JPH0436409Y2 - - Google Patents

Info

Publication number
JPH0436409Y2
JPH0436409Y2 JP2193587U JP2193587U JPH0436409Y2 JP H0436409 Y2 JPH0436409 Y2 JP H0436409Y2 JP 2193587 U JP2193587 U JP 2193587U JP 2193587 U JP2193587 U JP 2193587U JP H0436409 Y2 JPH0436409 Y2 JP H0436409Y2
Authority
JP
Japan
Prior art keywords
curved
curved conduit
axis
conduit
flow tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2193587U
Other languages
Japanese (ja)
Other versions
JPS63129825U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2193587U priority Critical patent/JPH0436409Y2/ja
Publication of JPS63129825U publication Critical patent/JPS63129825U/ja
Application granted granted Critical
Publication of JPH0436409Y2 publication Critical patent/JPH0436409Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 技術分野 本考案は、略同形等大の湾曲導管からなり、音
叉状に振動させ該湾曲導管のコリオリの力による
捩り変位の関数として質量流量を求めるコリオリ
の力式流量計に関する。
[Detailed description of the invention] Technical field The present invention is a Coriolis force flow rate method which consists of curved conduits of approximately the same shape and size, and which vibrates in a tuning fork shape to determine the mass flow rate as a function of the torsional displacement of the curved conduit due to the Coriolis force. Regarding the meter.

従来技術 流管を流れる流体流に対して振動を与えると、
流体流の流水の向きと流管の振動軸とに対して直
角方向にコリオリの力が発生し、このコリオリの
力が振動周波数と流体の質量流量とに比例するこ
とが知られており、この原理に基づいたコリオリ
の力式の質量流量計が開示されている(特開昭59
−92314号公報参照)。
Prior Art When vibration is applied to a fluid flow flowing through a flow tube,
It is known that a Coriolis force is generated in a direction perpendicular to the direction of the fluid flow and the vibration axis of the flow tube, and that this Coriolis force is proportional to the vibration frequency and the mass flow rate of the fluid. A Coriolis force type mass flowmeter based on the principle has been disclosed (Japanese Unexamined Patent Publication No. 1983-1999).
-Refer to Publication No. 92314).

第5図は、従来のコリオリの力式流量計の一例
を示す斜視図で、図中、1は流管、2は該流管1
を図示しない被測定流体管路に接続するためのフ
ランジ、3は管路1内に設けられた仕切板、4は
管路1の管壁に設けられたボス、5,6は湾曲導
管、7は支持板、8はマグネツトブラケツト、9
はコイルブラケツト、10は駆動マグネツト、1
1は駆動コイル、12は検出マグネツト、13は
センサコイル、14は駆動コイル用導線、15は
センサコイル用導線で、周知のように、一方のフ
ランジ2から流管1内に導入された被測定流体
は、該流管1内の一方の仕切板3で仕切られて湾
曲導管5,6に導かれ、該流管1内において、他
の仕切板3によつて逆方向への流れが阻止され、
他のフランジ2を通して図示しない被測定流体管
路に流出される。なお、仕切板3は湾曲導管5,
6に等流量流れるように配設されている。
FIG. 5 is a perspective view showing an example of a conventional Coriolis force flowmeter, in which 1 is a flow tube, and 2 is a flow tube 1.
3 is a partition plate provided in the pipe line 1; 4 is a boss provided on the pipe wall of the pipe line 1; 5 and 6 are curved pipes; 7 is a support plate, 8 is a magnetic bracket, 9
is a coil bracket, 10 is a drive magnet, 1
1 is a drive coil, 12 is a detection magnet, 13 is a sensor coil, 14 is a lead wire for the drive coil, and 15 is a lead wire for the sensor coil. The fluid is partitioned by one partition plate 3 in the flow tube 1 and guided to the curved conduits 5 and 6, and in the flow tube 1, the other partition plate 3 prevents the fluid from flowing in the opposite direction. ,
The fluid flows out through the other flange 2 to a fluid conduit (not shown) to be measured. Note that the partition plate 3 has a curved conduit 5,
6 so that an equal flow rate flows through the pipes.

