JPH04364014A - Laminated ceramic capacitor - Google Patents

Laminated ceramic capacitor

Info

Publication number
JPH04364014A
JPH04364014A JP3138748A JP13874891A JPH04364014A JP H04364014 A JPH04364014 A JP H04364014A JP 3138748 A JP3138748 A JP 3138748A JP 13874891 A JP13874891 A JP 13874891A JP H04364014 A JPH04364014 A JP H04364014A
Authority
JP
Japan
Prior art keywords
temperature
capacitor
heating element
ceramic
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3138748A
Other languages
Japanese (ja)
Inventor
Koji Amano
天野 弘司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP3138748A priority Critical patent/JPH04364014A/en
Publication of JPH04364014A publication Critical patent/JPH04364014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To provide a novel laminated ceramic capacitor with electrostatic capacitance sharply increased. CONSTITUTION:An external electrode 11 is formed on a pair of side end surfaces of a ceramic body 10, and a plurality of internal electrodes 12 electrically communicated with the external electrode 11 are provided in the ceramic body 10. Heating layers 20 comprising a positive temperature characteristic resistor(PTC) are provided between the uppermost internal electrode and the adjacent electrode, and between the lowermost internal electrode and the adjacent electrode. The PTC heating layer 20 is heated with power supply, and hereby the ceramic body 10 becomes higher temperature than ordinary temperature. Thus, a resulting capacitor is operable at high temperature.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、セラミック製本体内に
発熱体部を設けた積層セラミックコンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer ceramic capacitor in which a heating element is provided within a ceramic body.

【0002】0002

【従来の技術】昨今、積層セラミックコンデンサの軽薄
短小化と同時に静電容量をも一層増やすことが強く要求
されている。これに応ずるため、誘電率の高い誘電体材
料を新規に開発したり、誘電体層を薄くしたりすること
がなされているが、いずれも技術的に限界に近づいてお
り、これ以上の静電容量の増量化は非常に困難である。
BACKGROUND OF THE INVENTION In recent years, there has been a strong demand for multilayer ceramic capacitors to be made lighter, thinner, shorter and smaller, and at the same time to further increase their capacitance. In order to meet this demand, efforts have been made to develop new dielectric materials with high dielectric constants and to make dielectric layers thinner, but these methods are approaching their technological limits and it is impossible to further reduce static electricity. Increasing capacity is extremely difficult.

【0003】ところで、積層セラミックコンデンサは一
般に、六面体であるセラミック製本体と、セラミック製
本体をセラミック層状に仕切る複数の内部電極と、内部
電極に導通すると共にセラミック製本体の一対の側端面
に設けた外部電極とを有する。
By the way, a multilayer ceramic capacitor generally has a hexahedral ceramic body, a plurality of internal electrodes that partition the ceramic body into ceramic layers, and a plurality of internal electrodes that are electrically connected to the internal electrodes and provided on a pair of side end faces of the ceramic body. It has an external electrode.

【0004】0004

【発明が解決しようとする課題】セラミック製本体の材
料としては、チタン酸バリウム系が多用されている。チ
タン酸バリウム(BaTiO3 等)系のセラミック誘
電体は、誘電率が常温付近で数千〜1万数千程度と非常
に大きい反面、温度や電圧によって誘電率が大幅に変化
する。このため、このセラミック誘電体を使用したコン
デンサは、小形で大きな静電容量が得られるが、静電容
量が温度や電圧により大きく変動する。
[Problems to be Solved by the Invention] Barium titanate is often used as the material for the ceramic body. Barium titanate (BaTiO3, etc.) based ceramic dielectrics have a very large dielectric constant of several thousand to tens of thousands at room temperature, but on the other hand, the dielectric constant changes significantly depending on temperature and voltage. Therefore, although a capacitor using this ceramic dielectric is small and has a large capacitance, the capacitance varies greatly depending on temperature and voltage.

