JPH0436644A - Inspecting method for defect in internal wall surface of cylinder - Google Patents

Inspecting method for defect in internal wall surface of cylinder

Info

Publication number
JPH0436644A
JPH0436644A JP14334590A JP14334590A JPH0436644A JP H0436644 A JPH0436644 A JP H0436644A JP 14334590 A JP14334590 A JP 14334590A JP 14334590 A JP14334590 A JP 14334590A JP H0436644 A JPH0436644 A JP H0436644A
Authority
JP
Japan
Prior art keywords
image
scope
wall surface
inspection
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14334590A
Other languages
Japanese (ja)
Other versions
JP2839934B2 (en
Inventor
Fumiaki Fukunaga
福永 文昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2143345A priority Critical patent/JP2839934B2/en
Publication of JPH0436644A publication Critical patent/JPH0436644A/en
Application granted granted Critical
Publication of JP2839934B2 publication Critical patent/JP2839934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To enable accurate automated inspection by suspending a survey scope and a cone mirror below an image pickup camera which can be elevated and performing a differentiation and binary-coding process in a doughnut-shaped inspection area set on the basis of the center of an input image from a horizontal and a vertical histogram. CONSTITUTION:This method is equipped with the scope 11 suspended below the image pickup camera 10, the cone mirror 12 which is arranged below it concentrically, a lighting device 13, an image processor 14, and a monitor TV 15. For inspection, the scope 11 and mirror 12 are inserted into the object cylinder internal wall surface 16 and moved along its center axis, a light source 19 irradiates the wall surface 16 through an optical fiber 20 at every specific distance, and the light is reflected by the mirror 12 and photographed by the camera 10 through the scope 11; and the image is processed by the processor 14 to inspect whether or not there is a defect. Consequently, the accurate automated inspection becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、撮像機器と画像処理装置とを用いて、各種
ワークの円筒内壁面の欠陥を自動的に検査する検査方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an inspection method for automatically inspecting defects on the cylindrical inner wall surface of various workpieces using an imaging device and an image processing device.

〔従来の技術〕[Conventional technology]

シリンダブロックのボアの如き円筒内壁面の欠陥検査は
、作業者の目視による検査が一般に行われている。しか
し、目視による検査は熟練が必要で、判定も難しいため
、機械による自動化が臨まれていた。
Defects on the inner wall surface of a cylinder such as the bore of a cylinder block are generally inspected visually by an operator. However, visual inspection requires skill and is difficult to judge, so automation using machines has been sought.

上記検査を自動化する手段としては、ワークの円筒内壁
面を撮像機器にて撮像し、これより得られた画像を画像
処理して検査する手段がある。
As means for automating the above-mentioned inspection, there is a means for capturing an image of the cylindrical inner wall surface of the workpiece with an imaging device, and performing image processing on the image obtained from the image for inspection.

これは、例えば第11図に示す様に、撮像カメラ(1)
の下面にスコープ(2)を取付け、スコープ(2)の下
方に平板ミラー(3)を45″傾けて回転自在に設置し
た撮像機器を昇降自在に設置し、撮像カメラ(1)から
画像信号を画像処理装置(4)へ出力するように構成さ
れている。またスコープ(2)にはワーク(5)の円筒
内壁面(6)を照らす照明手段(図示せず)が付設され
ている。
For example, as shown in FIG.
A scope (2) is attached to the bottom surface, and an imaging device is installed below the scope (2) with a flat plate mirror (3) tilted by 45 inches so as to be rotatable. It is configured to output to an image processing device (4).The scope (2) is also provided with illumination means (not shown) for illuminating the cylindrical inner wall surface (6) of the workpiece (5).