而して、コリオリの力式流量計は、前述の原理
にもとづいて、湾曲導管内を流体が流れるときに
該湾曲導管に作用するコリオリの力を検出して被
測定流体の質量流量を計測するものであるが、流
体に対する振動は、流管1を固定節部として片持
ばり状に伸びる湾曲導管5,6を、該湾曲導管
5,6に各々装着されたマグネツトブラケツト8
及びコイルブラケツト9に対向して配設された駆
動マグネツト10と駆動コイル11との電磁力に
より行われる。湾曲導管5,6の支持板7におけ
る固着点P1,P2を結んだ第1軸Pまわりの固有
振動数は実質的に等しく選ばれており、図示しな
い制御駆動装置により、音叉状に一定振幅で駆動
される。マグネツトブラケツト8に穿孔された開
孔16は各々湾曲導管の固有振動数を等しくする
ため、予測にもとづいて穿孔面積が定められたも
のである。湾曲導管5,6は音叉状に固有振動数
で駆動されるため、小さい電磁力により効率的に
加振される。コリオリの力は、湾曲導管5,6に
おいて、第1の軸Pに直交する対称軸である第2
軸Rのまわりの回転力をもたらす。この回転力
は、湾曲導管5,6の駆動振動数と等しい周波数
をもつている。従つて、コリオリの力による第2
軸Rまわりの湾曲導管5,6の変位は駆動変位と
重畳される。しかし、コリオリの力による変位
は、駆動変位と比較して極めて小さいので、コリ
オリの力である変位を精度よく検出することは困
難であるが、従来技術では、この問題を解決する
ため湾曲導管5,6の静止位置で定められた基準
面を、該導管5,6が通過する時間差として計測
することにより高精度な計測を可能にしている。
この時間差は、湾曲導管5の左右対称位置に配設
された検出マグネツト12と該検出マグネツト1
2と対向しかつ湾曲導管6に配設されたセンサコ
イル13との相対運動によつて生ずる正弦波信号
の位相差として求めている。
Based on the above-mentioned principle, the Coriolis force flow meter measures the mass flow rate of the fluid to be measured by detecting the Coriolis force that acts on the curved conduit when the fluid flows through the curved conduit. However, the vibration to the fluid is caused by the curved conduits 5 and 6 extending in a cantilever shape with the flow tube 1 as a fixed node, and the magnetic brackets 8 attached to the curved conduits 5 and 6, respectively.
This is done by the electromagnetic force between a drive magnet 10 and a drive coil 11, which are disposed opposite to the coil bracket 9. The natural frequencies around the first axis P connecting fixed points P 1 and P 2 on the support plate 7 of the curved conduits 5 and 6 are selected to be substantially equal, and are kept constant in a tuning fork shape by a control drive device (not shown). Driven by amplitude. The perforation areas of the perforations 16 formed in the magnetic bracket 8 are determined based on predictions in order to equalize the natural frequencies of the curved conduits. Since the curved conduits 5 and 6 are driven in a tuning fork shape at a natural frequency, they are efficiently excited by a small electromagnetic force. The Coriolis force is caused by a second axis of symmetry perpendicular to the first axis P in the curved conduits 5, 6.
Provides a rotational force about axis R. This rotational force has a frequency equal to the driving frequency of the curved conduits 5,6. Therefore, the second
The displacement of the curved conduits 5, 6 about the axis R is superimposed on the drive displacement. However, since the displacement caused by the Coriolis force is extremely small compared to the driving displacement, it is difficult to accurately detect the displacement caused by the Coriolis force. , 6 are measured as the time difference between the passages of the conduits 5 and 6, making highly accurate measurement possible.
This time difference is caused by the difference between the detection magnet 12 and the detection magnet 1 arranged at symmetrical positions on the curved conduit 5.
2 and the sensor coil 13 disposed in the curved conduit 6.

