JPH04362397A - Super-lubricating stick - Google Patents

Super-lubricating stick

Info

Publication number
JPH04362397A
JPH04362397A JP23365991A JP23365991A JPH04362397A JP H04362397 A JPH04362397 A JP H04362397A JP 23365991 A JP23365991 A JP 23365991A JP 23365991 A JP23365991 A JP 23365991A JP H04362397 A JPH04362397 A JP H04362397A
Authority
JP
Japan
Prior art keywords
super
lubricating
stick
ultrafine particles
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23365991A
Other languages
Japanese (ja)
Inventor
Hideo Yoshizawa
秀夫 吉沢
Hiroshi Eda
弘 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO DAIYAMONDO KOGU SEISAKUSHO KK
Original Assignee
TOKYO DAIYAMONDO KOGU SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO DAIYAMONDO KOGU SEISAKUSHO KK filed Critical TOKYO DAIYAMONDO KOGU SEISAKUSHO KK
Priority to JP23365991A priority Critical patent/JPH04362397A/en
Publication of JPH04362397A publication Critical patent/JPH04362397A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the durability of machines, appliances, and the like through the improvement of lubricating performance by applying a super- lubricating stick to the sliding part of a machine tool or the like so as to reduce frictional resistance and the generation of frictional heat at the sliding part. CONSTITUTION:A roundish diamond grain cluster of less than 100 angstroms in average grain size is dispersed into base material composed mainly of water- soluble or oil-soluble high molecular material such as polyethylene glycol and stearic acid, and cooled into solid material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、例えば精密加工用機
械、食品加工用機械等の機械器具、部品等の摺動部に用
いられる超潤滑用スティックに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a super-lubricating stick used for sliding parts of machinery, equipment, parts, etc., such as precision processing machines and food processing machines.

【0002】0002

【従来の技術】潤滑剤は、機械の摺動部における焼き付
きの防止、摩擦抵抗および摩耗の低減に欠くことができ
ないが、摺動部に塗布する潤滑剤としては、一般に油性
基剤中に表面活性剤および極圧添加剤、粘度調製剤等を
添加し、さらに自己潤滑性を有する微粒子、例えば二硫
化モリブデンを含有させた固体潤滑剤等が知られている
[Prior Art] Lubricants are indispensable for preventing seizing and reducing frictional resistance and wear in the sliding parts of machinery, but lubricants applied to sliding parts are generally coated in an oil-based base. Solid lubricants are known that contain activators, extreme pressure additives, viscosity modifiers, etc., and further contain fine particles having self-lubricating properties, such as molybdenum disulfide.

【0003】ところが、特に摩擦により高温になるよう
な摺動部においては、基材および添加剤の変質が起こり
、潤滑特性が経時的に変化して性能低下を引き起こした
り、自己潤滑性微粒子の変質が起こる。そのため、潤滑
剤を定期的に交換して摺動部の摩耗を極力少なくするこ
とが必要であった。
However, especially in sliding parts where high temperatures are generated due to friction, deterioration of the base material and additives occurs, and the lubricating properties change over time, causing performance deterioration, and deterioration of self-lubricating fine particles. happens. Therefore, it has been necessary to periodically replace the lubricant to minimize wear on the sliding parts.

【0004】既存の自己潤滑性素材としては、前述した
二硫化モリブデンの他に、窒化ホウ素、高度分散カーボ
ンブラック、グラファイト、二硫化タンタル、ジアチル
ジオ燐酸亜鉛、ジアルキルナフタリン、ポリメチルアク
リレート等が用いられ、これを油性基材中に添加して高
度の耐摩耗性、スカッフィング防止性能、ピッチング防
止性能を得ている。
In addition to the above-mentioned molybdenum disulfide, existing self-lubricating materials include boron nitride, highly dispersed carbon black, graphite, tantalum disulfide, zinc diacyldiophosphate, dialkylnaphthalene, polymethyl acrylate, etc. This is added to the oil base material to obtain high wear resistance, scuffing prevention performance, and pitting prevention performance.

