩素以外のガスの種類や経済的な問題で
決定される。たとえばY型ゼオライトを吸着剤として使
用し、同伴ガスに二酸化炭素が混合されている場合には
常温付近でも充分な塩素吸着を行うことができる。一方
、充填物の劣化防止や設備の材質劣化を防止するために
原料ガス中の水分は低い方が良く、1000ppm以下
が望ましい。
There is no particular restriction on the chlorine concentration of the chlorine-containing gas to be adsorbed by the adsorbent, but a chlorine concentration of 5 to 80% is usually applied. When the chlorine concentration is low, the adsorption time until the regeneration operation by desorption can be taken longer. Note that the operating pressure for this adsorption operation is higher than that for the subsequent chlorine desorption operation. The operating temperature is determined by the type of zeolite to be filled, the type of gas other than chlorine contained in the introduced gas, and economic considerations. For example, when Y-type zeolite is used as an adsorbent and carbon dioxide is mixed in the accompanying gas, sufficient chlorine adsorption can be achieved even at around room temperature. On the other hand, in order to prevent deterioration of the filler and material deterioration of the equipment, the lower the moisture content in the raw material gas, the better, and preferably 1000 ppm or less.

【0014】吸着工程は第1吸着塔および第2吸着塔の
2塔で行われる。第1吸着塔への塩素の吸着が進み、平
衡吸着状態に達したところで原料ガスとしての塩素を含
有するガスの吸着塔への供給を停止する。この間第2吸
着塔は第1吸着塔出口側から流出する塩素を僅かに含有
するガス中の塩素を吸着することにより、吸着工程から
塩素をもらさずに吸着分離を行うことができる。  続
いて第1吸着塔の操作圧力を降下させ、吸着している塩
素およびその他のガスを脱着させる。この時の操作圧力
は吸着時の圧力以下とし、必要に応じて真空ポンプによ
り大気圧以下にすることも有効である。  塩素を僅か
に吸着した第2吸着塔には引き続き原料ガスを導入し、
塩素で平衡吸着状態に達したところで供給を停止する。 この間昇圧工程を終了した第3吸着塔は第2吸着塔出口
側から流出する塩素を僅かに含有するガス中の塩素を吸
着する。操作温度は任意であるが、基本的には吸着時の
温度と同じとする方が経済的である。もちろん経済的に
有効であればいわゆるサーマルスイング方式をとること
も可能である。
The adsorption step is carried out in two adsorption towers, a first adsorption tower and a second adsorption tower. When the adsorption of chlorine in the first adsorption tower progresses and an equilibrium adsorption state is reached, the supply of the gas containing chlorine as a raw material gas to the adsorption tower is stopped. During this time, the second adsorption tower adsorbs chlorine in the gas containing a small amount of chlorine flowing out from the outlet side of the first adsorption tower, so that adsorption separation can be performed without losing chlorine from the adsorption step. Subsequently, the operating pressure of the first adsorption tower is lowered to desorb the adsorbed chlorine and other gases. The operating pressure at this time is lower than the pressure during adsorption, and if necessary, it is also effective to lower the operating pressure to lower than atmospheric pressure using a vacuum pump. The raw material gas is then introduced into the second adsorption tower that has slightly adsorbed chlorine.
The supply is stopped when an equilibrium adsorption state is reached with chlorine. During this time, the third adsorption tower, which has completed the pressure raising step, adsorbs chlorine in the gas containing a small amount of chlorine flowing out from the outlet side of the second adsorption tower. Although the operating temperature is arbitrary, it is basically more economical to set it to the same temperature as the temperature during adsorption. Of course, it is also possible to use a so-called thermal swing method if it is economically effective.

【0015】更に脱着操作時に少量の不活性ガス、好ま
しくは窒素ガスを通気させることは吸着剤から塩素ガス
の脱着が促進され好ましい態様である。この脱着操作に
より導入ガスよりも塩素濃度の高いガスを得ることがで
きるとともに、塩素を吸着した吸着剤を脱塩素すること
で再生することができ、再び次の吸着操作を行うことが
できる。
Furthermore, during the desorption operation, it is a preferred embodiment to pass a small amount of inert gas, preferably nitrogen gas, to promote the desorption of chlorine gas from the adsorbent. Through this desorption operation, it is possible to obtain a gas with a higher chlorine concentration than the introduced gas, and the adsorbent that has adsorbed chlorine can be regenerated by dechlorination, and the next adsorption operation can be performed again.

