JPH04362103A - Production of stainless steel sintered body - Google Patents

Production of stainless steel sintered body

Info

Publication number
JPH04362103A
JPH04362103A JP3163419A JP16341991A JPH04362103A JP H04362103 A JPH04362103 A JP H04362103A JP 3163419 A JP3163419 A JP 3163419A JP 16341991 A JP16341991 A JP 16341991A JP H04362103 A JPH04362103 A JP H04362103A
Authority
JP
Japan
Prior art keywords
stainless steel
powder
sintered body
weight
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3163419A
Other languages
Japanese (ja)
Inventor
Hiroshi Otsubo
宏 大坪
Keiichi Maruta
慶一 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3163419A priority Critical patent/JPH04362103A/en
Publication of JPH04362103A publication Critical patent/JPH04362103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce the stainless steel sintered body having good dimensional accuracy and high density by adding iron powder under specific conditions to water-atomized stainless steel powder having specific average grain sizes under specific condition and molding and sintering the mixture. CONSTITUTION:The iron powder having 1 to 15mu grain sizes is added at 1 to 20 pts.wt. to 100 pts.wt. water atomized stainless steel powder which is so adjusted in contents of Cr, Ni, Mo, etc., as to attain the target values of the chemical compsn. and has 1 to 20mu average grain sizes. The mixture is then molded and sintered. The stainless steel sintered body with which the deformation at the time of sintering is prevented is produced in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、粉末冶金による高密度
ステンレス鋼焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-density stainless steel sintered body by powder metallurgy.

【0002】0002

【従来の技術】粉末冶金法は、溶解鋳造法では製造に長
い複雑な工程を要する部材を、短い工程で容易に大量生
産することができる。従来の粉末冶金では、粒径60〜
100μmの粉末を使用して圧縮成形していたが、焼結
体の焼結密度比が高々90%程度で、溶解鋳造品に比べ
ると、機械的特性や磁気特性が劣っていた。
BACKGROUND OF THE INVENTION Powder metallurgy can easily mass-produce parts in short steps that would require long and complicated manufacturing steps in melt casting. In conventional powder metallurgy, the particle size is 60~
Compression molding was performed using 100 μm powder, but the sintered density ratio of the sintered body was about 90% at most, and the mechanical and magnetic properties were inferior to those of melt-cast products.

【0003】一方、最近の粉末冶金の技術進歩によって
、微粉の使用が容易になり、平均粒径20μm以下の微
粉を使用すると焼結性が良くなり、90%以上、さらに
は95%以上の焼結密度比を得ることができるようにな
った。この場合、成形方法としては圧縮成形、射出成形
、スリップキャスティングなどがあり、それぞれ原料微
粉を金型充填性の良い造粒処理、熱可塑性樹脂などによ
る射出成形可能なコンパウンド化処理、スラリ−化処理
をし、工業的な成形を可能にしている。
On the other hand, recent technical advances in powder metallurgy have made it easier to use fine powder, and using fine powder with an average particle size of 20 μm or less improves sinterability, resulting in a sintering rate of 90% or more, and even 95% or more. It is now possible to obtain the compaction density ratio. In this case, the molding methods include compression molding, injection molding, and slip casting. Each of these methods involves granulating the raw material fine powder with good mold filling properties, forming a compound with thermoplastic resin that can be injection molded, and slurry processing. This makes industrial molding possible.

【0004】このような微粉を成形・焼結して高密度の
焼結体を製造するにあたり、焼結体の形状を健全に保つ
ことが難しいという問題点がある。従来の粉末冶金であ
れば金属粉末粒子どうしが圧縮成形において高い圧力に
よって密着し、ある程度の強度をもった成形体ができる
。その成形体が焼結されるとき、常に成形体の初期強度
程度の強度を保って焼結が始まるので、形が崩れること
が少ない。ところが、微粉の場合、成形のときはバイン
ダ−を助剤として成形体強度が保たれているが、焼結工
程において、昇温途上初期にバインダ−が除去されるの
で、その後高温で焼結が開始するまでに成形体強度がき
わめて脆弱となる段階を通過する。とくに水アトマイズ
ステンレス鋼粉の場合には、その表面がCr、Mn、S
iなどの難還元性の酸化皮膜で覆われるため、バインダ
−除去後焼結が高温まで開始しないので、その間に、成
形体の自重、不均一な熱応力などによって、好ましくな
い変形が起こり、最終的な焼結体の形状が変形してしま
うという問題がある。
[0004] When molding and sintering such fine powder to produce a high-density sintered body, there is a problem in that it is difficult to maintain a sound shape of the sintered body. In conventional powder metallurgy, metal powder particles are brought into close contact with each other by high pressure during compression molding, resulting in a molded body with a certain degree of strength. When the molded body is sintered, sintering starts with the strength maintained at about the same level as the initial strength of the molded body, so the shape is less likely to collapse. However, in the case of fine powder, the strength of the molded product is maintained by using a binder as an aid during molding, but in the sintering process, the binder is removed at the beginning of the heating process, so sintering at high temperatures is difficult. By the time it starts, it passes through a stage where the strength of the compact becomes extremely weak. In particular, in the case of water atomized stainless steel powder, its surface contains Cr, Mn, and S.
Because it is covered with a hard-to-reducible oxide film such as i, sintering does not start until high temperature after the binder is removed. There is a problem that the shape of the sintered body is deformed.