この検査手段は、平板ミラー(3)及びスコープ(2)
をワーク(5)の円筒内壁面(6)内へ挿入し、円筒内
壁面(6)を照らす、すると円筒内壁面(6)の一部の
画像が平板ミラー(3)にて90°方向に反射され、ス
コープ(2)を通して撮像カメラ(1)にて撮像され、
その画像信号が画像処理装置(4)へ出力される。そし
て画像処理装置(4)では入力された画像信号を基に所
定の画像処理を行い、欠陥の有無を判定する。
This inspection means consists of a flat mirror (3) and a scope (2).
is inserted into the cylindrical inner wall surface (6) of the workpiece (5) and illuminates the cylindrical inner wall surface (6). Then, a part of the image of the cylindrical inner wall surface (6) is rotated at 90° by the flat mirror (3). It is reflected and imaged by the imaging camera (1) through the scope (2),
The image signal is output to an image processing device (4). The image processing device (4) then performs predetermined image processing based on the input image signal to determine the presence or absence of defects.

上記作業は、撮像機器を上下方向に移動させ、かつ平板
ミラー(3)を回転させて、円筒内壁面(6)の全面に
ついて行う。
The above operation is performed on the entire surface of the inner wall surface (6) of the cylinder by moving the imaging device in the vertical direction and rotating the flat mirror (3).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記手段であれば、撮像カメラ(1)全体に円筒内壁面
(6)が撮像されているときは、入力画像における検査
領域が一定であるので、検査が容易である。
With the above means, when the cylinder inner wall surface (6) is imaged by the entire imaging camera (1), the inspection area in the input image is constant, so inspection is easy.

しかし、円筒内壁面(6)の上下端近傍では、円筒内壁
面以外の背景部分も同時に撮像カメラ(1)に撮像され
、その入力画像(7)は第12図に示す様に背景部分(
8)が暗くなる。そのため、正確な判定をするために背
景部分(8)を除くように検査領域を設定せねばならな
い。この場合、平板ミラー(3)の回転位置によって第
13図に示す様に背景部分(7)の配置が刻々と変わっ
てしまう。そのため、各入力画像毎に検査領域を設定せ
ねばならず、検査に多くの時間がかかってしまう。
However, in the vicinity of the upper and lower ends of the cylinder inner wall surface (6), the background portion other than the cylinder inner wall surface is also imaged by the imaging camera (1) at the same time, and the input image (7) is the background portion (
8) becomes dark. Therefore, in order to make accurate judgments, the inspection area must be set to exclude the background portion (8). In this case, the arrangement of the background portion (7) changes every moment depending on the rotational position of the flat mirror (3), as shown in FIG. Therefore, an inspection area must be set for each input image, and inspection takes a lot of time.

上記問題点を解決するためには、撮像カメラ(1)を平
板ミラー(3)と−緒に回転させればよい。しかし、撮
像カメラ(1)を回転させるためには、断線等の問題を
処理せねばならない。
In order to solve the above problem, the imaging camera (1) may be rotated together with the flat mirror (3). However, in order to rotate the imaging camera (1), problems such as disconnection must be dealt with.

また、断線を生じないようにしたものとして、例えば特
開平1−97809号公報にて開示されたものがある。
Further, as a device that prevents wire breakage from occurring, there is a device disclosed in, for example, Japanese Patent Application Laid-Open No. 1-97809.

しかし、回転部の構造が複雑であり、円筒内壁面(6)
を全周検査するには上記と同様に時間がかかる。
However, the structure of the rotating part is complicated, and the cylindrical inner wall surface (6)
It takes time to inspect the entire circumference as above.

この発明は、撮像カメラや平板ミラー等を回転させるこ
となく円筒内壁面を検査できるようにした検査方法を提
供しようとするものである。
The present invention aims to provide an inspection method that enables inspection of the inner wall surface of a cylinder without rotating an imaging camera, a flat mirror, or the like.

