JPH043623B2 - - Google Patents

Info

Publication number
JPH043623B2
JPH043623B2 JP24211083A JP24211083A JPH043623B2 JP H043623 B2 JPH043623 B2 JP H043623B2 JP 24211083 A JP24211083 A JP 24211083A JP 24211083 A JP24211083 A JP 24211083A JP H043623 B2 JPH043623 B2 JP H043623B2
Authority
JP
Japan
Prior art keywords
lamp
ferroelectric
ceramic substrate
pressure
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24211083A
Other languages
Japanese (ja)
Other versions
JPS60136151A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP24211083A priority Critical patent/JPS60136151A/en
Publication of JPS60136151A publication Critical patent/JPS60136151A/en
Publication of JPH043623B2 publication Critical patent/JPH043623B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/56One or more circuit elements structurally associated with the lamp

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 産業上の利用分野 この発明は一般照明に使用される高圧ナトリウ
ムランプのごとき高圧放電ランプの改良に関し、
特に外球の内部に始動装置を収納した高圧放電ラ
ンプの改良に関するものである。 ロ 従来技術 高圧ナトリウムランプのごとき高圧放電ランプ
は通常の商用電源電圧で始動させることが困難で
あるため、これを始動させるには高圧パルス電圧
の印加が必要である。このようなパルス電圧を発
生させる装置をランプの外球内に設置し、一般の
高圧水銀ランプ用安定器と組み合せて使用するよ
うにしたランプが普及してきた。第1図及び第2
図はかかるランプの回路図である。このランプは
基本的には発光管1と並列に強誘電体セラミツク
コンデンサー2を接続したもので、これに半導体
スイツチ3やダイオード4と組み合せることによ
つて高圧パルス電圧を発生させ、それを電源電圧
とともに発光管1に印加してランプを始動させる
ものである。ところで、このような高圧ナトリウ
ムランプを始動させるのにはこのランプを構成す
る発光管1内のキセノンガス圧にもよるが、一般
的には2000V以上のピーク値を有するパルス電圧
を印加する必要がある。かかる高圧パルス電圧を
安定に発生させる手段として、強誘電体セラミツ
クコンデンサーを用いるのが効果的である。この
コンデンサーは第4図のごときD(電荷)−E(抗
電界)特性を有する。このコンデンサーの矩形特
性を利用しスイツチング作用を行わせることによ
り前記のような高圧パルス電圧を発生することが
できる。 このような高圧パルス電圧の発生は高圧ナトリ
ウムランプを始動させるには非常に有効である反
面、高圧ナトリウムランプの寿命末期に生じる問
題を考慮する必要がある。すなわち、高圧ナトリ
ウムランプは一般に寿命末期に発光管1の電極シ
ール部のリークが生じやすく、これにより発光管
1内のキセノンガスやナトリウムや水銀が外球5
内に出てくることが多い。この場合、ランプの外
球内は高真空であるため、ランプにパルス電圧が
印加されると、ランプの外球内全体で放電が開始
し、当然のこととしてアーク放電に伴う大電流が
流れる。このような状態を長く続けるとランプの
外部に設置されている安定器6を焼損させること
もありうるし、又、最も危険なこととして外球内
のアークにより外球5が破損することがある。 ハ 発明の目的 本発明は以上の点に鑑みてなされたもので、ラ
ンプの寿命末期にガラス球の破損や安定器の焼損
を招くことがないように、安全機能を持たせた高
圧放電ランプを提供することを目的とする。この
目的を達成するために、本発明は寿命末期に生じ
る発光管リークに伴うキセノンガスの外球内部へ
の漏出に対して始動装置を構成する強誘電体セラ
ミツクコンデンサーを破壊させる機構を持たせた
ことを特徴とするものである。 ニ 発明の構成 本発明に係る高圧放電ランプの回路構成例は第
1図及び第2図に示すとおりであり、その具体的
構成例は第3図に示すとおりである。何れも、発
光管1と並列に強誘電体セラミツクコンデンサー
2と接続し、これらを内部を高真空にした外球5
の中に収納してある。前記の強誘電体セラミツク
コンデンサー2は一般に、チタン酸バリウム粉末
に数モル%のチタン酸ストロンチウムやジルコニ
ウム酸バリウムや錫酸バリウム等と微量の希土類
酸化物粉末を加え、造粒し円板状にプレス成形
し、気中で焼成して第5図に示すようなセラミツ
ク基板7をつくり、このセラミツク基板7の両面
に銀ペースト等で電極膜8a,8bを形成する。
これに強誘電性結晶化ガラスペースト9でリード
端子部を除いてオーバーコートしたうえリード線
端子部にリード端子10a,10bを接着させて
仕上げる。前記のオーバーコート用の強誘電性結
晶化ガラスペースト9は基本的にはxBaTiO3
(1−x)BaAl2Si2O8の構造からなり、焼成温度
とその保持時間により比誘電率εsを300〜1200と
することができる。前記のようなオーバーコート
をしない状態でコンデンサーを外球内に収納する
と、高圧パルス電圧の発生時に銀膜電極全面又は
エツジ部からの放電が生じ、電極膜を損耗させる
ばかりか、セラミツク基体を破壊させてしまう。
これは高電界がせまい電極膜に集中し、かつ銀膜
電極自体に酸化物すなわちガラスフリツトが混合
してあるため銀膜電極自体の仕事函数が低くなつ
ており、電子の電界放射が容易になつているため
である。このような電界放射を防ぐためには、先
に述べたように、セラミツクコンデンサーの基本
をこれよりも誘電率の高い材料でオーバーコート
することによつて電極膜面の電界を下げればよ
い。つまり、このようなコンデンサーを使用する
場合は、銀膜電極の周縁とセラミツク基板の周縁
との距離、強誘電性結晶化ガラス膜の厚さ、そし
て雰囲気としてのキセノンガス圧等の要素を適宜
選択することによつて、高圧放電ランプの通常点
灯時にはセラミツクコンデンサーにおける放電を
防止し、ランプの寿命末期には逆に放電を起させ
て高圧パルス電圧の発生機能を破壊させることも
できるわけである。そこで発明者等は上記要素の
うち、銀膜電極の周縁とセラミツク基体の周縁と
の距離がとりわけ影響が大きいことに着目し次の
ごとくコンデンサーの放電破壊の実験を行つた。
第5図に示すセラミツク基体7として前記したよ
うなチタン酸バリウム系の非線形特性をもつ材料
を焼成し直径26.0mm、厚さ0.5mmの円板状のもの
を使用し、このセラミツク基板7の周縁と銀膜電
極8a,8bの周縁との距離d、強誘電性結晶化
ガラス9の膜厚t、及びこのコンデンサーを設置
する外球内部のキセノンガス圧を変えて、高圧パ
ルス電圧を発生させ、コンデンサーの放電破壊の
状態を調べた。実験の結果は以下に示すとおりで
あつた。なお、実験結果を示す表における、×、
○、△の記号はそれぞれ次のような状態であつた
ことを示す。 ×:放電破壊しない。 ○:放電破壊した。 △:エツジ放電するが破壊まで到らない。
B. Field of Industrial Application This invention relates to the improvement of high-pressure discharge lamps such as high-pressure sodium lamps used for general lighting.