【0005】例えば、BaTiO3 誘電体の温度と誘
電率との関係をグラフで示す図9において、実線aで示
すように、BaTiO3 は約125℃のキューリー点
(キューリー温度)Tc を有するが、このキューリー
点Tc 付近で誘電率が最大、即ち静電容量が最大にな
り、それ以外の温度、例えば常温付近では静電容量が1
/3程度に減少する。このことから、コンデンサは通常
は常温下で使用するため、BaTiO3 誘電体が本来
持つ誘電率を十分に利用していないことが分かる。この
ため、シフター及びディプサー(CeO2、ZrO2 
、BaSnO3 、CaTiO3 等)をBaTiO3
 に添加して常温付近で最大の静電容量が得られる様に
、又よりフラットな特性を得る様にキューリー点を移動
して使用する(点線c参照)。しかしながら、キューリ
ー点を125℃から常温程度までシフトし、かつ特性を
滑らかにしてやるためには、非常に多くのシフターとデ
ィプサーを必要とし、その分、コンデンサ全体が大型化
し、小型化の要請に反することになる。
For example, in FIG. 9, which is a graph showing the relationship between temperature and dielectric constant of BaTiO3 dielectric, BaTiO3 has a Curie point (Curie temperature) Tc of about 125°C, as shown by solid line a. Near point Tc, the dielectric constant is maximum, that is, the capacitance is maximum, and at other temperatures, for example around room temperature, the capacitance is 1.
/3. This shows that since capacitors are normally used at room temperature, the inherent permittivity of the BaTiO3 dielectric is not fully utilized. For this reason, shifters and dipsers (CeO2, ZrO2
, BaSnO3, CaTiO3, etc.) to BaTiO3
The Curie point is moved so that the maximum capacitance can be obtained near normal temperature by adding it to the room temperature, and the Curie point is moved so as to obtain flatter characteristics (see dotted line c). However, in order to shift the Curie point from 125°C to around room temperature and smooth the characteristics, a large number of shifters and dipsers are required, which increases the size of the entire capacitor, which goes against the demand for miniaturization. It turns out.

【0006】本発明は、前記問題点に着目してなされた
ものであって、静電容量を飛躍的に大きくし、それでい
て小型化の要請に応え得る新規な積層セラミックコンデ
ンサを提供することにある。
The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a novel multilayer ceramic capacitor that dramatically increases capacitance and can meet the demands for miniaturization. .

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明の積層セラミックコンデンサは、前記従来の
コンデンサにおいて、一対の外部電極から通電されるよ
うに発熱体部をセラミック製本体内に設けたことを特徴
とするものである。本発明のコンデンサでは、セラミッ
ク製本体が上述したようにキューリー点を移動するため
にシフター及びディプサーをチタン酸バリウム系材料に
添加したセラミック誘電体であることと、セラミック製
本体内に発熱体部を設けたこととにより、通電すれば常
温よりも高い温度で作動する。特に、発熱体部が通電に
より発熱し、この熱がセラミック製本体に伝導し、セラ
ミック製本体の温度が常温よりも高い温度に保持される
。この結果、図9で示した実線aのキューリー点Tc 
に近い範囲でセラミック誘電体を使用することになり、
この時の温度にキューリーポイントを移動させる上記添
加剤の作用と相まって静電容量は一段と高くなる。この
発明のキューリー点は、発熱体部への通電時の温度に対
応して常温よりも高いので、シフター及びディプサーの
量は、常温にキューリー点を移動させる場合に比し少な
くて良い。その分、小型化が実現する。
[Means for Solving the Problems] In order to achieve the above object, the multilayer ceramic capacitor of the present invention differs from the conventional capacitor in that a heating element is provided within the ceramic main body so as to be energized from a pair of external electrodes. It is characterized by: In the capacitor of the present invention, as described above, the ceramic body is a ceramic dielectric material in which a shifter and a dipser are added to barium titanate-based material in order to move the Curie point, and a heating element is provided within the ceramic body. Due to this, when energized, it operates at a temperature higher than normal temperature. In particular, the heating element generates heat when energized, and this heat is conducted to the ceramic main body, so that the temperature of the ceramic main body is maintained at a temperature higher than room temperature. As a result, the Curie point Tc of the solid line a shown in FIG.
Ceramic dielectrics will be used in a range close to
Coupled with the action of the additive that moves the Curie point to this temperature, the capacitance becomes even higher. Since the Curie point of the present invention is higher than room temperature, corresponding to the temperature when electricity is applied to the heating element, the amount of shifters and dipsers may be smaller than when moving the Curie point to room temperature. Accordingly, miniaturization is realized.