【0005】[0005]

【発明が解決しようとする課題】ところで、既存の潤滑
性用スティックに使用される自己潤滑性微粒子は、前述
した窒化ホウ素を除いて、自己潤滑性はあるものの硬度
が低く、微粒子自体に接触間隙において破砕が起こり、
微細化し粒子分布範囲が広がって経時変化を起こしたり
、また粒子の大きさが大きいためにコロイド安定性が不
十分であった。
[Problems to be Solved by the Invention] By the way, self-lubricating fine particles used in existing lubrication sticks, except for the aforementioned boron nitride, have self-lubricating properties but have low hardness, and the fine particles themselves have a contact gap. Fracture occurs at
As the particles became finer, the particle distribution range expanded, causing changes over time, and colloidal stability was insufficient due to the large particle size.

【0006】この発明は、前記事情に着目してなされた
もので、その目的とするところは、潤滑油を多量に使用
できない例えば、精密加工用機械および食品加工用機械
等の機械器具および部品等の摺動部に微量に塗布するだ
けで摩擦抵抗を減少させ、超潤滑性を長時間維持できる
超潤滑用スティックを提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to manufacture machinery, equipment, parts, etc., such as precision processing machines and food processing machines, where large amounts of lubricating oil cannot be used. To provide a super lubricating stick that can reduce frictional resistance and maintain super lubricity for a long time by just applying a small amount to the sliding parts of the stick.

【0007】[0007]

【課題を解決するための手段および作用】この発明は前
記目的を達成するために、請求項1は、平均粒径が10
0オングストローム以下の丸みを帯びた形状のダイヤモ
ンド粒子クラスター(以下、超微粒子という)を、水溶
性または油溶性高分子物質を主成分とする基材中に分散
し、固形化させたことにある。
[Means and operations for solving the problems] In order to achieve the above object, the present invention provides that the average particle diameter is 10
Diamond particle clusters with a rounded shape of 0 angstrom or less (hereinafter referred to as ultrafine particles) are dispersed in a base material whose main component is a water-soluble or oil-soluble polymer substance and solidified.

【0008】平均粒径が100オングストローム以下の
丸みを帯びた形状の超微粒子は、既存のダイヤモンド微
粒子と異なり、アブレイシブ機構がないために、摺動部
の表面に傷を付けたり、摩耗を起こすことがない。また
、前記超微粒子は、ダイヤモンドであるため、非常に硬
質であり粒子の破壊が少なく、潤滑層に長時間コロイド
性を維持するため潤滑性の低下が非常に少ない。
[0008] Unlike existing diamond fine particles, rounded ultrafine particles with an average particle size of 100 angstroms or less do not have an abrasive mechanism, so they may damage the surface of the sliding part or cause wear. There is no. Furthermore, since the ultrafine particles are diamond, they are extremely hard and are less likely to break, and maintain colloidal properties in the lubricating layer for a long time, resulting in very little deterioration in lubricity.

【0009】前記超微粒子は、多結晶ダイヤモンドを1
00オングストローム以下の粒子に分級化し、かつ丸み
を帯びた粒子形状に整粒化した粒子クラスターである。 このため、超微粒子はそれ自体優れた潤滑性を有し、フ
ッ素樹脂粉末とほぼ同一かそれ以上の潤滑性があり、硬
さと自己潤滑性の2つの性質を兼備している。
[0009] The ultrafine particles are made of polycrystalline diamond.
It is a particle cluster that has been classified into particles of 0.00 angstroms or less and sized into a rounded particle shape. Therefore, the ultrafine particles themselves have excellent lubricity, which is almost the same as or better than that of fluororesin powder, and has both hardness and self-lubricating properties.