従来技術の問題点 上述した従来技術の湾曲導管5,6は同形等大
であるが、実際の湾曲導管は同一寸法であつて
も、肉厚の変化、材質の多少の差等により固有振
動数を決定する質量、弾性係数などが異なる他、
寸法形状の誤差等も加わり、固有振動数を正確に
一致させることは困難である。更に、これら湾曲
導管に装着されるブラケツト、駆動要素、検出要
素、配線材等の付加要素等によつても固有振動数
に差が生じるが、これらの差を開孔16等によつ
て無くして固有振動数を等しくすることを試みて
いるが、実際には、予測補正をすることは困難
で、固有振動数を合致させる調整に多くの時間を
要し、非能率であつた。また各振動サイクルにお
いて安定した位相差を得るためには、安定した正
弦波信号が必要であるが、湾曲導管5,6の固有
振動数が異ると、これら異つた信号が干渉して、
高調波信号が重畳した検出信号となるため、安定
した位相差が得られず、その結果精度も不安定で
信頼性の高い計測はできないという問題点があつ
た。
Problems with the prior art The curved conduits 5 and 6 of the prior art described above have the same shape and size, but even if the actual curved conduits have the same dimensions, the natural frequency may vary due to changes in wall thickness, slight differences in material, etc. In addition, the mass, elastic modulus, etc. that determine the
Due to the addition of dimensional and shape errors, it is difficult to precisely match the natural frequencies. Furthermore, differences in natural frequency occur due to additional elements such as brackets, drive elements, detection elements, wiring materials, etc. attached to these curved conduits, but these differences can be eliminated by using holes 16, etc. Attempts have been made to make the natural frequencies equal, but in reality, it is difficult to make predictive corrections, and it takes a lot of time to make adjustments to match the natural frequencies, which is inefficient. Furthermore, in order to obtain a stable phase difference in each vibration cycle, a stable sine wave signal is required, but if the natural frequencies of the curved conduits 5 and 6 are different, these different signals will interfere.
Since the detection signal is a superimposed harmonic signal, a stable phase difference cannot be obtained, and as a result, the accuracy is unstable, making it impossible to perform highly reliable measurements.

問題点解決のための手段 本考案は、湾曲導管に固有振動数の差がある場
合、該湾曲導管を支持、固設している流管が振動
し、その振幅又は振動加速度は各々の湾曲導管の
固有振動数の差が小さい場合、それに比例すると
いう本出願人の実験結果に基づいて、流管の振
動、振幅を測定し、流管の振動、振幅が零とする
ように湾曲導管の固有振動数を等しくする調整を
行なうことを目的としてなされたものである。
Means to solve the problem: The applicant's experimental results show that when there is a difference in the natural frequencies of curved conduits, the flow tube that supports and secures the curved conduits will vibrate, and that the amplitude or vibration acceleration of the vibration will be proportional to the difference in the natural frequencies of the curved conduits when they are small. This is based on the applicant's experimental results, and the purpose of the present invention is to measure the vibration and amplitude of the flow tubes, and adjust the natural frequencies of the curved conduits to be equal so that the vibration and amplitude of the flow tubes are zero.