In particular, the present invention relates to an improvement in a high-pressure discharge lamp in which a starting device is housed inside the outer bulb. B. Prior art Since it is difficult to start a high-pressure discharge lamp such as a high-pressure sodium lamp with a normal commercial power supply voltage, it is necessary to apply a high-pressure pulse voltage to start it. Lamps in which a device for generating such a pulse voltage is installed inside the outer bulb of the lamp and are used in combination with a general high-pressure mercury lamp ballast have become popular. Figures 1 and 2
The figure is a circuit diagram of such a lamp. This lamp basically has a ferroelectric ceramic capacitor 2 connected in parallel with an arc tube 1, which is combined with a semiconductor switch 3 and a diode 4 to generate a high voltage pulse voltage, which is then used as a power source. It is applied together with a voltage to the arc tube 1 to start the lamp. By the way, in order to start such a high-pressure sodium lamp, it is generally necessary to apply a pulse voltage having a peak value of 2000 V or more, although it depends on the xenon gas pressure in the arc tube 1 that constitutes this lamp. be. It is effective to use a ferroelectric ceramic capacitor as a means for stably generating such a high voltage pulse voltage. This capacitor has D (charge)-E (coercive electric field) characteristics as shown in FIG. By utilizing the rectangular characteristics of this capacitor and performing a switching action, it is possible to generate the above-mentioned high voltage pulse voltage. Although generation of such a high-pressure pulse voltage is very effective for starting a high-pressure sodium lamp, it is necessary to consider problems that occur at the end of the life of a high-pressure sodium lamp. In other words, in general, high-pressure sodium lamps tend to leak at the electrode seal part of the arc tube 1 at the end of their life, and this causes xenon gas, sodium, and mercury in the arc tube 1 to leak into the outer bulb 5.
It often comes from within. In this case, since the inside of the lamp's outer bulb is in a high vacuum, when a pulse voltage is applied to the lamp, discharge starts throughout the lamp's outer bulb, and naturally a large current flows due to arc discharge. If this condition continues for a long time, the ballast 6 installed outside the lamp may be burnt out, and most dangerously, the outer bulb 5 may be damaged by the arc within the outer bulb. C. Purpose of the Invention The present invention has been made in view of the above points, and is a high-pressure discharge lamp equipped with a safety function to prevent damage to the glass bulb and burnout of the ballast at the end of the lamp's life. The purpose is to provide. In order to achieve this objective, the present invention has a mechanism for destroying the ferroelectric ceramic capacitor that constitutes the starting device in response to leakage of xenon gas into the outer bulb due to leakage of the arc tube at the end of its life. It is characterized by this. D. Structure of the Invention An example of the circuit structure of the high-pressure discharge lamp according to the present invention is as shown in FIGS. 1 and 2, and a specific example of the structure is as shown in FIG. 3. In each case, a ferroelectric ceramic capacitor 2 is connected in parallel with the arc tube 1, and an outer bulb 5 with a high vacuum inside is connected.