【0005】[0005]

【発明が解決しようとする課題】本発明は、ステンレス
鋼焼結体の製造に際し、バインダー除去後焼結が開始す
る前の成形体が脆弱となる段階において、成形体の強度
を上げるための技術を提供するためになされたものであ
る。
[Problems to be Solved by the Invention] The present invention provides a technology for increasing the strength of a stainless steel sintered body during the production of a stainless steel sintered body, at a stage when the body becomes brittle after removal of the binder and before sintering starts. It was created to provide the following.

【0006】[0006]

【課題を解決するための手段】上記の問題を解決するた
めに本発明者らは鋭意研究を進めた結果、ステンレス鋼
粉末に微細な鉄粉を混合し成形・焼結すれば、鉄粉の表
面の酸化物は容易に還元されるため、焼結が進み、ステ
ンレス鋼粉末の粒子の付着剤として働き、その時点で成
形体の強度を改善して、自重などによる変形を未然に防
ぐことができることを見出し、この知見に基づいて本発
明をなすにいたった。
[Means for Solving the Problems] In order to solve the above problems, the present inventors have carried out intensive research and found that if fine iron powder is mixed with stainless steel powder and then molded and sintered, the iron powder Since the oxides on the surface are easily reduced, sintering progresses and acts as an adhesive for the particles of stainless steel powder, at which point it improves the strength of the compact and prevents it from deforming due to its own weight. Based on this knowledge, the present invention was created.

【0007】すなわち、本発明は平均粒径1〜20μm
の水アトマイズステンレス鋼粉100重量部に対して、
平均粒径1〜15μmの鉄粉を1〜20重量部添加し、
成形・焼結するステンレス焼結体の製造方法である。
That is, the present invention has an average particle diameter of 1 to 20 μm.
For 100 parts by weight of water atomized stainless steel powder,
Adding 1 to 20 parts by weight of iron powder with an average particle size of 1 to 15 μm,
This is a method for manufacturing a stainless steel sintered body by molding and sintering.

【0008】[0008]

【作用】本発明の構成、作用を以下に説明する。本発明
を実施するにあたって、最終焼結体の化学組成が目標値
になるように、ステンレス鋼粉のCr,Ni,Moなど
の含有率を混合前に調整しておく。そしてステンレス鋼
粉末100重量部に対する鉄粉の添加量は1〜20重量
部とする。
[Operation] The structure and operation of the present invention will be explained below. In carrying out the present invention, the content of Cr, Ni, Mo, etc. in the stainless steel powder is adjusted before mixing so that the chemical composition of the final sintered body becomes a target value. The amount of iron powder added to 100 parts by weight of stainless steel powder is 1 to 20 parts by weight.

【0009】使用するステンレス鋼粉は、平均粒径が1
μmより小さいと製造コストが高くなり、一方、平均粒
径が1〜20μmをこえると焼結性が不十分であるから
平均粒径を1〜20μmの範囲とする。添加する鉄粉は
、平均粒径が1μmより小さいと製造コストが高くなり
、一方平均粒径が15μmを越えると焼結性が低下し、
期待する効果が十分得られないので、平均粒径を1〜1
5μmとした。添加量は、100重量部に対して、1重
量部未満では、焼結途中の強度向上の効果が見られず、
一方20重量部をこえてもその効果は飽和するので、添
加量は1〜20重量部の範囲とする。
The stainless steel powder used has an average particle size of 1
If the average particle size is smaller than 1 μm, the manufacturing cost will be high, whereas if the average particle size exceeds 1 to 20 μm, the sinterability will be insufficient, so the average particle size is set in the range of 1 to 20 μm. If the average particle size of the iron powder to be added is smaller than 1 μm, the manufacturing cost will increase, while if the average particle size exceeds 15 μm, the sinterability will decrease.
Since the expected effect cannot be obtained sufficiently, the average particle size should be set to 1 to 1.
It was set to 5 μm. If the amount added is less than 1 part by weight per 100 parts by weight, no effect of improving strength during sintering will be observed.
On the other hand, even if the amount exceeds 20 parts by weight, the effect is saturated, so the amount added is in the range of 1 to 20 parts by weight.