〔課題を解決するための手段〕[Means to solve the problem]

この発明における検査方法は昇降可能に支持した撮像カ
メラと、前記撮像カメラの下方に垂設した小径の探査用
スコープと、前記スコープの下方に同芯上に設置した円
錐形状のコーンミラーと、前記撮像カメラにて撮像され
た画像を画像処理する画像処理装置とを備え、前記スコ
ープの下方及びコーンミラーを円筒内壁面内にその中心
軸に沿って挿入して円筒内壁面の周面を撮像し、前記画
像処理装置において、前記撮像カメラからの入力画像に
対して水平方向及び垂直方向のヒストグラムをとってそ
の画像中心を求め、この中心を基準としてドーナツ状に
検査領域を設定し、この検査領域内で微分処理及び2値
化処理を行って欠陥の有無を判定するようにしたもので
ある。
The inspection method according to the present invention includes: an imaging camera supported in a vertically movable manner; a small-diameter exploration scope vertically disposed below the imaging camera; a conical cone mirror disposed concentrically below the scope; an image processing device that processes an image captured by an imaging camera, and a cone mirror is inserted below the scope and into the inner wall surface of the cylinder along its central axis to image the circumferential surface of the inner wall surface of the cylinder. In the image processing device, a horizontal and vertical histogram is taken of the input image from the imaging camera to find the center of the image, and a donut-shaped inspection area is set with this center as a reference. The presence or absence of a defect is determined by performing differential processing and binarization processing within the image.

〔作用〕[Effect]

上記検査方法では、スコープやコーンミラーを回転させ
ることなく、円筒内壁面の周面を一定高さ毎に撮像して
欠陥検査でき、作業時間を短縮できる。また円筒内壁面
の上下端において撮像カメラからの入力画像内に円筒内
壁面以外の背景部分が入っていても、該背景部分を検査
領域から除外でき、円筒内壁面の上下端も正確に欠陥の
有無を判定できる。
In the above inspection method, defects can be inspected by taking images of the circumferential surface of the inner wall of the cylinder at every fixed height without rotating the scope or the cone mirror, and the work time can be reduced. Furthermore, even if there is a background part other than the cylinder inner wall surface in the input image from the imaging camera at the upper and lower ends of the cylinder inner wall surface, this background part can be excluded from the inspection area, and the upper and lower ends of the cylinder inner wall surface can also be accurately detected for defects. The presence or absence can be determined.

〔実施例〕〔Example〕

以下、この発明の実施例を第1図乃至第1θ図を参照し
て説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 1θ.

円筒内壁面(16)を撮像し、検査する検査装置は、撮
像カメラ(10)の下部に垂設したスコ゛−ブ(11)
と、スコープ(11)の下方に同芯上に配置した円錐形
のコーンミラー(12)と、スコープ(11)を通して
円筒内壁面(16)を照らす照明装置(13)と、撮像
カメラ(10)にて撮像された画像を画像処理して欠陥
の有無を判定する画像処理装f (14)と、画像を写
し出すモニターテレビ(15)とから成っている。
The inspection device that images and inspects the cylinder inner wall surface (16) is a scope (11) installed vertically below the imaging camera (10).
, a conical cone mirror (12) arranged concentrically below the scope (11), an illumination device (13) that illuminates the inner wall surface of the cylinder (16) through the scope (11), and an imaging camera (10). It consists of an image processing device f (14) that processes the image taken by the device and determines the presence or absence of defects, and a monitor television (15) that displays the image.

上記スコープ(11)は検査対象となる円筒内壁面(1
6)より小径でかつ深い長さのものが使用され、内部に
はレンズ(17)を取付けである。またコーンミラー(
12)も円筒内壁面(16)より小径のものが使用され
、スコープ(11)の下方に同芯上に配置され、透明な
ガラス筒(18)にて支持される。
The scope (11) is the cylinder inner wall surface (1) to be inspected.
6) A smaller diameter and deeper length is used, and a lens (17) is attached inside. Also cone mirror (
12) also has a smaller diameter than the cylindrical inner wall surface (16), is arranged concentrically below the scope (11), and is supported by a transparent glass tube (18).

照明装置(13)は別設した光源(19)の光を光ファ
イバ(20)にてスコープ(11)の先端まで導き、ス
コープ(11)の先端から円筒内壁面(16)を照らす
The illumination device (13) guides light from a separately provided light source (19) to the tip of the scope (11) through an optical fiber (20), and illuminates the inner wall surface (16) of the cylinder from the tip of the scope (11).