It is stored inside. The ferroelectric ceramic capacitor 2 is generally made by adding several mol% of strontium titanate, barium zirconate, barium stannate, etc. and a trace amount of rare earth oxide powder to barium titanate powder, granulating it, and pressing it into a disk shape. A ceramic substrate 7 as shown in FIG. 5 is produced by molding and firing in air, and electrode films 8a and 8b are formed on both surfaces of the ceramic substrate 7 using silver paste or the like.
This is overcoated with ferroelectric crystallized glass paste 9 except for the lead terminal portions, and then lead terminals 10a and 10b are adhered to the lead wire terminal portions for finishing. The above-mentioned ferroelectric crystallized glass paste 9 for overcoat is basically xBaTiO 3 +
(1-x) It has a structure of BaAl 2 Si 2 O 8 , and the dielectric constant ε s can be set to 300 to 1200 depending on the firing temperature and holding time. If a capacitor is housed inside the outer bulb without an overcoat as described above, discharge will occur from the entire surface or edge of the silver film electrode when a high voltage pulse is generated, which will not only wear out the electrode film but also destroy the ceramic substrate. I'll let you.
This is because the high electric field is narrow and concentrated on the electrode film, and the work function of the silver film electrode itself is low because the silver film electrode itself is mixed with oxide, that is, glass frit, and the field emission of electrons becomes easy. This is because there is. In order to prevent such electric field radiation, the electric field on the electrode film surface can be lowered by overcoating the basic ceramic capacitor with a material having a higher dielectric constant, as described above. In other words, when using such a capacitor, factors such as the distance between the periphery of the silver film electrode and the periphery of the ceramic substrate, the thickness of the ferroelectric crystallized glass film, and the xenon gas pressure as the atmosphere must be selected appropriately. By doing so, it is possible to prevent discharge in the ceramic capacitor during normal lighting of the high-pressure discharge lamp, and to cause discharge to occur at the end of the lamp's life, destroying the high-pressure pulse voltage generation function. Therefore, among the above factors, the inventors focused on the fact that the distance between the periphery of the silver film electrode and the periphery of the ceramic substrate had a particularly large effect, and conducted the following experiment on discharge breakdown of a capacitor.
As the ceramic substrate 7 shown in FIG. 5, a barium titanate-based material with nonlinear characteristics as described above is fired, and a disc-shaped material having a diameter of 26.0 mm and a thickness of 0.5 mm is used. A high voltage pulse voltage is generated by changing the distance d between the periphery of the silver film electrodes 8a and 8b, the film thickness t of the ferroelectric crystallized glass 9, and the xenon gas pressure inside the outer sphere in which this capacitor is installed. The state of discharge destruction of the capacitor was investigated. The results of the experiment were as shown below. In addition, in the table showing the experimental results, ×,
The symbols ○ and △ indicate the following conditions, respectively. ×: No discharge damage. ○: Destruction occurred due to discharge. △: Edge discharge occurs, but destruction does not occur.