実施例 第1図は、本考案のコリオリの力式流量計を示
すもので、第5図に示した従来技術と同一の構成
を示す部分には、第5図の場合と同一の参照番号
を付し、その説明を省略する。而して、第1図に
示した流量計においては、検出マグネツト12と
センサコイル13との微小振動によりセンサコイ
ル13に発生した微小出力電圧を、図示しない基
準電圧と比較増幅して駆動コイル11に印加して
正帰還ループを形成して湾曲導管が一定振幅とな
るように制御している。即ち、湾曲導管の固有振
動数で駆動される。この場合、各々の湾曲導管
5,6の固有振動数が異なるときは、第3図に示
すごとく、流管1が振動し、その振幅又は振動加
速度は各々の湾曲導管5,6の固有振動数の差
Δfに比例することが確かめられた。例えば、導
管5の固有振動数が大きい場合は、該湾曲導管5
の対称軸R−Rと湾曲導管5との交点20又はマ
グネツトブラケツト8との交点30にステンレス
綱等の附加質量Δmを溶着する。この附加質量
Δmは湾曲導管の固有振動数の差Δfと比例するの
で、流管1の振動振幅又は振動加速度Aと附加質
量Δmとも比例関係にあり、第2図の関係が得ら
れる。従つて、第2図から、流管1の振幅又は振
動加速度を振動計等により測定することにより附
加質量Δmが定められる。流管1に対して湾曲導
管1の腕の長さは交点20の方が交点30よりも
長いので附加質量Δmは反対に交点20の方が交
点30側よりも小さくなる。
Embodiment FIG. 1 shows a Coriolis force flowmeter of the present invention, and parts having the same configuration as the prior art shown in FIG. 5 are designated by the same reference numerals as in FIG. 5. and the explanation thereof will be omitted. In the flowmeter shown in FIG. 1, the minute output voltage generated in the sensor coil 13 due to minute vibrations between the detection magnet 12 and the sensor coil 13 is compared with a reference voltage (not shown) and amplified, and then the drive coil 11 is amplified. is applied to form a positive feedback loop to control the curved conduit to have a constant amplitude. That is, it is driven at the natural frequency of the curved conduit. In this case, when the natural frequencies of the curved conduits 5 and 6 are different, the flow tube 1 vibrates as shown in FIG. It was confirmed that it is proportional to the difference Δf. For example, if the natural frequency of the conduit 5 is large, the curved conduit 5
An additional mass Δm of stainless steel or the like is welded to the intersection 20 of the axis of symmetry RR and the curved conduit 5 or the intersection 30 of the magnetic bracket 8. Since this added mass Δm is proportional to the difference Δf in the natural frequencies of the curved conduit, there is also a proportional relationship between the vibration amplitude or vibration acceleration A of the flow tube 1 and the added mass Δm, and the relationship shown in FIG. 2 is obtained. Therefore, from FIG. 2, the additional mass Δm can be determined by measuring the amplitude or vibration acceleration of the flow tube 1 using a vibrometer or the like. Since the length of the arm of the curved conduit 1 with respect to the flow tube 1 is longer at the intersection 20 than at the intersection 30, the additional mass Δm is conversely smaller at the intersection 20 than at the intersection 30.