上記検査装置は、撮像カメラ(10)を昇降可能に支持
し、検査時前記コーンミラー(12)及びスコープ(1
1)を円筒内壁面(16)の中心軸に沿って移動させ、
かつコーンミラー(12)の反射面(12a)が円筒内
壁面(16)の上下端縁と夫々交差する範囲で撮像カメ
ラ(10)を昇降させる。
The inspection device supports an imaging camera (10) so as to be movable up and down, and includes the cone mirror (12) and a scope (1) during an inspection.
1) along the central axis of the cylinder inner wall surface (16),
In addition, the imaging camera (10) is moved up and down within the range where the reflective surface (12a) of the cone mirror (12) intersects with the upper and lower edges of the cylindrical inner wall surface (16), respectively.

画像処理装置(14)は撮像カメラ(10)から送られ
てくる入力画像に対して後述の如き画像処理を行って欠
陥の有無を判定する。
The image processing device (14) performs image processing as described below on the input image sent from the imaging camera (10) to determine the presence or absence of defects.

即ち、コーンミラー(12)にて反射され、スコープ(
11)を通して撮像カメラ(10)にて撮像された円筒
内壁面(16)は第2図に示す様に円形状の画像となり
、中心部に近づく程周方向が縮小されている。従うて円
筒内壁面(16Lに円形の欠陥があれば中心部に向かっ
て長くなった楕円の画像となり、正方形の欠陥であれば
、中心部側が狭い扇形の画像となる。尚、実際の検査時
は、スコープ(11)とコーンミラー(12)との配置
関係から有効な視野幅から入る像はドーナツ状となって
おり、このドーナツ状の画像(21)は他よりも明るく
写し出される。また欠陥は黒く写し出される。
That is, it is reflected by the cone mirror (12) and the scope (
The cylinder inner wall surface (16) imaged by the imaging camera (10) through the cylinder (11) becomes a circular image as shown in FIG. 2, and the closer it gets to the center, the smaller the circumferential direction becomes. Therefore, if there is a circular defect on the cylinder inner wall surface (16L), the image will be an ellipse that becomes longer toward the center, and if it is a square defect, the image will be a fan-shaped image that is narrower toward the center. Due to the arrangement of the scope (11) and cone mirror (12), the image that enters from the effective field of view is donut-shaped, and this donut-shaped image (21) is projected brighter than the others. appears black.

そして、画像処理装置(14)に撮像カメラ(10)か
ら上記画像が入力されると、その入力画像のデータをフ
レームメモリに入力し、そのデータに基づいて以後の処
理を行う。先ず第3図に示す様に入力画像に対して垂直
射影ヒストグラム(22)と水平射影ヒストグラム(2
3)をとり、垂直射影ヒストグラム(22)において、
両端の座標(X、)X、+X。
When the image is input from the imaging camera (10) to the image processing device (14), the data of the input image is input to the frame memory, and subsequent processing is performed based on the data. First, as shown in Figure 3, a vertical projection histogram (22) and a horizontal projection histogram (22) are created for the input image.
3) and in the vertical projection histogram (22),
Coordinates of both ends (X,)X, +X.

(x、りからその中心      を求め、同時に水平
射影ヒストグラム(23)において、両端のを算出する
。この後第4図に示す様に画像中心変断面図を描き、こ
れによりドーナツ状の画像(21)の内側の座標(X3
)(X4 )を求める。
Find the center from ) inner coordinates (X3
)(X4).