【表】 これらの実験は第6図に示す回路で行つた。 この回路で交流電源11の入力を200V/50Hz
とした時、チヨークコイル6の出力側には2000〜
2600Vのピーク値を有する高圧パルス電圧が発生
する。2がセラミツクコンデンサー、4はダイオ
ード、12は抵抗体、3はSSS素子である。次
に、このセラミツク基板の銀膜電極の塗布面の直
径と高圧パルス電圧のピーク値の関係を測定した
ところ第7図のようになつた。銀膜電極の直径が
24mm小さくなり、同電極の周縁とセラミツク基体
の周縁間の距離dが1.0mmを超えたところからパ
ルス電圧が低下することから、電極の非着部を大
きくとることはランプを確実に点灯させるための
高圧パルスを発生させるうえでは不利となる。そ
れ故前記周縁間の非着距離は1.2mmまでにするこ
とが望ましい。 又、強誘電体結晶ガラスの塗布膜の厚みtが
30μmを超えると発光管1のスローリークが始つ
た段階ではセラミツクコンデンサーを破壊させる
ことができず、10-3〜10-2torrオーダーのガス圧
の時に安定器10に流れる電流は正常な時の1.2
〜1.4倍になり、この時間が長くなると安定器の
巻線に対し過電流となり、巻線を焼損させる可能
性がある。それ故、強誘電性結晶化ガラスの塗布
膜の厚みは10〜20μmにすることが望ましい。 ホ 実施例 実際に本発明を定格入力360Wの高圧ナトリウ
ムランプで実施してみた。発光管の内容積は5.1
c.c.であり、この中に適量の水銀及びナトリウムと
ともにキセノンガスを150torrの圧力で封入した。
外球は1000c.c.であるからこの発光管1のキセノン
ガスが全て外球5に漏出した場合0.8torrの圧力
となる。かかる外球内に第5図に示すような構造
を有しかつ前記実験で確認された条件、すなわ
ち、セラミツク基体と銀膜電極の周縁間距離を0
〜1.2mとした強誘電体セラミツクコンデンサー
を収納して高圧パルス電圧を発生させたところ、
ランプの寿命末期における発光管1のシール部リ
ークのキセノンガスで強誘電性セラミツクコンデ
ンサーを確実に破壊させることができた。 ヘ 発明の効果 以上の説明から明らかなように、本発明によれ
ば始動装置を構成する強誘電性セラミツクコンデ
ンサーの構造、寸法を適宜選択することにより、
ランプの寿命末期における高圧パルス電圧の印加
に伴うガラス球の破損や安定器の焼損を効果的に
防止することができる。
[Table] These experiments were conducted using the circuit shown in FIG. With this circuit, the input of AC power supply 11 is 200V/50Hz
2000~ on the output side of Chiyoke coil 6.
A high voltage pulse voltage with a peak value of 2600V is generated. 2 is a ceramic capacitor, 4 is a diode, 12 is a resistor, and 3 is an SSS element. Next, the relationship between the diameter of the coated surface of the silver film electrode of this ceramic substrate and the peak value of the high voltage pulse voltage was measured, and the result was as shown in FIG. The diameter of the silver film electrode is
24mm smaller, and the pulse voltage decreases when the distance d between the periphery of the electrode and the periphery of the ceramic substrate exceeds 1.0mm, so it is important to have a large non-attached part of the electrode in order to ensure that the lamp lights up. This is disadvantageous in generating high-voltage pulses. Therefore, it is desirable that the non-stick distance between the peripheral edges be 1.2 mm or less. Also, the thickness t of the coating film of ferroelectric crystal glass is
If it exceeds 30 μm, it will not be possible to destroy the ceramic capacitor at the stage where slow leakage has started in the arc tube 1, and the current flowing through the ballast 10 will be lower than normal when the gas pressure is on the order of 10 -3 to 10 -2 torr. 1.2
~1.4 times, and if this time becomes longer, an overcurrent will occur in the ballast winding, potentially causing the winding to burn out. Therefore, it is desirable that the thickness of the coating film of ferroelectric crystallized glass be 10 to 20 μm. E. Example The present invention was actually implemented using a high-pressure sodium lamp with a rated input of 360W. The internal volume of the arc tube is 5.1
cc, into which xenon gas was sealed together with appropriate amounts of mercury and sodium at a pressure of 150 torr.