第1図は、流管1内を仕切板3で仕切つてU字
形の湾曲導管5,6に等流量を分流するようにし
た第5図に示した従来技術に本発明を適用した場
合について述べたが、第4図に示すごとく、湾曲
導管がU字形でなく、流管51に流入する流量Q
を等分したQ/2を流通し、かつ、流入側52と
流出側53とが同一方向となるように直交する円
形の湾曲導管55と該湾曲導管55と同形等大で
平行する湾曲導管56とからなり、流管51の軸
P1に対して音叉状にX−X方向に加振し、流管
51の軸P1と直交する導管55,56の対称軸
R1まわりに生ずるコリオリの力を測定する質量
流量計の場合でも同様で、もし、湾曲導管55の
固有振動数が大きいときはR1−R1と湾曲導管5
5との交点35に第2図及び第3図と同様な関係
にある附加質量Δmを固着させることにより、第
1図に示した実施例と同様の効果を得ることがで
きる。また、第1図及び第4図において、各々湾
曲導管6,56が湾曲導管5,55よりも固有振
動数が大きい場合は、湾曲導管6の対称軸R−R
上の交点21又はコイルブラケツト9上の交点3
1および、湾曲導管56と対称軸R1−R1との交
点36に附加質量Δmを固着する。なお、上記以
外の等分流形の導管をもつたコリオリの力式流量
計の場合においても流管振動を零とするような附
加質量を何れか固有振動の大きい方の導管に固着
することにより同様な効果を得ることができる。
FIG. 1 shows a case in which the present invention is applied to the conventional technique shown in FIG. 5, in which the inside of the flow tube 1 is partitioned by a partition plate 3 and an equal flow rate is divided into U-shaped curved conduits 5 and 6. However, as shown in FIG. 4, the curved conduit is not U-shaped, and the flow rate Q flowing into the flow tube 51 is
A circular curved conduit 55 that flows through Q/2, which is divided into equal parts, and is orthogonal so that the inflow side 52 and the outflow side 53 are in the same direction, and a curved conduit 56 that is the same shape and size as the curved conduit 55 and is parallel to the curved conduit 55. The axis of the flow tube 51
P 1 is excited in the X-X direction in a tuning fork shape, and the symmetry axis of the conduits 55 and 56 is perpendicular to the axis P 1 of the flow tube 51.
The same applies to the case of a mass flow meter that measures the Coriolis force generated around R 1 . If the natural frequency of the curved conduit 55 is large, R 1 - R 1 and the curved conduit 5
By fixing the additional mass Δm having the same relationship as in FIGS. 2 and 3 at the intersection 35 with 5, the same effect as in the embodiment shown in FIG. 1 can be obtained. In addition, in FIGS. 1 and 4, when the curved conduits 6 and 56 have a larger natural frequency than the curved conduits 5 and 55, the symmetry axis R-R of the curved conduits 6
Intersection 21 on top or intersection 3 on coil bracket 9
1 and an additional mass Δm is fixed at the intersection 36 of the curved conduit 56 and the axis of symmetry R 1 -R 1 . In addition, in the case of a Coriolis force type flow meter having an equally divided flow type conduit other than the above, the same can be achieved by attaching an additional mass that makes the flow tube vibration to zero to the conduit with the larger natural vibration. effect can be obtained.

効 果 上述のように、本考案によると、湾曲導管の
各々の固有振動数を一致させるために、流管の振
動振幅又は振動加速度を測定し、振動振幅又は振
動加速度と附加質量との予め測定された関係に基
づいて附加質量Δmの値を決めて対応する部所に
固設するという簡単な手段により駆動エネルギの
小さい効率がすぐれた安定した位相差信号を得る
ことにより高精度なコリオリの力式流量計を得る
ことができる。
Effects As described above, according to the present invention, in order to match the natural frequencies of each curved conduit, the vibration amplitude or vibration acceleration of the flow tube is measured, and the vibration amplitude or vibration acceleration and the added mass are measured in advance. By simply determining the value of the additional mass Δm based on the relationship and fixing it at the corresponding location, a highly efficient Coriolis force can be obtained by obtaining a stable phase difference signal with low drive energy and excellent efficiency. type flowmeter can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案のコリオリの力式流量計の一
実施例を説明するための構成図、第2図、第3図
は、流管の振動振幅又は振動加速度と附加質量
Δm、湾曲導管固有振動数の差との関係を示す
図、第4図は、本考案の他の実施例を説明するた
めの図、第5図は従来のコリオリの力式流量計の
一例を説明するための図である。 1,51……流管、5,6,55,56……湾
曲導管、8……マグネツトブラケツト、9……コ
イルブラケツト、10……駆動マグネツト、11
……駆動コイル、12……センサコイル、13…
…検出マグネツト、20,30,35,36……
附加質量。
Fig. 1 is a configuration diagram for explaining one embodiment of the Coriolis force flowmeter of the present invention, and Figs. 2 and 3 show the vibration amplitude or vibration acceleration of the flow tube, the added mass Δm, and the curved conduit. FIG. 4 is a diagram showing the relationship with the difference in natural frequencies, FIG. 4 is a diagram for explaining another embodiment of the present invention, and FIG. 5 is a diagram for explaining an example of a conventional Coriolis force flowmeter. It is a diagram. 1, 51... Flow tube, 5, 6, 55, 56... Curved conduit, 8... Magnetic bracket, 9... Coil bracket, 10... Drive magnet, 11
...Drive coil, 12...Sensor coil, 13...
...Detection magnet, 20, 30, 35, 36...
Added mass.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 流管軸に直交する軸を対称軸として湾曲した略
同形等大の一対の湾曲導管を平行して支持し、前
記流管内を流通する流体を、各々の湾曲導管に等
流量に分流し、該湾曲導管を音叉状に加振し、
各々の湾曲導管に作用するコリオリの力による該
湾曲導管の対称軸まわりのねじり変位に比例した
物理量から質量流量を求める流量計において、前
記流管の振動を零とし、加振力を最低とする付加
質量を、前記湾曲導管の支持軸まわりの固有振動
数の大きい湾曲導管の対称軸と該湾曲導管又は湾
曲導管に流管軸と平行して配設される加振手段等
を支持するブラケツトとの交点に固着させたこと
を特徴とするコリオリの力式流量計。
A pair of curved conduits of approximately the same shape and size are supported in parallel with an axis perpendicular to the flow tube axis as a symmetry axis, and the fluid flowing through the flow tubes is divided into equal flow rates to each curved conduit. Exciting the curved conduit in a tuning fork shape,
In a flowmeter that determines the mass flow rate from a physical quantity proportional to the torsional displacement around the symmetry axis of each curved conduit due to the Coriolis force acting on each curved conduit, the vibration of the flow tube is set to zero and the excitation force is minimized. The additional mass is connected to an axis of symmetry of the curved conduit having a large natural frequency around the support axis of the curved conduit, and a bracket that supports the curved conduit or an excitation means etc. disposed in the curved conduit in parallel with the flow tube axis. A Coriolis force flowmeter characterized by being fixed at the intersection of the
JP2193587U 1987-02-17 1987-02-17 Expired JPH0436409Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2193587U JPH0436409Y2 (en) 1987-02-17 1987-02-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2193587U JPH0436409Y2 (en) 1987-02-17 1987-02-17