【0010】0010

【実施例】(実施例1)平均粒径  1.3、  4.
9、  8.3、  11.6、17.0、  23.
6μmの高圧水アトマイズSUS304ステンレス鋼粉
と平均粒径4.5μmのカーボニル鉄粉を用意した。各
ステンレス鋼粉に鉄粉を添加しないもの(比較例)と、
ステンレス鋼粉100重量部にたいして、鉄粉を3.0
重量部添加したもの(実施例)を用意した。各ステンレ
ス鋼粉の化学組成は、鉄粉3.0重量部混合したとき、
Cr:18重量%(以下%と略す),Ni:8.5%に
なるように、調整してある。それぞれの混合物に樟脳を
2%添加し、2t/cm2 の圧力で、長さ35mm、
幅10mm、高さ5mmの直方体の成形体を成形した。
[Example] (Example 1) Average particle size 1.3, 4.
9, 8.3, 11.6, 17.0, 23.
High-pressure water atomized SUS304 stainless steel powder of 6 μm and carbonyl iron powder with an average particle size of 4.5 μm were prepared. Each stainless steel powder does not contain iron powder (comparative example),
3.0 parts of iron powder per 100 parts by weight of stainless steel powder
A sample (Example) in which part by weight was added was prepared. The chemical composition of each stainless steel powder is, when 3.0 parts by weight of iron powder is mixed.
Adjustments were made so that Cr: 18% by weight (hereinafter abbreviated as %) and Ni: 8.5%. 2% camphor was added to each mixture, and a length of 35 mm was prepared at a pressure of 2 t/cm2.
A rectangular parallelepiped molded body with a width of 10 mm and a height of 5 mm was molded.

【0011】成形体を、25mm間隔で立たせたアルミ
ナ角棒に跨がるように載せ、真空中、100 C/mi
nの速度で昇温し、12500Cで2時間保持した。冷
却後、焼結体の密度をアルキメデス法で測定した。自重
により焼結体の長手方向の中央部が下方に沈んだ距離を
変形量として測定した。表1に測定結果を示す。鉄粉を
添加した実施例の場合には自重による変形が抑制され、
かつ焼結体の密度比が高い。
[0011] The molded body was placed so as to straddle alumina square rods set up at 25 mm intervals, and heated at 100 C/mi in a vacuum.
The temperature was raised at a rate of n and held at 12500C for 2 hours. After cooling, the density of the sintered body was measured using the Archimedes method. The distance that the longitudinal center of the sintered body sank downward due to its own weight was measured as the amount of deformation. Table 1 shows the measurement results. In the case of the example in which iron powder was added, deformation due to its own weight was suppressed,
And the density ratio of the sintered body is high.

【0012】0012

【表1】[Table 1]

【0013】(実施例2)平均粒径9〜11μmの高圧
水アトマイズステンレス鋼粉と2.1、  7.5、 
 13.4、  20.3μmの鉄粉を高圧水アトマイ
ズステンレス鋼粉100重量部に対し3.0重量部添加
したものを用意した。高圧水アトマイズステンレス鋼粉
は、鉄粉を添加した後、Cr:18%、Ni:8.5%
になるように調整してある。なお、鉄粉は銑鉄を粉砕し
、所定の粒度に揃え、脱炭したものを使用している。実
施例1と同様に成形・焼結して密度と変形量を測定した
。表2に結果を示す。表2から本発明の実施例のみが変
形抑制効果があることが明らかである。
(Example 2) High-pressure water atomized stainless steel powder with an average particle size of 9 to 11 μm and 2.1, 7.5,
13.4 and 20.3 μm iron powder was added in an amount of 3.0 parts by weight to 100 parts by weight of high-pressure water atomized stainless steel powder. High-pressure water atomized stainless steel powder has Cr: 18%, Ni: 8.5% after adding iron powder.
It has been adjusted so that Note that the iron powder used is one that has been pulverized from pig iron, adjusted to a predetermined particle size, and decarburized. It was molded and sintered in the same manner as in Example 1, and its density and deformation amount were measured. Table 2 shows the results. It is clear from Table 2 that only the examples of the present invention have a deformation suppressing effect.

【0014】[0014]

【表2】 (注)実施例の鉄粉添加量は3.0重量部である。[Table 2] (Note) The amount of iron powder added in Examples is 3.0 parts by weight.