【0016】次に、工業規模におけるより具体的な形で
の実施の状態について説明する。図2はその形態を示す
Next, the state of implementation in a more concrete manner on an industrial scale will be explained. FIG. 2 shows its form.

【0017】図2では、塩素を含有する原料ガスは管1
よりガス圧縮機2に送られ、ここで所定吸着圧力まで昇
圧された後、切換弁3を経て、4基の吸着塔4a、4b
、4c、4dの内の第1の吸着塔4aに送り込まれる。 4基の吸着塔4a、4b、4c、4dは各々前出の塩素
を優先的に吸着する吸着剤が充填されており、加圧状態
で導入された原料ガス中の塩素が優先的に吸着され、吸
着塔4aの出口には塩素の含有率の低いガス、時にはほ
とんど検出できない程度に低い塩素濃度のガス(以下処
理済ガスとする)が得られる。この処理済ガスは切換弁
25、26を経て第2吸着塔4bに送られ、処理済ガス
中の塩素を吸着して検出できない程度に低い塩素濃度の
ガス(以下排ガスとする)が得られる。この排ガスは切
換弁15、弁6を経てブロア7に送られ、排出される(
吸着工程)。
In FIG. 2, the raw material gas containing chlorine is passed through pipe 1.
The gas is then sent to the gas compressor 2, where the pressure is increased to a predetermined adsorption pressure, and then passed through the switching valve 3 to the four adsorption towers 4a, 4b.
, 4c, and 4d to the first adsorption tower 4a. The four adsorption towers 4a, 4b, 4c, and 4d are each filled with an adsorbent that preferentially adsorbs chlorine, and chlorine in the raw material gas introduced under pressure is preferentially adsorbed. At the outlet of the adsorption tower 4a, a gas with a low chlorine content, sometimes with a chlorine concentration so low as to be almost undetectable (hereinafter referred to as treated gas), is obtained. This treated gas is sent to the second adsorption tower 4b via the switching valves 25 and 26, and adsorbs chlorine in the treated gas to obtain gas (hereinafter referred to as exhaust gas) with a chlorine concentration so low that it cannot be detected. This exhaust gas is sent to the blower 7 via the switching valve 15 and valve 6, and is discharged (
adsorption process).

【0018】この時、第3吸着塔4cでは、第2吸着塔
4bから吐出した排ガスの一部が流量調節機構8、切換
弁16を経て第3の吸着塔4c内に導入され、この塔内
の圧力が排ガスによって高められる充圧工程が実施され
ており、また第4の吸着塔4dではこの塔内と真空ポン
プ10とが切換弁23、12aを経て接続され、この塔
内の吸着剤が減圧状態で再生処理される再生工程が実施
されている。そして所定量の塩素を吸着して平衡吸着状
態に達した吸着塔4aは、切換弁3の切り換えによって
原料ガスの導入が停止されると共に、切換弁13の切り
換えによって塔内が真空ポンプ10で排気されて減圧状
態になり、吸着剤に吸着された塩素が脱着され、吸着剤
が再生される(再生工程)。この再生工程で製品として
の塩素濃度の高いガスを真空ポンプ10の吐出口から得
ることができ、この塩素を高濃度に含有したガスは下流
の消費工程に送られる。
At this time, in the third adsorption tower 4c, a part of the exhaust gas discharged from the second adsorption tower 4b is introduced into the third adsorption tower 4c through the flow rate adjustment mechanism 8 and the switching valve 16, and the exhaust gas is introduced into the third adsorption tower 4c. A charging step is carried out in which the pressure of the adsorbent is increased by exhaust gas, and in the fourth adsorption tower 4d, the interior of this tower and the vacuum pump 10 are connected via switching valves 23 and 12a, and the adsorbent in this tower is A regeneration process is carried out in which regeneration is performed under reduced pressure. When the adsorption tower 4a has adsorbed a predetermined amount of chlorine and reached an equilibrium adsorption state, the introduction of the raw material gas is stopped by switching the switching valve 3, and the inside of the tower is evacuated by the vacuum pump 10 by switching the switching valve 13. The adsorbent is then depressurized, the chlorine adsorbed on the adsorbent is desorbed, and the adsorbent is regenerated (regeneration step). In this regeneration process, a gas with a high chlorine concentration as a product can be obtained from the discharge port of the vacuum pump 10, and this gas containing a high chlorine concentration is sent to a downstream consumption process.