Publications (2)

Publication Number Publication Date
JPS63129825U JPS63129825U (en) 1988-08-24
JPH0436409Y2 true JPH0436409Y2 (en) 1992-08-27

Family

ID=30818838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2193587U Expired JPH0436409Y2 (en) 1987-02-17 1987-02-17

Country Status (1)

Country Link
JP (1) JPH0436409Y2 (en)

Also Published As

Publication number Publication date
JPS63129825U (en) 1988-08-24

Similar Documents

Publication Publication Date Title
JP2927307B2 (en) Mass flow meter
JPH0692901B2 (en) Mass flowmeter operating on the Coriolis principle
JP2003503691A (en) Type identification for drive control of Coriolis flowmeters
JP3547527B2 (en) Mass flow meter
US4972724A (en) Coriolis-type mass flowmeter having a straight measuring tube
KR20060134212A (en) Method and apparatus for force balancing
JPH0769205B2 (en) Coriolis mass flowmeter unaffected by density changes
JPH0436409Y2 (en)
JPS63191024A (en) Mass flowmeter
JPH0341319A (en) Coriolis mass flowmeter
JPH0436410Y2 (en)
JPS61283827A (en) Mass flowmeter
JP2506118B2 (en) Mass flow meter
JPH0242319A (en) Fluid measuring device
JP3058094B2 (en) Mass flow meter
JP2984134B2 (en) Coriolis flow meter
CN219914529U (en) Vibration transducer and flowmeter
JPH067324Y2 (en) Mass flow meter
JP2000111380A (en) Coriolis-type mass flowmeter
JPH1151733A (en) Vibration type measuring device
JPH0979882A (en) Vibration type measuring device
JP3565585B2 (en) Mass flow meter
WO2024072431A1 (en) Flowmeter magnetic shielding apparatus and method
JPH0882541A (en) Coriolis mass flowmeter
JPH0625686B2 (en) Mass flow meter