【0015】(実施例3)平均粒径9〜11μmの高圧
水アトマイズステンレス鋼粉に平均粒径4.5μmのカ
−ボニル鉄粉を、ステンレス鋼粉100重量部に対し、
0.5、  2、5、  15、  20重量部添加し
たものを用意した。ステンレス鋼粉は、混合後、Cr:
18重量%:Ni:8.5重量%となるように調整して
ある。 それぞれを実施例1と同様に成形・焼結して密度を測定
した。結果を表3に示す。表3から、本発明の実施例の
みが変形抑制効果があることが明らかである。
(Example 3) Carbonyl iron powder with an average particle size of 4.5 μm was added to high-pressure water atomized stainless steel powder with an average particle size of 9 to 11 μm per 100 parts by weight of stainless steel powder.
Samples containing 0.5, 2, 5, 15, and 20 parts by weight were prepared. After mixing the stainless steel powder, Cr:
It was adjusted to be 18% by weight: Ni: 8.5% by weight. Each was molded and sintered in the same manner as in Example 1, and the density was measured. The results are shown in Table 3. From Table 3, it is clear that only the examples of the present invention have a deformation suppressing effect.

【0016】[0016]

【表3】 (注)添加鉄粉の平均粒径は4.5μmである。[Table 3] (Note) The average particle size of the added iron powder is 4.5 μm.

【0017】[0017]

【発明の効果】以上に示した通り、本発明によれば、寸
法精度が良く、高密度のステンレス鋼焼結体を製造でき
る。
As described above, according to the present invention, a stainless steel sintered body with good dimensional accuracy and high density can be manufactured.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  平均粒径1〜20μmの水アトマイズ
ステンレス鋼粉100重量部に対して、平均粒径、1〜
15μmの鉄粉を1〜20重量部添加し、成形・焼結す
るステンレス鋼焼結体の製造方法。
Claim 1: For 100 parts by weight of water atomized stainless steel powder with an average particle size of 1 to 20 μm, an average particle size of 1 to 20 μm
A method for manufacturing a stainless steel sintered body by adding 1 to 20 parts by weight of iron powder of 15 μm, forming and sintering.
JP3163419A 1991-06-10 1991-06-10 Production of stainless steel sintered body Pending JPH04362103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3163419A JPH04362103A (en) 1991-06-10 1991-06-10 Production of stainless steel sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3163419A JPH04362103A (en) 1991-06-10 1991-06-10 Production of stainless steel sintered body

Publications (1)

Publication Number Publication Date
JPH04362103A true JPH04362103A (en) 1992-12-15

Family

ID=15773544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3163419A Pending JPH04362103A (en) 1991-06-10 1991-06-10 Production of stainless steel sintered body

Country Status (1)

Country Link
JP (1) JPH04362103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101894446B1 (en) * 2017-07-07 2018-09-04 서울대학교 산학협력단 Method for producing sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101894446B1 (en) * 2017-07-07 2018-09-04 서울대학교 산학협력단 Method for producing sintered body

Similar Documents

Publication Publication Date Title
JPH0244883B2 (en)
JPH0686608B2 (en) Method for producing iron sintered body by metal powder injection molding
US5091022A (en) Manufacturing process for sintered fe-p alloy product having soft magnetic characteristics
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
EP0523658B1 (en) Method for making injection molded soft magnetic material
JPH02164008A (en) Manufacture of soft magnetic sintered body of fe-si alloy
JPH04329801A (en) Production of sintered parts
JP2751966B2 (en) Injection molding composition
JPH04362103A (en) Production of stainless steel sintered body
EP0523651B1 (en) Method for making high strength injection molded ferrous material
JP3201428B2 (en) Manufacturing method of powder for permanent magnet
JPH02107703A (en) Composition for injection molding
JPH04285141A (en) Manufacture of ferrous sintered body
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JPH08120393A (en) Production of iron-silicon soft magnetic sintered alloy
JPH04298006A (en) Manufacture of fe-si-al alloy sintered soft magnetic substance
JPH06136405A (en) Production of high-density pure iron sintered compact
JPH05239503A (en) Production of high-density stainless steel sintered compact with reduced deformation in sintering
JPH0551688A (en) Production of high density sintered compact of stainless steel
JPH0565589A (en) Production of high density stainless steel sintered body
JPH0257613A (en) Production of sintered metallic material and its raw powder
JPH0313501A (en) Sintered body and manufacture thereof
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPS6354703A (en) Manufacture of rare earth magnet
JPH06316744A (en) Production of fe-ni-co series alloy parts for sealing