【0019】この時第2吸着塔4bでは、吸着塔4aか
らの処理済ガスの導入終了後原料ガスが切換弁14を経
て導入され、この塔の出口から処理済ガスが得られる。 この処理済ガスは切換弁27、28を経て第3吸着塔4
cに送られ、処理済ガス中の塩素が吸着され、吸着塔4
cの出口側には検出できない程度の低い塩素濃度の排ガ
スが得られる。この排ガスは切換弁18、弁6を経てブ
ロア7に送られ、排出される。また第4の吸着塔4dで
は第3の吸着塔4cから吐出される排ガスの一部が流量
調節機構8、切換弁23を経て導入され、この塔内の圧
力が排ガスによって高められる充圧工程が実施されてい
る。
At this time, in the second adsorption tower 4b, after the introduction of the treated gas from the adsorption tower 4a is completed, the raw material gas is introduced through the switching valve 14, and the treated gas is obtained from the outlet of this tower. This treated gas passes through the switching valves 27 and 28 to the third adsorption tower 4.
c, the chlorine in the treated gas is adsorbed, and the gas is sent to adsorption tower 4.
On the outlet side of c, exhaust gas with an undetectable chlorine concentration is obtained. This exhaust gas is sent to the blower 7 via the switching valve 18 and the valve 6, and is discharged. Further, in the fourth adsorption tower 4d, a part of the exhaust gas discharged from the third adsorption tower 4c is introduced through the flow rate adjustment mechanism 8 and the switching valve 23, and a charging step is performed in which the pressure inside this tower is increased by the exhaust gas. It has been implemented.

【0020】その後第3の吸着塔4cでは、吸着塔4b
からの処理済ガスの導入終了後原料ガスが切換弁17を
経て導入され、この塔の出口から処理済ガスが得られる
。この処理済ガスは切換弁29、30を経て第4吸着塔
4dに送られ、処理済ガス中の塩素が吸着され、吸着塔
4dの出側には検出できない程度に低い塩素濃度の排ガ
スが得られる。この排ガスは切換弁24、弁6を経てブ
ロア7に送られ、排出される。また第1の吸着塔4aで
は第4の吸着塔4dから吐出される排ガスの一部が流量
調節機構8、切換弁19を経て導入され、この塔内の圧
力が排ガスによって高められる充圧工程が実施されてい
る。
After that, in the third adsorption tower 4c, the adsorption tower 4b
After the introduction of the treated gas from the tower is completed, the raw material gas is introduced through the switching valve 17, and the treated gas is obtained from the outlet of this column. This treated gas is sent to the fourth adsorption tower 4d via the switching valves 29 and 30, where chlorine in the treated gas is adsorbed, and exhaust gas with an undetectable chlorine concentration is obtained at the outlet side of the adsorption tower 4d. It will be done. This exhaust gas is sent to the blower 7 via the switching valve 24 and the valve 6, and is discharged. Further, in the first adsorption tower 4a, a part of the exhaust gas discharged from the fourth adsorption tower 4d is introduced through the flow rate adjustment mechanism 8 and the switching valve 19, and the pressure inside the tower is increased by the exhaust gas. It has been implemented.

【0021】原料ガス中の塩素を吸着して平衡吸着状態
に達した吸着塔4bは、切換弁14の切り換えによって
原料ガスの導入が停止されると共に、切換弁20の切り
換えによって塔内の真空ポンプ10で排気されて減圧状
態になり、吸着剤に吸着された塩素が脱着され、吸着剤
が再生される。
When the adsorption tower 4b has adsorbed chlorine in the raw material gas and reached an equilibrium adsorption state, the introduction of the raw material gas is stopped by switching the switching valve 14, and the vacuum pump in the tower is stopped by switching the switching valve 20. At step 10, the gas is evacuated to a reduced pressure state, the chlorine adsorbed on the adsorbent is desorbed, and the adsorbent is regenerated.

【0022】以下同様に、この一連操作を4基の吸着塔
4a、4b、4c、4dについて交互に操り返すことに
よって塩素を含有する原料ガスより塩素を分離し、原料
ガス中の塩素濃度以上の塩素濃度のガスを連続的に得る
ことができる。
Similarly, by repeating this series of operations alternately for the four adsorption towers 4a, 4b, 4c, and 4d, chlorine is separated from the raw material gas containing chlorine, and the chlorine concentration in the raw material gas is Gas with chlorine concentration can be obtained continuously.