Since the outer sphere is 1000 c.c., if all the xenon gas in the arc tube 1 leaks into the outer sphere 5, the pressure will be 0.8 torr. The outer sphere has a structure as shown in FIG. 5, and the distance between the peripheral edges of the ceramic substrate and the silver film electrode is set to 0 under the conditions confirmed in the above experiment.
When a ferroelectric ceramic capacitor of ~1.2 m was housed and a high voltage pulse voltage was generated,
It was possible to reliably destroy the ferroelectric ceramic capacitor with the xenon gas leaking from the seal of the arc tube 1 at the end of the lamp's life. F. Effects of the Invention As is clear from the above description, according to the present invention, by appropriately selecting the structure and dimensions of the ferroelectric ceramic capacitor that constitutes the starting device,
It is possible to effectively prevent damage to the glass bulb and burnout of the ballast due to the application of high-voltage pulse voltage at the end of the life of the lamp.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明を実施する高圧放電
ランプの回路図、第3図は同ランプの具体的構造
図、第4図は本発明に用いる強誘電性セラミツク
コンデンサーの電圧−電荷特性図、第5図は本発
明に用いる強誘電性セラミツクコンデンサーの断
面図、第6図は同コンデンサーの試験回路、第7
図は同コンデンサーのセラミツク基体と電極の周
縁間距離と高圧パルス電圧のピーク値との関係図
である。 第1図及び第5図において、1……発光管、2
……強誘電性セラミツクコンデンサー、5……外
球、7……セラミツク基板、8a,8b……銀膜
電極、9……強誘電性結晶化ガラス。
Figures 1 and 2 are circuit diagrams of a high-pressure discharge lamp embodying the present invention, Figure 3 is a specific structural diagram of the lamp, and Figure 4 is voltage-charge characteristics of a ferroelectric ceramic capacitor used in the present invention. 5 is a cross-sectional view of a ferroelectric ceramic capacitor used in the present invention, FIG. 6 is a test circuit for the same capacitor, and FIG.
The figure is a diagram showing the relationship between the distance between the ceramic substrate and the periphery of the electrode of the same capacitor and the peak value of the high-voltage pulse voltage. In FIGS. 1 and 5, 1... arc tube, 2
... Ferroelectric ceramic capacitor, 5 ... Outer sphere, 7 ... Ceramic substrate, 8a, 8b ... Silver film electrode, 9 ... Ferroelectric crystallized glass.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツク基板7の周縁とそのセラミツク基
板7の上に設けた導電膜電極8a,8bの周縁と
の距離dを0〜1.2mmに選定し、これらセラミツ
ク基板7及び電極8a,8bの外周全体をリード
端子部を除いて強誘電性結晶化ガラス9で完全に
オーバーコートした強誘電体セラミツクコンデン
サー2を外球5の内部に収納してなる高圧放電ラ
ンプ。
1. The distance d between the periphery of the ceramic substrate 7 and the periphery of the conductive film electrodes 8a, 8b provided on the ceramic substrate 7 is selected to be 0 to 1.2 mm, and the entire outer periphery of the ceramic substrate 7 and the electrodes 8a, 8b is A high-pressure discharge lamp comprising a ferroelectric ceramic capacitor 2 completely overcoated with ferroelectric crystallized glass 9 except for the lead terminal portion, housed inside an outer bulb 5.
JP24211083A 1983-12-23 1983-12-23 High pressure electric-discharge lamp Granted JPS60136151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24211083A JPS60136151A (en) 1983-12-23 1983-12-23 High pressure electric-discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24211083A JPS60136151A (en) 1983-12-23 1983-12-23 High pressure electric-discharge lamp