【0008】セラミック製本体内に設ける発熱体部は、
通電により発熱してコンデンサを常温よりも高い温度に
維持できる限り、その材料に限定はない。一般的な材料
としては、正温度特性抵抗体(以下、PTCという)や
負温度特性抵抗体(以下、NTCという)が好適である
。ここで、PTCとNTCの温度と抵抗変化率(20℃
の値に対する変化比)との関係を図10にグラフで示す
。このグラフから分かるように、PTCとNTCはそれ
ぞれ組成やその比率によっても多少温度特性が異なるた
め、コンデンサの適用温度に応じて適宜選択すればよい
。例えば、PTCではBaTiO3 とY2 O3 等
の希土類化合物との混合物を使用してもよいし、或いは
キューリー点を調整するために(Ba1−x Pbx 
Y)TiO3 又は(Ba1−x Srx Y)TiO
3 を用いてもよい。 NTCとしては、Mn、Co、Ni、Cu、Fe等の金
属酸化物を2種類以上組合せた混合物を使用すればよい
[0008] The heating element section provided within the ceramic main body is
The material is not limited as long as it generates heat when energized and can maintain the capacitor at a temperature higher than room temperature. As a general material, a positive temperature characteristic resistor (hereinafter referred to as PTC) and a negative temperature characteristic resistor (hereinafter referred to as NTC) are suitable. Here, the temperature and resistance change rate of PTC and NTC (20℃
FIG. 10 graphically shows the relationship between the change ratio and the value of . As can be seen from this graph, PTC and NTC have somewhat different temperature characteristics depending on their compositions and their ratios, so they can be appropriately selected depending on the application temperature of the capacitor. For example, PTC may use a mixture of BaTiO3 and a rare earth compound such as Y2O3, or to adjust the Curie point (Ba1-x Pbx
Y)TiO3 or (Ba1-x Srx Y)TiO
3 may be used. As the NTC, a mixture of two or more metal oxides such as Mn, Co, Ni, Cu, and Fe may be used.

【0009】発熱体部は、セラミック製本体内において
一対の外部電極から通電されればよいのであって、その
形状や位置等には種々の様態がある。例えば、互いに隣
接する内部電極間において双方の内部電極が重なる部分
のみに発熱体部を発熱体層として設けたり、一対の外部
電極間において両方の外部電極に接触して発熱体層を設
けたりすればよい。発熱体部を発熱体層とする場合、少
なくとも1層の発熱体層がセラミック製本体内に存在す
れば十分であり、以下の実施例にも示すように1層のみ
、又は2層を設ける態様がある。更に、発熱体層は上記
PTC又はNTCのいずれで構成しても構わず、2層以
上の場合にはどちらか一方のみを使用してもよいし、両
方を組合せても差し支えない。しかし、図10に示す特
性からすると、PTCとNTCを組合せた場合、PTC
の発熱し難い温度帯(通電初期の低温度領域)をNTC
が補償するため、通電に対する昇温特性が優れることに
なる。
The heating element may be energized from a pair of external electrodes within the ceramic main body, and there are various shapes and positions thereof. For example, between adjacent internal electrodes, a heating element layer may be provided only in the portion where both internal electrodes overlap, or between a pair of external electrodes, a heating element layer may be provided in contact with both external electrodes. Bye. When the heating element part is a heating element layer, it is sufficient that at least one heating element layer exists in the ceramic main body, and as shown in the following examples, only one layer or two layers may be provided. be. Furthermore, the heating element layer may be composed of either PTC or NTC, and in the case of two or more layers, only one of them may be used, or both may be used in combination. However, from the characteristics shown in Figure 10, when PTC and NTC are combined, PTC
NTC is the temperature range where it is difficult to generate heat (the low temperature range at the initial stage of energization).
compensates for this, resulting in excellent temperature rise characteristics with respect to energization.

【0010】0010

【実施例】以下、本発明の積層セラミックコンデンサを
実施例に基づいて説明する。図1はその一例の斜視図を
示す。このコンデンサは、その外観には従来と全く相違
するところはなく、BaTiO3 誘電体からなるセラ
ミック製本体10と、セラミック製本体10の一対の側
端面と側端面の回りの4面の一部分とに設けた外部電極
11とを有する。図2〜図7にセラミック製本体内に内
部電極と発熱体部としての発熱体層を設けた各種態様を
示す。
EXAMPLES The multilayer ceramic capacitor of the present invention will be explained below based on examples. FIG. 1 shows a perspective view of one example. This capacitor has a ceramic main body 10 made of BaTiO3 dielectric, a pair of side end faces of the ceramic main body 10, and a portion of the four faces around the side end faces. It has an external electrode 11. FIGS. 2 to 7 show various embodiments in which internal electrodes and a heating element layer as a heating element section are provided within a ceramic main body.