【0023】[0023]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。 実施例1 合成Y型ゼオライト(ZEOCHEM製)を夫々20g
充填したステンレス製の吸着塔4塔中の第1吸着塔に2
5〜30℃にて塩素(5%)・二酸化炭素(15%)・
ヘリウム(80%)の組成の原料ガスを5atmの圧力
に調節して200ml/minで、第1吸着塔出側の処
理済ガスの組成が原料ガスと同成分になるまで34分間
通気した。この間の処理済ガスは第2吸着塔に通気され
るが、第2吸着塔出側の排ガスをガスクロマトグラフ分
析を行いガス組成を分析したところ、塩素ガスは不検出
であった。通気完了後、第1吸着塔への原料ガスの供給
を停止し、真空ポンプで吸着塔を60mmHg  ab
s.の圧力に5分間おき、塩素ガスを脱着させた。脱着
したガスを分析したところ塩素濃度86%であった。第
1吸着塔からの処理済ガスの通気を完了した第2吸着塔
に引続き原料ガスを通気して第2吸着塔出側の処理済ガ
スの組成が原料ガスと同成分になるまで20分間通気し
た。この間の処理済ガスは第3吸着塔に通気されるが、
第3吸着塔出側の排ガスをガスクロマトグラフ分析を行
いガス組成を分析したところ塩素ガスは不検出であった
。通気完了後、第2吸着塔への原料ガスの供給を停止し
、真空ポンプで吸着塔を60mmHg  abs.の圧
力に5分間おき、塩素ガスを脱着させた。脱着したガス
を分析したところ塩素濃度86%であった。
[Examples] Next, the present invention will be explained in more detail with reference to Examples. Example 1 20g each of synthetic Y-type zeolite (manufactured by ZEOCHEM)
2 in the first adsorption tower of the 4 stainless steel adsorption towers packed with
Chlorine (5%), carbon dioxide (15%), at 5-30℃
A raw material gas having a composition of helium (80%) was adjusted to a pressure of 5 atm and vented at 200 ml/min for 34 minutes until the composition of the treated gas at the outlet of the first adsorption tower became the same as that of the raw material gas. During this time, the treated gas was vented to the second adsorption tower, but when the exhaust gas from the second adsorption tower was analyzed by gas chromatography to analyze the gas composition, no chlorine gas was detected. After ventilation is completed, the supply of raw material gas to the first adsorption tower is stopped, and the adsorption tower is heated to 60 mmHg ab using a vacuum pump.
s. The chlorine gas was desorbed by leaving it at a pressure of 5 minutes. Analysis of the desorbed gas revealed a chlorine concentration of 86%. After venting the treated gas from the first adsorption tower, the raw material gas is subsequently vented to the second adsorption tower for 20 minutes until the composition of the treated gas at the outlet of the second adsorption tower becomes the same as that of the raw gas. did. During this time, the treated gas is vented to the third adsorption tower,
When the exhaust gas from the third adsorption tower was analyzed by gas chromatography to analyze the gas composition, no chlorine gas was detected. After ventilation is completed, the supply of raw material gas to the second adsorption tower is stopped, and the adsorption tower is heated to 60 mmHg abs. with a vacuum pump. The chlorine gas was desorbed by leaving it at a pressure of 5 minutes. Analysis of the desorbed gas revealed a chlorine concentration of 86%.