【0010】従って、このような超微粒子をポリエチレ
ングリコール、ステアリン酸、パラフィン、各種の蝋の
ような水溶性または油溶性高分子物質を主成分とする基
材中に分散させて固形化したスティックを摺動部に塗布
すると、オイル、鉱油あるいは水によく溶けて分散性の
よい塗布被膜が形成され、優れた潤滑性を発揮する。し
かも、その場合、真実接触面上に超微細な超微粒子が多
層に亘って存在することになるので、個々の超微粒子の
ローリング作用により摩擦抵抗が低くなり、長時間潤滑
性が継続する。
[0010] Therefore, a stick is made by dispersing such ultrafine particles in a base material mainly composed of water-soluble or oil-soluble polymer substances such as polyethylene glycol, stearic acid, paraffin, and various waxes. When applied to sliding parts, it dissolves well in oil, mineral oil, or water, forming a coating film with good dispersibility and exhibiting excellent lubricity. Moreover, in this case, since multiple layers of ultrafine particles exist on the real contact surface, the frictional resistance is lowered by the rolling action of each ultrafine particle, and lubricity continues for a long time.

【0011】請求項2は、前記超微粒子の少なくとも一
部の表面にグラファイトを化学的にコーティングしたも
ので、ダイヤモンド粒子の核の外側にグラファイトを化
学的にコーティングし、さらに超潤滑性を持たせた超潤
滑用スティックである。
[0011] According to a second aspect of the present invention, the surface of at least a part of the ultrafine particles is chemically coated with graphite, and the outside of the core of the diamond particle is chemically coated with graphite to further impart super lubricity. It is a super lubricating stick.

【0012】請求項3は、混入された超微粒子の量を、
重量比で0.01%以上としたことにあり、超微粒子含
有率を高くすると、超微粒子の固まりとなってラッピン
グ効果が起こるため、重量比で1%前後が望ましい。
[0012] Claim 3 provides that the amount of the ultrafine particles mixed is
The weight ratio is set to 0.01% or more, and if the ultrafine particle content is increased, the ultrafine particles become agglomerated and a wrapping effect occurs, so a weight ratio of about 1% is desirable.

【0013】[0013]

【実施例】「実施例1」 ポリエチレングリコール        99重量%超
微粒子                      
  1重量%
[Example] "Example 1" Polyethylene glycol 99% by weight ultrafine particles
1% by weight

【0014】水溶性または油溶性高分子物
質を主成分とする基材としてのポリエチレングリコール
中に、多結晶ダイヤモンドを100オングストローム以
下の粒子に分級化し、かつ丸みを帯びた粒子形状に整粒
化した粒子クラスターである超微粒子を混合する。
[0014] Polycrystalline diamond was classified into particles of 100 angstroms or less and sized into rounded particle shapes in polyethylene glycol as a base material containing a water-soluble or oil-soluble polymer substance as a main component. Mix ultrafine particles, which are particle clusters.

【0015】ついで、前記混合物を加熱後溶解させたの
ち、超音波またはホモジナイザー等を使用して5分間超
微粒子の分散処理を行った後、前記溶液を専用容器に充
填し、冷却機で冷却して固形化スティックを得る。
[0015] Next, after heating and dissolving the mixture, the ultrafine particles were dispersed for 5 minutes using an ultrasonic wave or a homogenizer, and then the solution was filled into a special container and cooled with a cooler. to obtain a solidified stick.

【0016】「実施例2」 ステアリン酸                  9
9重量%超微粒子                 
       1重量%
"Example 2" Stearic acid 9
9% by weight ultrafine particles
1% by weight

【0017】実施例1と同様に
、水溶性または油溶性高分子物質を主成分とする基材と
してのステアリン酸中に、多結晶ダイヤモンドを100
オングストローム以下の粒子に分級化し、かつ丸みを帯
びた粒子形状に整粒化した粒子クラスターである超微粒
子を混合する。
Similar to Example 1, 100% polycrystalline diamond was added to stearic acid as a base material mainly composed of a water-soluble or oil-soluble polymer substance.
Ultrafine particles, which are particle clusters that have been classified into particles of angstroms or smaller and sized into rounded particle shapes, are mixed.

【0018】次に、前記混合物を加熱後溶解させたのち
、超音波またはホモジナイザー等を使用して5分間超微
粒子の分散処理を行い、この溶液を専用容器に充填後、
冷却して固形化スティックを得る。
Next, after heating and dissolving the mixture, the ultrafine particles are dispersed for 5 minutes using an ultrasonic wave or a homogenizer, and after filling this solution into a special container,
Cool to obtain a solidified stick.