【0011】まず、図2に示すコンデンサでは、両側端
面の外部電極11に導通された内部電極12がセラミッ
ク製本体10内に形成され、内部電極12はセラミック
製本体10をセラミック層状に仕切り、外部電極11の
一方と他方に交互に接続されている。内部電極12のう
ち、最上の電極と隣接の電極との間、及び最下の電極と
隣接の電極との間に、PTCからなる発熱体層20が設
けられている。このPTC発熱体層20は、それぞれ2
つの内部電極12に接触すると共に、一対の外部電極1
1にも導通する。
First, in the capacitor shown in FIG. 2, internal electrodes 12 electrically connected to external electrodes 11 on both end faces are formed in a ceramic body 10, and the internal electrodes 12 partition the ceramic body 10 into ceramic layers, and The electrodes 11 are connected alternately to one side and the other side. Among the internal electrodes 12, a heat generating layer 20 made of PTC is provided between the uppermost electrode and the adjacent electrode and between the lowermost electrode and the adjacent electrode. This PTC heating element layer 20 has two
one internal electrode 12 and a pair of external electrode 1
1 is also conductive.

【0012】このコンデンサでは、2層の発熱体層20
が図10に示すような正温度特性を有するため、通電に
際し発熱体層20が発熱して昇温すると、更に発熱体層
20の抵抗値が上昇するに連れて発熱体層20の温度も
一層高くなる。この発熱体層20の熱がセラミック製本
体10に伝導し、本体10の温度を常温よりも高温に保
持する。この温度にキューリー点を移動させるようにシ
フターとディプサーで調整する。この結果、図9に一点
鎖線bのグラフで示すような温度と誘電率との関係が得
られ、セラミック製本体10であるBaTiO3 誘電
体が従来のコンデンサに係る点線cよりも高い誘電率を
示し、BaTiO3 誘電体の本来持つ誘電率を相当程
度まで活用するため、静電容量が大幅に増える。しかも
、キューリー点が常温より高いので、その分シフターと
ディプサーの量が少なくて良く、その分、コンデンサが
小型となる。
[0012] In this capacitor, a two-layer heating element layer 20
has a positive temperature property as shown in FIG. It gets expensive. The heat of this heating element layer 20 is conducted to the ceramic main body 10, and the temperature of the main body 10 is maintained at a higher temperature than normal temperature. Adjust the shifter and dipser to move the Curie point to this temperature. As a result, the relationship between temperature and dielectric constant as shown in the graph of the dashed line b in FIG. , BaTiO3 Since the inherent dielectric constant of the dielectric material is utilized to a considerable extent, the capacitance increases significantly. Moreover, since the Curie point is higher than room temperature, the amount of shifters and dipsers can be reduced accordingly, and the capacitor can be made smaller accordingly.

【0013】図3のコンデンサは、内部電極12のうち
、最中の2つの電極間にPTC発熱体層20を設けたも
のである。発熱体層20が1層のみである点以外は作用
・効果は図2のものと大差ない。図4に示すコンデンサ
は、構造的には図2に示すものと同一であるが、上層の
発熱体層20がPTCからなるのに対し、下層の発熱体
層21は負温度特性を有するNTCからなる。このコン
デンサでは、PTC発熱体層20のみであれば通電初期
には発熱体層20は未だ低温で抵抗値も低く、発熱体層
20が十分発熱するまで或る程度の時間を要するのであ
るが、NTC発熱体層21が共存すれば、通電初期の低
温状態で図10から分かるようにNTC発熱体層21の
抵抗値が大きいため、発熱体層21の温度が上昇し、こ
の発熱体層21の熱によりセラミック製本体10とPT
C発熱体層20の温度が上昇し、発熱体層20の昇温に
伴いやがてセラミック製本体10の加熱を発熱体層20
が担うようになる。従って、このコンデンサは通電初期
の昇温特性に優れ、通電後に高誘電率を即座に示すよう
になる。
In the capacitor shown in FIG. 3, a PTC heating layer 20 is provided between the two middle electrodes of the internal electrodes 12. The functions and effects are not much different from those in FIG. 2 except that the heating element layer 20 is only one layer. The capacitor shown in FIG. 4 is structurally the same as that shown in FIG. 2, but the upper heating element layer 20 is made of PTC, whereas the lower heating element layer 21 is made of NTC having negative temperature characteristics. Become. In this capacitor, if only the PTC heating element layer 20 is used, the heating element layer 20 is still at a low temperature and has a low resistance value at the beginning of energization, and it takes a certain amount of time until the heating element layer 20 generates sufficient heat. If the NTC heating element layer 21 coexists, the resistance value of the NTC heating element layer 21 is large in the low temperature state at the initial stage of energization, as can be seen from FIG. The ceramic body 10 and PT are heated.
C The temperature of the heating element layer 20 rises, and as the temperature of the heating element layer 20 increases, the heating of the ceramic main body 10 is gradually reduced to the heating element layer 20.
will be in charge. Therefore, this capacitor has excellent temperature rise characteristics at the initial stage of energization, and immediately exhibits a high dielectric constant after energization.