【0024】実施例2 合成13X型ゼオライト(富士デビソン製)を夫々20
g充填したステンレス製の吸着塔4塔中の第1吸着塔に
60℃にて塩素(5%)・二酸化炭素(15%)・ヘリ
ウム(80%)の組成の原料ガスを5atmの圧力に調
節して200ml/minで、第1吸着塔出側の処理済
ガスの組成が原料ガスと同成分になるまで17分間通気
した。この間の処理済ガスは第2吸着塔に通気されるが
、第2吸着塔出側の排ガスをガスクロマトグラフ分析を
行いガス組成を分析したところ、塩素ガスは不検出であ
った。通気完了後、第1吸着塔への原料ガスの供給を停
止し、真空ポンプで吸着塔を60mmHg  abs.
の圧力に5分間おき、塩素ガスを脱着させた。脱着した
ガスを分析したところ塩素濃度80%であった。第1吸
着塔からの処理済ガスの通気を完了した第2吸着塔に引
続き原料ガスを通気して第2吸着塔出側の処理済ガスの
組成が原料ガスと同成分になるまで10分間通気した。 この間の処理済ガスは第3吸着塔に通気されるが、第3
吸着塔出側の排ガスをガスクロマトマトグラフ分析を行
いガス組成を分析したところ、塩素ガスは不検出であっ
た。通気完了後、第2吸着塔への原料ガスの供給を停止
し、真空ポンプで吸着塔を60mmHg  abs.の
圧力に5分間おき、塩素ガスを脱着させた。脱着したガ
スを分析したところ、塩素濃度は80%であった。
Example 2 Synthetic 13X type zeolite (manufactured by Fuji Davison)
A raw material gas having a composition of chlorine (5%), carbon dioxide (15%), and helium (80%) was adjusted to a pressure of 5 atm at 60°C in the first adsorption tower of four stainless steel adsorption towers filled with g. The mixture was vented at a rate of 200 ml/min for 17 minutes until the composition of the treated gas at the outlet of the first adsorption tower became the same as that of the raw material gas. During this time, the treated gas was vented to the second adsorption tower, but when the exhaust gas from the second adsorption tower was analyzed by gas chromatography to analyze the gas composition, no chlorine gas was detected. After completion of ventilation, the supply of raw material gas to the first adsorption tower is stopped, and the adsorption tower is heated to 60 mmHg abs. with a vacuum pump.
The chlorine gas was desorbed by leaving it at a pressure of 5 minutes. Analysis of the desorbed gas revealed a chlorine concentration of 80%. After venting the treated gas from the first adsorption tower, the raw material gas is subsequently vented to the second adsorption tower for 10 minutes until the composition of the treated gas at the outlet of the second adsorption tower becomes the same as that of the raw gas. did. During this time, the treated gas is vented to the third adsorption tower;
When the exhaust gas from the adsorption tower outlet side was subjected to gas chromatograph analysis to analyze the gas composition, no chlorine gas was detected. After ventilation is completed, the supply of raw material gas to the second adsorption tower is stopped, and the adsorption tower is heated to 60 mmHg abs. with a vacuum pump. The chlorine gas was desorbed by leaving it at a pressure of 5 minutes. Analysis of the desorbed gas revealed that the chlorine concentration was 80%.

【0025】実施例3 ガス吸着活性炭PCB(東洋アルゴン製)を夫々10g
充填したステンレス製の吸着塔4塔中の第1吸着塔に6
0℃にて塩素(5%)・二酸化炭素(15%)・ヘリウ
ム(80%)の組成の原料ガスを5atmの圧力に調節
して200ml/minで、第1吸着塔出側の処理済ガ
スの組成が原料ガスと同成分になるまで17分間通気し
た。この間の吸着済ガスは第2吸着塔に通気されるが、
第2吸着塔出側の排ガスをガスクロマトグラフ分析を行
いガス組成を分析したところ、塩素ガスは不検出であっ
た。通気完了後、第1吸着塔への原料ガスの供給を停止
し、真空ポンプで吸着塔を60mmHg  abs.の
圧力に5分間おき、塩素ガスを脱着させた。脱着したガ
スを分析したところ、塩素濃度80%であった。第1吸
着塔からの処理済ガスの通気を完了した第2吸着塔に引
続き原料ガスを通気して、第2吸着塔出側の処理済ガス
の組成が原料ガスと同成分になるまで10分間通気した
。 この間処理済みガスは第3吸着塔に通気されるが、第3
吸着塔出側の排ガスをガスクロマトグラフ分析を行いガ
ス組成を分析したところ、塩素ガスは不検出であった。 通気完了後、第2吸着塔への原料ガスの供給を停止し、
真空ポンプで吸着塔を60mmHg  abs.の圧力
に5分間おき、塩素ガスを脱着させた。脱着したガスを
分析したところ塩素濃度80%であった。
Example 3 10g of each gas adsorption activated carbon PCB (manufactured by Toyo Argon)
6 in the first adsorption tower of the four stainless steel adsorption towers packed with
The raw material gas having a composition of chlorine (5%), carbon dioxide (15%), and helium (80%) at 0°C was adjusted to a pressure of 5 atm and the treated gas at the outlet side of the first adsorption tower was adjusted to a pressure of 200 ml/min. The gas was vented for 17 minutes until the composition of the gas became the same as that of the raw material gas. During this time, the adsorbed gas is vented to the second adsorption tower,
When the exhaust gas from the second adsorption tower was analyzed by gas chromatography to analyze the gas composition, no chlorine gas was detected. After completion of ventilation, the supply of raw material gas to the first adsorption tower is stopped, and the adsorption tower is heated to 60 mmHg abs. with a vacuum pump. The chlorine gas was desorbed by leaving it at a pressure of 5 minutes. Analysis of the desorbed gas revealed that the chlorine concentration was 80%. After venting the treated gas from the first adsorption tower, the raw material gas is subsequently vented to the second adsorption tower for 10 minutes until the composition of the treated gas on the outlet side of the second adsorption tower becomes the same as that of the raw material gas. Ventilated. During this time, the treated gas is vented to the third adsorption tower;
Gas chromatography analysis of the exhaust gas from the adsorption tower outlet side was performed to analyze the gas composition, and no chlorine gas was detected. After completing the ventilation, stop supplying the raw material gas to the second adsorption tower,
The adsorption tower was heated to 60 mmHg abs. with a vacuum pump. The chlorine gas was desorbed by leaving it at a pressure of 5 minutes. Analysis of the desorbed gas revealed a chlorine concentration of 80%.