【0019】なお、前記実施例1,2の超微粒子は、超
微粒子単体であるが、超微粒子の核の外側にグラファイ
トを化学的にコーティングした、グラファイトコーティ
ング品を使用することにより、さらに超潤滑性を持たせ
た固形化スティックが得られる。
The ultrafine particles of Examples 1 and 2 are single ultrafine particles, but by using a graphite-coated product in which graphite is chemically coated on the outside of the core of the ultrafine particles, ultra-lubricity can be further improved. A solidified stick with properties is obtained.

【0020】前記実施例で得られた固形化スティックを
、旋盤のベッド摺動面に塗布したところ、市販の潤滑剤
に比較して、摩擦抵抗は2分の1以下に減少し、潤滑剤
を補充する迄の時間が3倍以上に延びた。また、紡績用
トラベラーリングに塗布したところ、糸切れがなくなり
、無塗布の場合に比べて10倍以上糸切れ時間が延びた
When the solidified stick obtained in the above example was applied to the sliding surface of the bed of a lathe, the frictional resistance was reduced to less than half that of a commercially available lubricant. The time it takes to replenish has more than tripled. Furthermore, when the coating was applied to a traveler ring for spinning, thread breakage was eliminated and the thread breakage time was extended by more than 10 times compared to when no coating was applied.

【0021】さらに、前記実施例で得られた固形化ステ
ィックを万能投影機用微動載物台の摺動部に塗布したと
ころ、摺動性が良好のため光電式マイクロメーターの測
定時の測定誤差が減少し、10回の測定値に対する誤差
は最大で0.2μmであり、無塗布の場合の1μmに比
べ微動に対してスムーズな動きが確認された。
Furthermore, when the solidified stick obtained in the above example was applied to the sliding part of a fine movement stage for a universal projector, the sliding property was good, so there was no measurement error when measuring with a photoelectric micrometer. The error for the 10 measurements was 0.2 μm at maximum, which was 1 μm when no coating was applied, and it was confirmed that the movement was smoother against slight movements.

【0022】これは、前記超微粒子は、ダイヤモンドで
非常に硬質であり、粒子の破壊が少なく、潤滑層に長時
間コロイド性を維持するため、潤滑性の低下が非常に少
なく、接触面上に多層の超微粒子が存在し、個々の超微
粒子のローリング作用により摩擦抵抗が低くなり、長時
間潤滑性が継続することによる。
[0022] This is because the ultrafine particles are diamonds, which are very hard, have little particle breakage, and maintain colloidal properties in the lubricating layer for a long time, so there is very little deterioration in lubricity and there are no particles on the contact surface. This is because there are multiple layers of ultrafine particles, and the rolling action of each ultrafine particle lowers frictional resistance, resulting in continued lubricity for a long time.

【0023】[0023]