そして第5図に示す様に、今までに得られた画像7”+
7′)に対し座標CXt )(Xz )(X・)(X4
)を通るドーナツ状の検査領域(24)を設定する。検
査領域(24)が設定されると、該検査領域(24)を
一定の幅(2)でリング状に細分化し、第6図に示す様
な複数の判定領域(Ll)〜(Ln)を設定する。この
判定領域(L、)〜(Ln )の幅(Il)は不良と判
定すべき欠陥径の直径と同じ長さに設定する。例えば最
小の欠陥の直径が0.5 mであれば、幅(1)も0.
5閣に設定する。設定後、検査領域(24)内の入力画
像に対して縦横方向の微分を行い、さらに2値化処理を
行う。2値化後各判定領域(L、)〜(Ln)内での欠
陥の面積値(Sl)〜(Sn)は各判定領域(Ll)〜
(Ln )内での暗い画素数をカウントすることにより
求める。一方隣合う2つの判定領域(L、とL2)、(
1,とLl)、(LlとL4)・・・(Ln−、とLn
 )内における基準判定値(yt )  (yz ) 
−(ym )  (m=n−t )を設定しておく。こ
の基準判定値(yt )  (yz )・・・(yn+
 )は夫々所定の判定領域内において不良と判定すべき
最小の欠陥径内の画素数の割合であり、2値化された画
像に対する回帰直線を基に算出する。そして第7図に示
す様に前記欠陥の面積値(S□)〜(Sn )と基準判
定値(y、)〜Cym )とを基に(St +S2)と
(y、)、(32+33 )と(yz)、(S3+34
)と(y a ) 、・・・(Sn。
And as shown in Figure 5, the image 7"+ obtained so far
7'), the coordinates CXt )(Xz )(X・)(X4
) is set as a donut-shaped inspection area (24). Once the inspection area (24) is set, the inspection area (24) is subdivided into rings with a constant width (2) to create multiple determination areas (Ll) to (Ln) as shown in FIG. Set. The width (Il) of the determination areas (L,) to (Ln) is set to the same length as the diameter of the defect to be determined as defective. For example, if the diameter of the smallest defect is 0.5 m, the width (1) is also 0.5 m.
Set in 5 cabinets. After setting, the input image within the inspection area (24) is differentiated in the vertical and horizontal directions, and then binarized. After binarization, the area values (Sl) to (Sn) of defects in each determination area (L, ) to (Ln) are determined by each determination area (Ll) to
It is determined by counting the number of dark pixels within (Ln). On the other hand, two adjacent judgment areas (L, and L2), (
1, and Ll), (Ll and L4)...(Ln-, and Ln
) Standard judgment value (yt) (yz)
-(ym) (m=nt) is set in advance. This standard judgment value (yt) (yz)...(yn+
) is the ratio of the number of pixels within the minimum defect diameter that should be determined as defective within a predetermined determination area, and is calculated based on the regression line for the binarized image. Then, as shown in FIG. 7, (St + S2), (y, ), (32+33) are calculated based on the area values (S□) to (Sn) of the defects and the reference judgment values (y, (yz), (S3+34
) and (y a ), ... (Sn.

+3m)と(ym )との比較演算を行い、基準判定値
(yl)〜(ym)より大きい面積値が1つでもあると
製品を不良とする。
A comparison operation is performed between +3m) and (ym), and if even one area value is larger than the reference judgment values (yl) to (ym), the product is judged to be defective.

上記画像処理装FIL (14)の画像処理は第9図に
示すようなフローチャートで示される。
Image processing by the image processing device FIL (14) is shown in a flowchart as shown in FIG.

上記検査装置はスコープ(11)及びコーンミラー (
12)を円筒内壁面(16)に挿入して検査する際、撮
像カメラ(10)を下方か上方へ若しくは上方から下方
へ順次移動させ、第8図に示す様に撮像領域が一部オー
バーラップするように撮像する。
The above inspection device consists of a scope (11) and a cone mirror (
12) into the cylinder inner wall surface (16) for inspection, the imaging camera (10) is sequentially moved downward or upward, or from above to below, so that the imaging areas partially overlap as shown in FIG. Take the image as shown.

このオーバーラツプ幅(h)は不良となる欠陥径に合わ
せておく。
This overlap width (h) is adjusted to the diameter of the defect that becomes defective.