【0026】実施例4 分子ふるいカーボンMSC(武田薬品製)を夫々10g
充填したステンレス製の吸着塔4塔中の第1吸着塔に6
0℃にて塩素(5%)・二酸化炭素(15%)・ヘリウ
ム(80%)の組成の原料ガスを5atmの圧力に調節
して200ml/minで、第1吸着塔出側の処理済ガ
スの組成が原料ガスと同成分になるまで17分間通気し
た。この間の処理済ガスは第2吸着塔に通気されるが、
第2吸着塔出側の排ガスをガスクロマトグラフ分析を行
いガス組成を分析したところ、塩素ガスは不検出であっ
た。通気完了後、第1吸着塔への原料ガスの供給を停止
し、真空ポンプで吸着塔を60mmHg  abs.の
圧力に5分間おき、塩素ガスを脱着させた。脱着したガ
スを分析したところ塩素濃度83%であった。第1吸着
塔からの処理済ガスの通気を完了した第2吸着塔に、引
続き原料ガスを通気して第2吸着塔出側の処理済ガスの
組成が原料ガスと同成分になるまで、10分間通気した
。 この間の処理済ガスは第3吸着塔に通気されるが、第3
吸着塔出側の排ガスをガスクロマトグラフ分析を行いガ
ス組成の分析をしたところ、塩素ガスは不検出であった
。通気完了後、第2吸着塔への原料ガスの供給を停止し
、真空ポンプで吸着塔を60mmHg  abs.の圧
力に5分間おき、塩素ガスを脱着させた。脱着したガス
を分析したところ塩素濃度83%であった。
Example 4 10g of each molecular sieve carbon MSC (manufactured by Takeda Pharmaceutical)
6 in the first adsorption tower of the four stainless steel adsorption towers packed with
The raw material gas having a composition of chlorine (5%), carbon dioxide (15%), and helium (80%) at 0°C was adjusted to a pressure of 5 atm and the treated gas at the outlet side of the first adsorption tower was adjusted to a pressure of 200 ml/min. The gas was vented for 17 minutes until the composition of the gas became the same as that of the raw material gas. During this time, the treated gas is vented to the second adsorption tower,
When the exhaust gas from the second adsorption tower was analyzed by gas chromatography to analyze the gas composition, no chlorine gas was detected. After completion of ventilation, the supply of raw material gas to the first adsorption tower is stopped, and the adsorption tower is heated to 60 mmHg abs. with a vacuum pump. The chlorine gas was desorbed by leaving it at a pressure of 5 minutes. Analysis of the desorbed gas revealed a chlorine concentration of 83%. After completing the ventilation of the treated gas from the first adsorption tower, the raw material gas is continued to be passed through the second adsorption tower until the composition of the treated gas on the outlet side of the second adsorption tower becomes the same as that of the raw material gas. Ventilated for a minute. During this time, the treated gas is vented to the third adsorption tower;
When the exhaust gas from the adsorption tower outlet side was analyzed by gas chromatography to analyze the gas composition, no chlorine gas was detected. After ventilation is completed, the supply of raw material gas to the second adsorption tower is stopped, and the adsorption tower is heated to 60 mmHg abs. with a vacuum pump. The chlorine gas was desorbed by leaving it at a pressure of 5 minutes. Analysis of the desorbed gas revealed a chlorine concentration of 83%.