【発明の効果】以上説明したように、この発明の超潤滑
スティックは、工作機械等の摺動部に塗布することによ
り、非常に分散性の良い塗布被膜ができ、潤滑性が向上
し、摩擦抵抗を減少させることができる。従って、摺動
部や噛み合い部の摩擦熱の発生を低減できるため、機械
、機器等の耐久性を向上できるという効果がある。さら
に、個々の超微粒子のローリング作用により摩擦抵抗が
低くなり、長時間潤滑性が継続するため、潤滑剤の補給
や交換が困難な機械の摺動部の使用に適し、信頼性を向
上できるという効果がある。
Effects of the Invention As explained above, when the super lubricant stick of the present invention is applied to the sliding parts of machine tools, etc., it forms a coat with very good dispersibility, improving lubricity and reducing friction. resistance can be reduced. Therefore, since the generation of frictional heat in sliding parts and meshing parts can be reduced, there is an effect that the durability of machines, equipment, etc. can be improved. Furthermore, the rolling action of individual ultrafine particles reduces frictional resistance and maintains lubricity for a long time, making it suitable for use in sliding parts of machinery where it is difficult to replenish or replace lubricant, improving reliability. effective.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  平均粒径が100オングストローム以
下の丸みを帯びた形状のダイヤモンド粒子クラスターを
、水溶性または油溶性高分子物質を主成分とする基材中
に分散し、固形化させた超潤滑用スティック。
Claim 1: A super lubricant in which rounded diamond particle clusters with an average particle diameter of 100 angstroms or less are dispersed and solidified in a base material whose main component is a water-soluble or oil-soluble polymer substance. stick.
【請求項2】  ダイヤモンド粒子クラスターの少なく
とも一部の表面にはグラファイトが化学的にコーティン
グされていることを特徴とする請求項1記載の超潤滑用
スティック。
2. The super-lubricant stick according to claim 1, wherein the surface of at least a portion of the diamond particle clusters is chemically coated with graphite.
【請求項3】  混入されたダイヤモンド粒子クラスタ
ーの量は、重量比で0.01%以上であることを特徴と
する請求項1記載の超潤滑用スティック。
3. The super-lubricating stick according to claim 1, wherein the amount of diamond particle clusters mixed is 0.01% or more by weight.
JP23365991A 1991-06-07 1991-06-07 Super-lubricating stick Pending JPH04362397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23365991A JPH04362397A (en) 1991-06-07 1991-06-07 Super-lubricating stick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23365991A JPH04362397A (en) 1991-06-07 1991-06-07 Super-lubricating stick

Publications (1)

Publication Number Publication Date
JPH04362397A true JPH04362397A (en) 1992-12-15

Family

ID=16958518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23365991A Pending JPH04362397A (en) 1991-06-07 1991-06-07 Super-lubricating stick

Country Status (1)

Country Link
JP (1) JPH04362397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255809B2 (en) * 2002-11-26 2007-08-14 Nihon Micro Coating Co., Ltd. Polishing slurry for texturing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255809B2 (en) * 2002-11-26 2007-08-14 Nihon Micro Coating Co., Ltd. Polishing slurry for texturing
US7790046B2 (en) 2002-11-26 2010-09-07 Nihon Micro Coating Co., Ltd. Method of texturing

Similar Documents

Publication Publication Date Title
Zhang et al. Performances of Al 2 O 3/SiC hybrid nanofluids in minimum-quantity lubrication grinding
Gulzar et al. Tribological performance of nanoparticles as lubricating oil additives
Peng et al. Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant
Jatti et al. Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil
JP6810534B2 (en) Nanoparticle composition and its manufacturing method and usage
Sunqing et al. A review of ultrafine particles as antiwear additives and friction modifiers in lubricating oils
JP6016897B2 (en) Hybrid nano lubricant
US5523006A (en) Ultrafine powder lubricant
US8507414B2 (en) Oil-in-water emulsion composition
Shafi et al. Tribological performance of avocado oil containing copper nanoparticles in mixed and boundary lubrication regime
US9644166B2 (en) Surface conditioning nanolubricant
Zhang et al. WS2 nanorods prepared by self-transformation process and their tribological properties as additive in base oil
Mushtaq et al. Enhancing the tribological characteristics of Jatropha oil using graphene nanoflakes
Singh et al. Influence of nano particles on the performance parameters of lube oil–a review
Ren et al. Regulating performance characteristics of lithium complex greases via dibasic acids
Lelonis et al. Boron nitride powder a high-performance alternative for solid lubrication
Hu et al. Study on antiwear and reducing friction additive of nanometer aluminum borate
Raina et al. Lubrication characteristics of oils containing nanoadditives: influencing parameters, market scenario and advancements
JPH04362397A (en) Super-lubricating stick
US5173202A (en) Lubricant coating material: its characteristics and method of manufacture
JPH05171169A (en) Lubricant
Sviridenok et al. Tribological properties of lubricants modified by complexes of hard micro-and nanoparticles
Shi et al. Preparation of tungsten disulfide motor oil and its tribological characteristics
CN102492523A (en) Mixed nanometer lubricating grease additive and application thereof
Trivedi et al. Effect of particle concentration on lubricating properties of magnetic fluid