【0014】図5〜図7のコンデンサは、外部電極13
の構造が図2〜図4のものとは異なる。即ち、外部電極
13は、その拡大図を図8に示すように、外部電極11
上にNiメッキ14と半田メッキ15又はスズメッキを
施した3層構造である。又、図5のコンデンサでは、最
上の内部電極12と隣接の内部電極と間、並びに最下の
内部電極12と隣接の内部電極と間において、それぞれ
双方の電極が重なる部分のみにPTC発熱体層20が設
けられており、この発熱体層20は一対の外部電極13
に接触していない。
The capacitors shown in FIGS. 5 to 7 have an external electrode 13
The structure of is different from that of FIGS. 2 to 4. That is, the external electrode 13 is similar to the external electrode 11, as shown in an enlarged view in FIG.
It has a three-layer structure with Ni plating 14 and solder plating 15 or tin plating applied on top. In addition, in the capacitor shown in FIG. 5, the PTC heating element layer is provided between the uppermost internal electrode 12 and the adjacent internal electrode, and between the lowermost internal electrode 12 and the adjacent internal electrode, only in the areas where both electrodes overlap. 20 is provided, and this heat generating layer 20 has a pair of external electrodes 13
not in contact with.

【0015】図6のコンデンサは図2のコンデンサと外
部電極13の構造が異なる以外は全く同じである。又、
図7に示すコンデンサはセラミック製本体10の上層と
下層をPTC発熱体層20としたものである。次に、上
記各種のコンデンサの製造について簡潔に述べる。まず
BaTiO3 誘電体100部に対し、添加剤のシフタ
ーとして酸化セリウム及びディプサーとして酸化ジルコ
ニウム0.5〜4.5部、有機結合剤としてアクリル酸
樹脂10部、溶媒としてトルエン30部を、ボールミル
で48時間混合・粉砕してスラリーを作製する。このス
ラリーを用いて、ドクターブレード法にてポリエステル
フィルム又はSUSベルト上に厚さ30μmの誘電体層
を成形し、誘電体シート(グリーンシート)を得る。同
様に、PTC又はNTCに有機結合剤、溶媒を混合した
ものから発熱体層となる発熱体シートを作製する。但し
、誘電体シートとセラミックシートに添加するシフター
とディプサーの量は、シートの使用温度に合わせるため
に適宜調整することが重要である。
The capacitor shown in FIG. 6 is exactly the same as the capacitor shown in FIG. 2 except for the structure of the external electrode 13. or,
In the capacitor shown in FIG. 7, the upper and lower layers of a ceramic main body 10 are PTC heating element layers 20. Next, the manufacturing of the various capacitors mentioned above will be briefly described. First, to 100 parts of BaTiO3 dielectric material, add cerium oxide as an additive shifter, 0.5 to 4.5 parts of zirconium oxide as a dipser, 10 parts of acrylic acid resin as an organic binder, and 30 parts of toluene as a solvent. A slurry is prepared by mixing and pulverizing for a period of time. Using this slurry, a 30 μm thick dielectric layer is formed on a polyester film or SUS belt by a doctor blade method to obtain a dielectric sheet (green sheet). Similarly, a heating element sheet serving as a heating element layer is prepared from a mixture of PTC or NTC, an organic binder, and a solvent. However, it is important to adjust the amounts of shifter and dipcer added to the dielectric sheet and ceramic sheet as appropriate to match the operating temperature of the sheet.