【0027】比較例1 合成Y型ゼオライト(ZEOCHEM製)を夫々20g
充填したステンレス製の吸着塔3塔中の第1吸着塔に2
5〜30℃にて塩素(5%)・二酸化炭素(15%)・
ヘリウム(80%)の組成のガスを5atmの圧力に調
節して200ml/minで、第1吸着塔出側から塩素
が破過する前までの13分間通気した。この間カラムか
ら流出するガスをガスクロマトグラフ分析を行いガス組
成を分析したところ塩素ガスは100〜300ppm検
出された。通気完了後、第1吸着塔への原料ガスの供給
を停止し、真空ポンプで第1吸着塔を60mmHg  
abs.の圧力に5分間おき、塩素ガスを脱着させた。 脱着したガスを分析したところ塩素濃度55%であった
。 この脱着後の第1吸着塔に再び初めと同様の組成のガス
を同条件で通気したところ、やはり13分間は流出する
ガスの塩素濃度は100〜300ppmであった。
Comparative Example 1 20g of each synthetic Y-type zeolite (manufactured by ZEOCHEM)
2 in the first adsorption tower of the three stainless steel adsorption towers packed with
Chlorine (5%), carbon dioxide (15%), at 5-30℃
A gas having a composition of helium (80%) was adjusted to a pressure of 5 atm and was vented at a rate of 200 ml/min for 13 minutes from the outlet side of the first adsorption tower until chlorine broke through. During this time, the gas flowing out from the column was analyzed by gas chromatography to analyze the gas composition, and 100 to 300 ppm of chlorine gas was detected. After completing ventilation, stop supplying the raw material gas to the first adsorption tower, and use a vacuum pump to reduce the pressure of the first adsorption tower to 60 mmHg.
abs. The chlorine gas was desorbed by leaving it at a pressure of 5 minutes. Analysis of the desorbed gas revealed a chlorine concentration of 55%. After this desorption, gas having the same composition as the first adsorption tower was again passed under the same conditions, and the chlorine concentration of the gas flowing out for 13 minutes was 100 to 300 ppm.

【0028】[0028]

【発明の効果】本発明は圧力スイング吸着法を改良する
ことにより、塩素を含有するガスより塩素を系外にもら
さず、かつ高濃度に濃縮し、また吸着剤を有効に利用す
る方法を提供するもので、その工業的価値は非常に大き
い。
[Effects of the Invention] By improving the pressure swing adsorption method, the present invention provides a method for concentrating chlorine from a chlorine-containing gas to a high concentration without leaving the system, and effectively utilizing an adsorbent. Therefore, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】各吸着剤の吸着曲線グラフである。FIG. 1 is an adsorption curve graph of each adsorbent.

【図2】本発明を特に連続的に行うために複数の吸着塔
を用いる設備の模式図である。
FIG. 2 is a schematic diagram of an installation using a plurality of adsorption towers to carry out the invention particularly continuously.

【符号の説明】[Explanation of symbols]