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP31068192A Division JPH05225956A (en) 1992-11-20 1992-11-20 High pressure discharge lamp

Publications (2)

Publication Number Publication Date
JPS60136151A JPS60136151A (en) 1985-07-19
JPH043623B2 true JPH043623B2 (en) 1992-01-23

Family

ID=17084442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24211083A Granted JPS60136151A (en) 1983-12-23 1983-12-23 High pressure electric-discharge lamp

Country Status (1)

Country Link
JP (1) JPS60136151A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134997A (en) * 1989-10-20 1991-06-07 Iwasaki Electric Co Ltd Metal vapor discharge lamp
JP2604260B2 (en) * 1990-04-02 1997-04-30 岩崎電気 株式会社 High pressure steam discharge lamp

Also Published As

Publication number Publication date
JPS60136151A (en) 1985-07-19

Similar Documents

Publication Publication Date Title
JP4826446B2 (en) Light source device
US4520294A (en) High pressure metal vapor discharge lamp
AU633414B2 (en) High pressure metal vapor discharge lamp
JP2002270386A (en) Light source equipment
JPS64785B2 (en)
US5420479A (en) High pressure vapor discharge lamp with a built-in igniter
JPH043623B2 (en)
JPH0570903B2 (en)
JPH0587940B2 (en)
GB2127633A (en) High pressure discharge lamp
JP2014157671A (en) High pressure discharge lamp
JP4367022B2 (en) Light source device
JP3799461B2 (en) Metal halide lamp with built-in starter with pulse stop function
JP3664199B2 (en) Metal halide lamp with built-in starter
JP3858769B2 (en) Discharge lamp
JPS60136152A (en) High pressure electric-discharge lamp
JP2001338569A (en) High-pressure discharge lamp and illumination device
JPH03116687A (en) High-pressure metallic vapour discharge lamp
JPH10302728A (en) High pressure metal vapor discharge lamp
JP2008226984A (en) Ferroelectric ceramic capacitor and high-voltage metallic-vapor electric discharge lamp
JPH1197190A (en) Metal halide lamp
JPS6260804B2 (en)
JPH02165553A (en) High-pressure sodium lamp
JP2001102187A (en) High voltage discharge lamp and illumination instrument
JPH09259823A (en) Starter enclosing type metallic vapor electric discharge lamp