【0016】その後、Ag、Ag/Pd、又はPdと、
有機結合剤と、有機溶媒とからなる内部電極材のインク
を調製し、このインクをスクリーン印刷法によって誘電
体シートと発熱体シート上にそれぞれ塗布し、内部電極
を形成する。これらの誘電体シートと発熱体シートを図
2〜図7に示すような構造が得られるように、適当数組
合せて重ねた後、プレスにより加温・加熱して積層し、
一体化する。これを所定寸法に切断し、既知の方法で1
150〜1350℃で焼成してセラミック製本体を得る
。更に、セラミック製本体を面取りして内部電極を側端
面から露出させると共に、内部電極と外部電極の導通を
確実にするためにセラミック製本体をバレル研摩する。
[0016] Then, with Ag, Ag/Pd, or Pd,
An internal electrode material ink consisting of an organic binder and an organic solvent is prepared, and this ink is applied onto a dielectric sheet and a heat generating sheet by screen printing to form internal electrodes. An appropriate number of these dielectric sheets and heating element sheets are combined and stacked to obtain the structures shown in FIGS. 2 to 7, and then heated and laminated using a press.
Unify. Cut this into a predetermined size and use a known method to
A ceramic body is obtained by firing at 150-1350°C. Further, the ceramic main body is chamfered to expose the internal electrodes from the side end faces, and the ceramic main body is barrel-polished to ensure conduction between the internal electrodes and the external electrodes.

【0017】そして、セラミック製本体を乾燥した後、
Ag又はAg/Pdフリット、有機結合剤、有機溶媒か
らなる外部電極材をセラミック製本体の一対の側端面と
側端面の回りの4面の一部分とに塗布して乾燥・焼付し
、外部電極を形成する。更に、選択的にコンデンサの実
装時の半田濡れ性を良くするために、Niメッキ及びS
n/Pb、Sn等の半田メッキ等を外部電極上に順に施
し、コンデンサの完成品を得る。
[0017] After drying the ceramic body,
An external electrode material consisting of Ag or Ag/Pd frit, an organic binder, and an organic solvent is applied to a pair of side end surfaces of the ceramic body and a portion of the four surfaces around the side end surfaces, and dried and baked to form the external electrode. Form. Furthermore, in order to selectively improve solder wettability when mounting capacitors, Ni plating and S
Solder plating of n/Pb, Sn, etc. is sequentially applied to the external electrodes to obtain a completed capacitor.

【0018】なお、上記製造は本の一例に過ぎず、本発
明ではこれに限定されることはない。例えば、BaTi
O3 誘電体、エチルセルロース等の結合剤、フタル酸
ジオクチル等の可塑剤、ブチルセルソルブ等の溶媒等か
ら調製したインク又はペーストを用い、スクリーン印刷
、フローコーター、バーコーター、ドクターブレード等
で誘電体シートを形成してもよい。
[0018] The above manufacturing is only one example of a book, and the present invention is not limited thereto. For example, BaTi
Using an ink or paste prepared from an O3 dielectric, a binder such as ethyl cellulose, a plasticizer such as dioctyl phthalate, and a solvent such as butyl cellosolve, a dielectric sheet is formed using screen printing, a flow coater, a bar coater, a doctor blade, etc. may be formed.

【0019】[0019]

【発明の効果】本発明の積層セラミックコンデンサは、
以上説明したようにセラミック製本体内に発熱体部を設
けてあるので、下記の効果を有する。通電により発熱体
部が発熱するので、セラミック製本体の温度が上昇し、
セラミック製本体を常温よりも高い温度に保持する。こ
のため、セラミック製本体を構成するチタン酸バリウム
系誘電体が本来持つキューリー点での最高誘電率に近い
温度領域でコンデンサが作動し、チタン酸バリウム系誘
電体の高誘電率を十分に活用できる。また、キューリー
点を発熱体部による発熱温度近くまでシフトすれば良い
ので、シフター、ディプサーを使用して、キューリー点
を常温にまでシフトさせる場合に比し、シフター、ディ
プサーの混入量が少なくてすみ、その分コンデンサの小
型化を実現することができる。この結果、従来よりも大
幅に高い静電容量で小型のものが得られ、例えば形状・
寸法を特に変更しなくても従来の2倍以上の静電容量を
得ることができる。
[Effects of the invention] The multilayer ceramic capacitor of the present invention has
As explained above, since the heating element is provided within the ceramic main body, the following effects are achieved. As the heating element generates heat when energized, the temperature of the ceramic body increases,
Maintain the ceramic body at a temperature higher than room temperature. Therefore, the capacitor operates in a temperature range close to the maximum dielectric constant at the Curie point of the barium titanate dielectric that makes up the ceramic body, making full use of the high dielectric constant of the barium titanate dielectric. . In addition, since it is only necessary to shift the Curie point to near the temperature of the heat generated by the heating element, the amount of contamination by the shifter and dipser can be reduced compared to when using a shifter and dipser to shift the Curie point to room temperature. , the capacitor can be made smaller accordingly. As a result, it is possible to obtain a smaller device with significantly higher capacitance than before.
Capacitance more than twice that of the conventional capacitance can be obtained without particularly changing the dimensions.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例に係るコンデンサの斜視図であ
る。
FIG. 1 is a perspective view of a capacitor according to an embodiment of the invention.