1.  原料ガス供給管 2.  圧縮機 4a.4b.4c.  吸着塔 6.  弁 7.  ブロア 8.  流量調節機構 10.  真空ポンプ 3,5,9,11,12a,12b,13〜32  切
換弁
1. Raw material gas supply pipe 2. Compressor 4a. 4b. 4c. Adsorption tower6. Valve 7. Blower 8. Flow rate adjustment mechanism 10. Vacuum pump 3, 5, 9, 11, 12a, 12b, 13-32 switching valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  塩素を吸着しうる吸着剤を充填した吸
着塔をカスケード連結し、塩素を含有する原料ガスを第
1吸着塔が塩素で平衡吸着状態に達するまで導入して塩
素を吸着させ、その間第2吸着塔は第1吸着塔出口側か
ら流出する塩素を僅かに含有するガス中の塩素を吸着す
ることにより、吸着工程の吸着塔から塩素をもらさずに
吸着し、第1吸着塔が塩素で平衡吸着状態に達した後ガ
スの導入を停止し、ガス導入時よりも低い圧力で脱着を
行い、導入ガスの塩素濃度より高い塩素濃度のガスを得
るとともに吸着剤を再生することを特徴とする塩素ガス
の濃縮方法。
Claim 1: Adsorption towers filled with an adsorbent capable of adsorbing chlorine are connected in cascade, and a raw material gas containing chlorine is introduced until the first adsorption tower reaches an equilibrium adsorption state with chlorine to adsorb chlorine, During this time, the second adsorption tower adsorbs chlorine in the gas containing a small amount of chlorine flowing out from the outlet side of the first adsorption tower, thereby adsorbing chlorine without leaching the chlorine from the adsorption tower in the adsorption process. After reaching an equilibrium adsorption state with chlorine, the introduction of gas is stopped and desorption is performed at a lower pressure than when the gas was introduced, obtaining a gas with a chlorine concentration higher than that of the introduced gas and regenerating the adsorbent. A method for concentrating chlorine gas.
【請求項2】  塩素を吸着しうる吸着剤がゼオライト
である請求項1記載の方法。
2. The method according to claim 1, wherein the adsorbent capable of adsorbing chlorine is zeolite.
【請求項3】  塩素を吸着しうる吸着剤が非ゼオライ
ト系多孔質酸性酸化物である請求項1記載の方法。
3. The method according to claim 1, wherein the adsorbent capable of adsorbing chlorine is a non-zeolitic porous acidic oxide.
【請求項4】  塩素を吸着しうる吸着剤が活性炭であ
る請求項1記載の方法。
4. The method according to claim 1, wherein the adsorbent capable of adsorbing chlorine is activated carbon.
【請求項5】  活性炭が分子ふるいカーボンである請
求項4記載の方法。
5. The method according to claim 4, wherein the activated carbon is molecular sieve carbon.
JP3141776A 1991-06-13 1991-06-13 How to concentrate chlorine gas Expired - Lifetime JP2909253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3141776A JP2909253B2 (en) 1991-06-13 1991-06-13 How to concentrate chlorine gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3141776A JP2909253B2 (en) 1991-06-13 1991-06-13 How to concentrate chlorine gas

Publications (2)

Publication Number Publication Date
JPH04367503A true JPH04367503A (en) 1992-12-18
JP2909253B2 JP2909253B2 (en) 1999-06-23

Family

ID=15299907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3141776A Expired - Lifetime JP2909253B2 (en) 1991-06-13 1991-06-13 How to concentrate chlorine gas

Country Status (1)

Country Link
JP (1) JP2909253B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163556A (en) * 2014-01-28 2015-09-10 住友精化株式会社 Method and apparatus for purifying hydrogen chloride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163556A (en) * 2014-01-28 2015-09-10 住友精化株式会社 Method and apparatus for purifying hydrogen chloride

Also Published As

Publication number Publication date
JP2909253B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JP3072129B2 (en) How to concentrate chlorine gas
US5084075A (en) Vacuum swing adsorption process for production of 95+% n2 from ambient air
FI81966B (en) Improved adsorption method with pressure oscillation
US6955711B2 (en) Method and system for separating gas
JPS6026571B2 (en) Method and apparatus for increasing the proportion of component gases in a gas mixture
EP0276309A1 (en) Process for separation of high purity gas from mixed gas
EP0609620B1 (en) Gas separation
KR101761305B1 (en) Recovery of NF3 from Adsorption Operation
US6017382A (en) Method of processing semiconductor manufacturing exhaust gases
JPS6272504A (en) Production of nitrogen having high purity
KR20190039433A (en) Cryogenic adsorption process for xenon recovery
JPH0268111A (en) Improved pressure swing adsorbing method
JP2019150769A (en) Gas separation method
JP2014079680A (en) Apparatus and method for separation recovery of carbon dioxide
JP3080687B2 (en) How to concentrate chlorine gas
JPH04367503A (en) Concentration of chlorine gas
JPS621766B2 (en)
JPS621767B2 (en)
JPH05301011A (en) Method for concentrating gaseous hydrogen chloride
JP2909254B2 (en) How to concentrate chlorine gas
JP2587334B2 (en) Method of separating CO gas not containing CH4
EP0055962A2 (en) Repressurisation for pressure swing adsorption system
JPH0239292B2 (en)
Sircar et al. Vacuum swing adsorption process for production of 95% N2 from ambient air
JPS62241523A (en) Separation and purification for carbon monoxide excellent in recovery efficiency

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13