上記の如き構成を有する検査装置は、検査時、スコープ
(11)及びコーンミラー(12)を検査を行う円筒内
壁面(6)内に挿入し、その中心軸に沿って移動させ、
所定距離毎に光源(19)を発光させて光ファイバ(2
0)を介して円筒内壁面(16)を照らし、円筒内壁面
(16)の一定の領域をコーンミラー(12)にて反射
させ、スコープ(工1)を通して撮像カメラ(10)に
撮像させる。そして撮像した入力画像を画像処理装置t
 (14)へ送り、上記した画像処理を行って欠陥の有
無を検査を行い、不良の欠陥が1つでも発見されると、
不良品とする。
During an inspection, the inspection device having the above configuration inserts the scope (11) and the cone mirror (12) into the inner wall surface (6) of the cylinder to be inspected, moves them along the central axis,
The light source (19) is made to emit light at every predetermined distance, and the optical fiber (2
A certain area of the cylinder inner wall surface (16) is reflected by a cone mirror (12), and an image is captured by an imaging camera (10) through a scope (technique 1). Then, the captured input image is processed by the image processing device t.
(14) and performs the image processing described above to inspect the presence or absence of defects, and if even one defective defect is found,
The product is considered defective.

尚、上記検査装置をシリンダブロック(25)のボア(
26)内面の検査に用いる場合は、第9図に示す様に、
撮像カメラ(10)及びスコープ(11)、コーンミラ
ー(12) 、光源(19) 、光ファイバ(20)等
をシリンダブロック(25)のボア数と同じ数量を用意
し、全ボア(26)内面を同時に検査するようにすれば
よい。またタクトタイムが長い場合にはその時間に合わ
せて、1ボアずつ若しくは2ボアずつ順番に検査するよ
うにしてもよい。
In addition, the above inspection device is installed in the bore (25) of the cylinder block (25).
26) When used for inner surface inspection, as shown in Figure 9,
Prepare an imaging camera (10), a scope (11), a cone mirror (12), a light source (19), an optical fiber (20), etc. in the same quantity as the number of bores in the cylinder block (25), and connect all bores (26) to the inner surface. should be inspected at the same time. Furthermore, if the takt time is long, the inspection may be performed sequentially, one bore at a time or two bores at a time, depending on the time.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、撮像カメラを回転させることなく上
下動させるだけで、円筒内壁面の輪切りにされた周面全
周を順番に撮像して、該円筒内壁面内の欠陥を自動的に
検査でき、しかも撮像カメラからの入力画像に対して常
に検査護域を設定するので、円筒内壁面の上下端付近の
ように入力画像に円筒内壁面以外の背景部分が入ってい
ても、該背景部分を検査領域から除外でき、正確な欠陥
検査を行える。
According to this invention, by simply moving the imaging camera up and down without rotating it, images are sequentially taken of the entire circumference of the sliced cylindrical inner wall surface, and defects within the cylindrical inner wall surface are automatically inspected. Moreover, since the inspection area is always set for the input image from the imaging camera, even if the input image contains background parts other than the cylinder inner wall surface, such as near the upper and lower ends of the cylinder inner wall surface, the background part is can be excluded from the inspection area, allowing accurate defect inspection.