【図2】図1のコンデンサの線A−Aにおける断面構造
例を示す断面図である。
FIG. 2 is a cross-sectional view showing an example of the cross-sectional structure of the capacitor in FIG. 1 taken along line AA.

【図3】図1のコンデンサの線A−Aにおける別の断面
構造例を示す断面図である。
FIG. 3 is a cross-sectional view showing another example of the cross-sectional structure of the capacitor in FIG. 1 taken along line AA.

【図4】図1のコンデンサの線A−Aにおける更に別の
断面構造例を示す断面図である。
FIG. 4 is a cross-sectional view showing still another example of the cross-sectional structure of the capacitor in FIG. 1 taken along line AA.

【図5】図1のコンデンサの線A−Aにおける更に別の
断面構造例を示す断面図である。
FIG. 5 is a cross-sectional view showing still another example of the cross-sectional structure of the capacitor in FIG. 1 taken along line AA.

【図6】図1のコンデンサの線A−Aにおける更に別の
断面構造例を示す断面図である。
6 is a cross-sectional view showing still another example of the cross-sectional structure of the capacitor in FIG. 1 taken along line AA.

【図7】図1のコンデンサの線A−Aにおける更に別の
断面構造例を示す断面図である。
7 is a cross-sectional view showing yet another example of the cross-sectional structure of the capacitor in FIG. 1 taken along line AA.

【図8】図5〜図7のコンデンサにおける外部電極の構
造を示す拡大断面図である。
8 is an enlarged sectional view showing the structure of an external electrode in the capacitor shown in FIGS. 5 to 7. FIG.

【図9】BaTiO3 誘電体の温度と誘電率との関係
を示すグラフである。
FIG. 9 is a graph showing the relationship between temperature and dielectric constant of a BaTiO3 dielectric.

【図10】正温度特性抵抗体(PTC)と負温度特性抵
抗体(NTC)の温度と抵抗変化率との関係を示すグラ
フである。
FIG. 10 is a graph showing the relationship between temperature and resistance change rate of a positive temperature characteristic resistor (PTC) and a negative temperature characteristic resistor (NTC).

【符号の説明】[Explanation of symbols]

10        セラミック製本体11、13  
外部電極 12        内部電極 20        PTC発熱体層 21        NTC発熱体層
10 Ceramic body 11, 13
External electrode 12 Internal electrode 20 PTC heating element layer 21 NTC heating element layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セラミック製本体内に複数の内部電極を形
成し、内部電極に導通する一対の外部電極をセラミック
製本体に設けたコンデンサにおいて、一対の外部電極か
ら通電されるように発熱体部をセラミック製本体内に設
けたことを特徴とする積層セラミックコンデンサ。
Claim 1: A capacitor in which a plurality of internal electrodes are formed within a ceramic main body, and a pair of external electrodes are provided in the ceramic main body that are electrically connected to the internal electrodes, and the heating element portion is configured to be energized from the pair of external electrodes. A multilayer ceramic capacitor characterized by being installed inside a ceramic body.
【請求項2】前記セラミック製本体がチタン酸バリウム
系材料からなることを特徴とする請求項1記載の積層セ
ラミックコンデンサ。
2. The multilayer ceramic capacitor according to claim 1, wherein the ceramic main body is made of a barium titanate-based material.
JP3138748A 1991-06-11 1991-06-11 Laminated ceramic capacitor Pending JPH04364014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3138748A JPH04364014A (en) 1991-06-11 1991-06-11 Laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3138748A JPH04364014A (en) 1991-06-11 1991-06-11 Laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH04364014A true JPH04364014A (en) 1992-12-16