従って、この検査方法をエンジンのシリンダブロックや
その他の部品の形成された円筒内壁面の欠陥検査に適用
すれば、該検査を自動化でき、作業者の負担を軽減する
ことができると共に正確な検査を行え、信頼性が大幅に
向上する。
Therefore, if this inspection method is applied to inspect for defects on the inner cylindrical walls of engine cylinder blocks and other parts, the inspection can be automated, reducing the burden on workers and ensuring accurate inspection. reliability is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に用いる検査装置の構成を示す正面
図、第2図はコーンミラーによる反射像の特性を示す原
理図、第3図乃至第7図は画像処理を示す原理図、第8
図は撮像領域を示す一部破断斜視図、第9図は画像処理
のフローチャート、第10図は他の検査装置を示す斜視
図、第11図は従来の検査装置の正面図、第12図及び
第13図は問題点を示す原理図である。 (10)・−・−撮像カメラ、  (11)−スコープ
、(12)・−コーンミラー (14)・−・画像処理
装置。 特 許 出 願 人   ダイハツ工業株式会社代  
  理    人    江  原  省  吾第1図 第2図 i [仕1 第 図 ×B  X4にコ ×1寸Xユ 第 図 鴨え眸翫 すlツJ14゜ ’$、(−1い−、) 第 図 第 図 第 図 第 図
FIG. 1 is a front view showing the configuration of an inspection device used in the method of the present invention, FIG. 2 is a principle diagram showing the characteristics of a reflected image by a cone mirror, FIGS. 3 to 7 are principle diagrams showing image processing, and FIG. 8
9 is a flowchart of image processing, FIG. 10 is a perspective view of another inspection device, FIG. 11 is a front view of a conventional inspection device, FIG. FIG. 13 is a principle diagram showing the problem. (10) ---Imaging camera, (11)--Scope, (12)--Cone mirror (14)-- Image processing device. Patent applicant: Daihatsu Motor Co., Ltd.
Figure 1 Figure 2 i [1 Figure x B Figure Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims] (1)昇降可能に支持した撮像カメラと、前記撮像カメ
ラの下方に垂設した小径の探査用スコープと、前記スコ
ープの下方に同芯上に設置した円錐形状のコーンミラー
と、前記撮像カメラにて撮像された画像を画像処理する
画像処理装置とを備え、前記スコープの下方及びコーン
ミラーを円筒内壁面内にその中心軸に沿って挿入して円
筒内壁面の周面を撮像し、前記画像処理装置において、
前記撮像カメラからの入力画像に対して水平方向及び垂
直方向のヒストグラムをとってその画像中心を求め、こ
の中心を基準としてドーナツ状に検査領域を設定し、こ
の検査領域内で微分処理及び2値化処理を行って欠陥の
有無を判定するようにしたことを特徴とする円筒内壁面
の欠陥の検査方法。
(1) An imaging camera supported in a vertically movable manner, a small-diameter exploration scope vertically installed below the imaging camera, a conical cone mirror installed concentrically below the scope, and a conical cone mirror installed concentrically below the scope; an image processing device that processes an image taken by the scope, the cone mirror is inserted below the scope and into the inner wall surface of the cylinder along its central axis to image the circumferential surface of the inner wall surface of the cylinder; In the processing device,
A horizontal and vertical histogram is taken for the input image from the imaging camera to find the center of the image, a doughnut-shaped inspection area is set with this center as a reference, and differential processing and binary processing are performed within this inspection area. 1. A method for inspecting defects on a cylindrical inner wall surface, characterized in that the presence or absence of a defect is determined by performing a chemical treatment.
JP2143345A 1990-05-31 1990-05-31 Inspection method for defects on the inner wall of the cylinder Expired - Fee Related JP2839934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2143345A JP2839934B2 (en) 1990-05-31 1990-05-31 Inspection method for defects on the inner wall of the cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2143345A JP2839934B2 (en) 1990-05-31 1990-05-31 Inspection method for defects on the inner wall of the cylinder

Publications (2)

Publication Number Publication Date
JPH0436644A true JPH0436644A (en) 1992-02-06
JP2839934B2 JP2839934B2 (en) 1998-12-24

Family

ID=15336630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2143345A Expired - Fee Related JP2839934B2 (en) 1990-05-31 1990-05-31 Inspection method for defects on the inner wall of the cylinder

Country Status (1)