Family

ID=15229260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3138748A Pending JPH04364014A (en) 1991-06-11 1991-06-11 Laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH04364014A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198793A (en) * 2007-02-13 2008-08-28 Tdk Corp Method for manufacturing electronic component
JP2008277562A (en) * 2007-04-27 2008-11-13 Daikin Ind Ltd Capacitor unit
CN102667979A (en) * 2009-12-21 2012-09-12 爱普科斯公司 Temperature-independent capacitor and capacitor module
CN102667982A (en) * 2009-12-21 2012-09-12 爱普科斯公司 Varactor and method for producing a varactor
US20130141834A1 (en) * 2011-12-02 2013-06-06 Stmicroelectronics Pte Ltd. Capacitance trimming with an integrated heater
US9027400B2 (en) 2011-12-02 2015-05-12 Stmicroelectronics Pte Ltd. Tunable humidity sensor with integrated heater
US9140683B2 (en) 2010-12-30 2015-09-22 Stmicroelectronics Pte Ltd. Single chip having the chemical sensor and electronics on the same die
WO2015184148A1 (en) * 2014-05-28 2015-12-03 Texas Instruments Incorporated Heated capacitor and method of forming the heated capacitor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198793A (en) * 2007-02-13 2008-08-28 Tdk Corp Method for manufacturing electronic component
JP2008277562A (en) * 2007-04-27 2008-11-13 Daikin Ind Ltd Capacitor unit
CN102667979A (en) * 2009-12-21 2012-09-12 爱普科斯公司 Temperature-independent capacitor and capacitor module
CN102667982A (en) * 2009-12-21 2012-09-12 爱普科斯公司 Varactor and method for producing a varactor
JP2013515353A (en) * 2009-12-21 2013-05-02 エプコス アクチエンゲゼルシャフト Temperature-dependent capacitors and capacitor modules
JP2013515369A (en) * 2009-12-21 2013-05-02 エプコス アクチエンゲゼルシャフト Varactor and method for manufacturing varactor
EP2517217B1 (en) * 2009-12-21 2020-08-19 TDK Electronics AG Temperature independent capacitor and capacitor module
US8988849B2 (en) 2009-12-21 2015-03-24 Epcos Ag Varactor and method for producing a varactor
US9140683B2 (en) 2010-12-30 2015-09-22 Stmicroelectronics Pte Ltd. Single chip having the chemical sensor and electronics on the same die
US9019688B2 (en) * 2011-12-02 2015-04-28 Stmicroelectronics Pte Ltd. Capacitance trimming with an integrated heater
US9027400B2 (en) 2011-12-02 2015-05-12 Stmicroelectronics Pte Ltd. Tunable humidity sensor with integrated heater
US20130141834A1 (en) * 2011-12-02 2013-06-06 Stmicroelectronics Pte Ltd. Capacitance trimming with an integrated heater
WO2015184148A1 (en) * 2014-05-28 2015-12-03 Texas Instruments Incorporated Heated capacitor and method of forming the heated capacitor
CN106463259A (en) * 2014-05-28 2017-02-22 德克萨斯仪器股份有限公司 Heated capacitor and method of forming the heated capacitor
JP2017525137A (en) * 2014-05-28 2017-08-31 日本テキサス・インスツルメンツ株式会社 Heated capacitor and method of forming a heated capacitor
JP2021068908A (en) * 2014-05-28 2021-04-30 テキサス インスツルメンツ インコーポレイテッド Heated capacitor and method of forming heated capacitor

Similar Documents

Publication Publication Date Title
JP7338825B2 (en) Dielectric porcelain composition, multi-layer ceramic capacitor containing the same, and method for manufacturing multi-layer ceramic capacitor
JP7060213B2 (en) Dielectric porcelain composition and multilayer ceramic capacitors containing it
JP7484449B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
KR102543977B1 (en) Multi-layered ceramic capacitor and method of manufacturing the same
JP7283675B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR102552423B1 (en) Dielectric powder and multilayered ceramic electronic components using the same
JPH11233363A (en) Laminated capacitor
JP2020027928A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP6915222B2 (en) Dielectric composition and multilayer ceramic capacitors containing it
KR20230065211A (en) Multilayer capacitor
JP7396572B2 (en) Multilayer ceramic capacitor and its manufacturing method
KR20210081668A (en) Multi-layered ceramic capacitor and method of manufacturing the same
JP2020202370A (en) Dielectric porcelain composition and multilayer ceramic capacitor including the same
KR20220057735A (en) Multilayer capacitor
JPH04364014A (en) Laminated ceramic capacitor
US10262795B2 (en) Multilayer ceramic electronic component including ceramic-metal compound layers
JP3827901B2 (en) Multilayer ceramic capacitor
JP2872838B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2022016002A (en) Electronic component
JP6904505B2 (en) Dielectric porcelain composition and multilayer ceramic capacitors containing it
JPH0574650A (en) Laminated ceramic capacitor and manufacture thereof
JP2875936B2 (en) Dielectric porcelain and porcelain capacitor
KR102295110B1 (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
JP3039117B2 (en) Multilayer type grain boundary insulating semiconductor ceramic capacitor
JPS63136507A (en) Ceramic capacitor