Country Link
JP (1) JP2839934B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208738A (en) * 2001-01-11 2002-07-26 Nec Machinery Corp Illuminator and apparatus for inspecting tubular work using the same
JP2007313170A (en) * 2006-05-29 2007-12-06 Olympus Corp Endoscope system and endoscope observation method
WO2011115588A1 (en) * 2010-03-17 2011-09-22 Datalan, A.S. A method of passage openness inspection of a product, in particular of coolant passages of cylinder heads and a device for performing the method
US8972867B1 (en) 1998-12-31 2015-03-03 Flashpoint Technology, Inc. Method and apparatus for editing heterogeneous media objects in a digital imaging device
US8970761B2 (en) 1997-07-09 2015-03-03 Flashpoint Technology, Inc. Method and apparatus for correcting aspect ratio in a camera graphical user interface
JP2015224877A (en) * 2014-05-26 2015-12-14 日本電産トーソク株式会社 Inner surface inspection device
US9224145B1 (en) 2006-08-30 2015-12-29 Qurio Holdings, Inc. Venue based digital rights using capture device with digital watermarking capability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192244U (en) * 1986-05-28 1987-12-07
JPS6348444A (en) * 1986-08-19 1988-03-01 Narumi China Corp Method and device for automatic inspection of surface of glass substrate
JPS6374610U (en) * 1986-10-31 1988-05-18
JPS6415641A (en) * 1987-07-09 1989-01-19 Petroleum Energy Center Found Apparatus for inspecting inside of tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192244U (en) * 1986-05-28 1987-12-07
JPS6348444A (en) * 1986-08-19 1988-03-01 Narumi China Corp Method and device for automatic inspection of surface of glass substrate
JPS6374610U (en) * 1986-10-31 1988-05-18
JPS6415641A (en) * 1987-07-09 1989-01-19 Petroleum Energy Center Found Apparatus for inspecting inside of tube

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8970761B2 (en) 1997-07-09 2015-03-03 Flashpoint Technology, Inc. Method and apparatus for correcting aspect ratio in a camera graphical user interface
US8972867B1 (en) 1998-12-31 2015-03-03 Flashpoint Technology, Inc. Method and apparatus for editing heterogeneous media objects in a digital imaging device
JP2002208738A (en) * 2001-01-11 2002-07-26 Nec Machinery Corp Illuminator and apparatus for inspecting tubular work using the same
JP2007313170A (en) * 2006-05-29 2007-12-06 Olympus Corp Endoscope system and endoscope observation method
US8747305B2 (en) 2006-05-29 2014-06-10 Olympus Corporation Endoscope system and endoscopic observation method
US9224145B1 (en) 2006-08-30 2015-12-29 Qurio Holdings, Inc. Venue based digital rights using capture device with digital watermarking capability
WO2011115588A1 (en) * 2010-03-17 2011-09-22 Datalan, A.S. A method of passage openness inspection of a product, in particular of coolant passages of cylinder heads and a device for performing the method
JP2015224877A (en) * 2014-05-26 2015-12-14 日本電産トーソク株式会社 Inner surface inspection device

Also Published As

Publication number Publication date
JP2839934B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US5095204A (en) Machine vision inspection system and method for transparent containers
JP3560694B2 (en) Lens inspection system and method
US6084663A (en) Method and an apparatus for inspection of a printed circuit board assembly
JPH04166751A (en) Method and apparatus for inspecting defect in bottle and the like
CN103163150A (en) Online cable surface defect detection device and online cable surface defect detection method
CN105021628A (en) Detection method for surface defects of optical fiber image inverter
CN110208269B (en) Method and system for distinguishing foreign matters on surface of glass from foreign matters inside glass
CN106645185A (en) Method and device for intelligently detecting surface quality of industrial parts
JP3235387B2 (en) Lighting condition setting support apparatus and method
JPH04128635A (en) Method and device for inspection
JPH06294749A (en) Flaw inspection method for plat glass
JPH0436644A (en) Inspecting method for defect in internal wall surface of cylinder
CN206146851U (en) Intellectual detection system industrial part surface quality's device
AU644973B2 (en) Apparatus and method for aiding in deciding or setting ideal lighting conditions in image processing system
CN111077162A (en) Glass bottle defect detecting system
JP2009236760A (en) Image detection device and inspection apparatus
JP2001194322A (en) External appearance inspection device and inspection method
JPH07243831A (en) Method and device for automatically testing spinneret
CN115511791A (en) Liquid crystal grating function detection method and system
US20230138331A1 (en) Motion in images used in a visual inspection process
JPH11248643A (en) Detection device for foreign matter in transparent film
CN116997927A (en) Curved substrate bubble detection method and detection system
KR102085090B1 (en) Laundry tank full automatic vision inspection device
JP4269423B2 (en) Surface inspection apparatus and surface inspection method
JP3202089B2 (en) Surface defect inspection method for periodic patterns

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees