JPH04362005A - Industrial production of chlorine - Google Patents

Industrial production of chlorine

Info

Publication number
JPH04362005A
JPH04362005A JP3134782A JP13478291A JPH04362005A JP H04362005 A JPH04362005 A JP H04362005A JP 3134782 A JP3134782 A JP 3134782A JP 13478291 A JP13478291 A JP 13478291A JP H04362005 A JPH04362005 A JP H04362005A
Authority
JP
Japan
Prior art keywords
gas
chlorine
hydrogen chloride
water
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3134782A
Other languages
Japanese (ja)
Other versions
JP2726771B2 (en
Inventor
Hiroyuki Ito
洋之 伊藤
Yoshitsugu Jinno
神野 嘉嗣
Satoshi Tsuruta
鶴田 智
Shinji Takenaka
竹中 慎司
Teruo Hirayama
平山 照夫
Isao Kikuchi
菊地 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP3134782A priority Critical patent/JP2726771B2/en
Priority to EP92305102A priority patent/EP0518553B1/en
Priority to DE69213342T priority patent/DE69213342T2/en
Priority to KR1019920009828A priority patent/KR950011825B1/en
Publication of JPH04362005A publication Critical patent/JPH04362005A/en
Application granted granted Critical
Publication of JP2726771B2 publication Critical patent/JP2726771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To improve equilibrium conversion and yield by rapidly cooling, washing and making adsorbed the gas obtained by reacting HCl containing feed gas with a specified quantity of O2 in the presence of a Cr2O3 catalyst to form a product gas. CONSTITUTION:After gaseous HCl 1 passes through an activated carbon packed tower 2, the gas 1 to which >=0.25 mole of O2 per 1 mole of HCl in the gas 1 is added is fed to a reactor 6 packed with a Cr2O3 catalyst where it undergoes reaction at 300 to 500 deg.C to obtain product gas containing Cl, H2O, unreacted HCl, O2 and vaporized or flying Cr. Then, after the product gas is fed to a Cr recovery tower 8 where it is rapidly cooled and washed by water, it is introduced into a HCl recovery tower 9 to wash it by water and then introduced into a sulfuric acid washing tower 21 to wash and dehydrate it by sulfuric acid and then cooled in a cooler 30 to obtain gas 31. Then, the gas 31 is treated through a distillation tower 38 and a cooler 39 to collect liquefied HCl from the bottom. On the other hand, the gas 41 from the top is introduced into pressure swing adsorbers 32a to 32c where Cl is adsorbed on an adsorbent in the adsorber. After that, the adsorbers are evacuated by a vacuum pump 37 to recover Cl-rich gas 33.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、塩化水素ガスを含酸素
ガスで酸化し塩素を製造する方法、より詳細には、各種
含塩素化合物の反応工程で排出される塩化水素ガスを含
酸素ガスで酸化し塩素を製造する工業的製造方法に関す
るものである。
[Industrial Application Field] The present invention relates to a method for producing chlorine by oxidizing hydrogen chloride gas with an oxygen-containing gas, and more specifically, to convert hydrogen chloride gas discharged in the reaction process of various chlorine-containing compounds into an oxygen-containing gas. The present invention relates to an industrial manufacturing method for producing chlorine by oxidizing it with

【0002】0002

【従来の技術】塩素は食塩電解により大規模に製造され
ており、塩素の需要は、年々増大するにもかかわらず、
食塩電解の際に同時に生成する苛性ソーダの需要は、塩
素のそれよりも少ないために、各々の不均衡をうまく調
整するのは、困難な状況が生じている。
[Prior Art] Chlorine is produced on a large scale by salt electrolysis, and although the demand for chlorine is increasing year by year,
Since the demand for caustic soda, which is simultaneously produced during salt electrolysis, is less than that for chlorine, it is difficult to properly adjust the imbalance between them.

【0003】一方、有機化合物の塩素化反応、またはホ
スゲン化反応の際に、大量の塩化水素が副生し、その量
は、市場の需要量より大巾に多いために、未利用のまま
で無駄に廃棄されている。また廃棄のための処理コスト
が大きい。
On the other hand, a large amount of hydrogen chloride is produced as a by-product during the chlorination reaction or phosgenation reaction of organic compounds, and the amount remains unused because it is much larger than the amount demanded by the market. It is wasted in vain. Moreover, the processing cost for disposal is high.

【0004】塩化水素を酸化して塩素を製造する反応は
、古くからDeacon反応として知られている。18
68年、ディーコン(Deacon)の発明による銅系
の触媒が、従来最も優れた活性を示す触媒とされ、塩化
銅と塩化カリに第三成分として、種々の化合物を添加し
たいわゆるディーコン触媒が多数提案されている。しか
しながら、これらの触媒で工業的に行なうには、少なく
とも400℃以上の高温が必要であり、又触媒寿命の問
題があった。
The reaction of producing chlorine by oxidizing hydrogen chloride has long been known as the Deacon reaction. 18
In 1968, the copper-based catalyst invented by Deacon was said to be the catalyst with the most excellent activity to date, and many so-called Deacon catalysts were proposed, which were made by adding various compounds as third components to copper chloride and potassium chloride. has been done. However, in order to use these catalysts industrially, a high temperature of at least 400° C. or higher is required, and there is a problem of catalyst life.

【0005】また、これらディーコン触媒以外に、酸化
クロムを触媒として用いる提案も種々なされているが、
充分な活性を示すものはなかった。例えば、米国特許第
676,667号は、CrO3をアルミナに担持し、焼
成または水素還元して、三価のクロミア触媒にして用い
る方法を開示しているが、低い転化率しか示されていな
い。更に、英国特許第846,832号では、前記米国
特許のように、六価クロムを三価クロミアにした酸化ク
ロム触媒は、初期転化率は高いが活性低下が著しく大き
いので、その改良法として、高い転化率を維持するため
、原料塩化水素にクロミルクロライドを混入して反応さ
せる方法も提案されている。しかし、このように酸化ク
ロムを触媒として用いても、新たな反応試薬を加えない
限り、反応温度も高く、空間速度も低いために工業的な
操作に耐えうるものは見当らなかった。
[0005] In addition to these Deacon catalysts, various proposals have been made to use chromium oxide as a catalyst.
None showed sufficient activity. For example, US Pat. No. 676,667 discloses a method in which CrO3 is supported on alumina and calcined or reduced with hydrogen for use as a trivalent chromia catalyst, but only low conversion rates have been shown. Furthermore, British Patent No. 846,832 describes a chromium oxide catalyst using trivalent chromia instead of hexavalent chromium as in the above-mentioned U.S. patent, which has a high initial conversion rate but a significant decrease in activity. In order to maintain a high conversion rate, a method has also been proposed in which chromyl chloride is mixed into the raw material hydrogen chloride and reacted. However, even when chromium oxide is used as a catalyst in this way, unless a new reaction reagent is added, the reaction temperature is high and the space velocity is low, so no catalyst has been found that can withstand industrial operations.

【0006】しかし、発明者らは、先に酸化クロムを主
成分とする触媒を使用して、塩素を高い収率で得る工業
的製造方法を提案した(特開昭62−275001、特
開昭62−191403、特開昭62−270404、
特開昭63−45102、特開昭63−11502、特
開昭63−107801)。この発明により、塩化水素
を酸化して塩素を製造する技術が工業化できるものとな
った。
However, the inventors previously proposed an industrial production method for obtaining chlorine in high yield using a catalyst containing chromium oxide as the main component (Japanese Patent Application Laid-Open No. 62-275001, 62-191403, Japanese Patent Publication No. 62-270404,
JP-A-63-45102, JP-A-63-11502, JP-A-63-107801). This invention has made it possible to industrialize the technology for producing chlorine by oxidizing hydrogen chloride.

【0007】このうち特開昭62−275001では生
成ガス中の塩素を圧縮・冷却・液化による液体塩素とし
て塩素を取り出し、残ガスの一部または全部を反応に使
用する酸素源として反応工程へ戻すことを行っている。 本反応においては、過剰に酸素が必要であるが、未反応
酸素はすべて残ガスに含まれることになり、この酸素の
有効な再利用のために、反応工程へ残ガスを戻すことが
重要である。
Among these, in JP-A No. 62-275001, chlorine in the generated gas is extracted as liquid chlorine by compression, cooling, and liquefaction, and part or all of the remaining gas is returned to the reaction process as an oxygen source used in the reaction. doing things. This reaction requires an excess of oxygen, but all unreacted oxygen will be included in the residual gas, so it is important to return the residual gas to the reaction process in order to effectively reuse this oxygen. be.

【0008】しかし、この残ガスには、塩素液化条件に
よるが、塩素が5〜20%含まれる。この残ガスを、反
応工程に戻す際には、反応機入口で原料ガス中に塩素が
含まれることになる。この塩化水素を、酸素で酸化する
反応は、平衡反応なので、原料中に塩素が含まれる、と
いうことは供給する塩化水素の転化率を、低下させるこ
とになる。もし残ガス中の塩素がほとんどなければ、塩
化水素の転化率は、数%向上させることができ、その経
済性は大幅に向上する。
However, this residual gas contains 5 to 20% chlorine, depending on the chlorine liquefaction conditions. When this residual gas is returned to the reaction process, chlorine will be contained in the raw material gas at the reactor inlet. Since the reaction of oxidizing hydrogen chloride with oxygen is an equilibrium reaction, the presence of chlorine in the raw material reduces the conversion rate of the supplied hydrogen chloride. If there is little chlorine in the residual gas, the conversion of hydrogen chloride can be improved by several percent, and the economic efficiency will be greatly improved.

【0009】ガス中の塩素の除去・回収に関する従来技
術は、ハロゲン化炭化水素、おもに四塩化炭素によるガ
スからの、塩素の吸収と吸収液からの塩素の蒸発分離が
一般的に行われている。たとえば米国特許4,394,
367、ザ・ケミカルエンジニア(The  Chem
.  Eng.  ,  1963年、CE  229
頁)や特開平01−212202にその記載がある。し
かし、四塩化炭素は有害な有機溶剤であり、環境問題上
もその使用に問題がある。また、塩素吸収後の残ガスに
四塩化炭素が残った場合には、前出の反応工程に四塩化
炭素が入り、その四塩化炭素の50%ほどは塩素等に分
解されるが一部は四塩化炭素の形で、反応工程から反応
生成ガスとともに、次の工程に流れ、最終的には排水な
どへ混入しさらに環境汚染を引き起こすことになる。よ
って四塩化炭素を使用することは好ましくない。
[0009] Conventional techniques for removing and recovering chlorine from gas generally involve absorption of chlorine from gas using halogenated hydrocarbons, mainly carbon tetrachloride, and evaporation separation of chlorine from the absorption liquid. . For example, U.S. Patent 4,394,
367, The Chemical Engineer
.. Eng. , 1963, CE 229
Page) and Japanese Patent Application Laid-Open No. 01-212202. However, carbon tetrachloride is a harmful organic solvent, and its use is problematic from an environmental standpoint. In addition, if carbon tetrachloride remains in the residual gas after chlorine absorption, carbon tetrachloride enters the reaction process mentioned above, and about 50% of the carbon tetrachloride is decomposed into chlorine etc., but some In the form of carbon tetrachloride, it flows from the reaction process to the next process along with the reaction product gas, and eventually gets mixed into wastewater, causing further environmental pollution. Therefore, it is not preferable to use carbon tetrachloride.

【0010】0010

【発明が解決しようとする課題】発明者らの前出の塩素
の工業的製造方法においては残ガス中に塩素を含むので
残ガスを反応工程に戻すことにより原料塩化水素の転化
率を平衡転化率に比較し低下させている。また塩素の回
収に四塩化炭素などの有害な溶剤を使用せざるをえない
[Problem to be Solved by the Invention] In the above-mentioned industrial production method of chlorine by the inventors, the residual gas contains chlorine, so by returning the residual gas to the reaction process, the conversion rate of the raw material hydrogen chloride is reduced to equilibrium conversion. This has decreased compared to the rate. Additionally, harmful solvents such as carbon tetrachloride must be used to recover chlorine.

【0011】[0011]

【発明を解決するための手段】本発明者らは、先に塩素
を圧力スイング吸着法によりガス中から塩素を分離・濃
縮する方法を提案した(特願平2−75500)。この
方法により操作条件を適切に選択するならば、塩素を含
むガスより塩素を回収・濃縮し、そ、の残ガス中の塩素
を実用上ゼロにすることができ、しかも四塩化炭素など
の溶剤をまったく使用しない。この発明を前記の塩素の
工業的製造方法に利用するならば、塩化水素の転化率の
大幅な向上の可能性があるので検討を行った。その結果
、従来法に比較して塩化水素転化率の数%の向上が認め
られ、本発明を完成するに至った。
Means for Solving the Invention The present inventors have previously proposed a method for separating and concentrating chlorine from a gas by a pressure swing adsorption method (Japanese Patent Application No. 75500/1999). If operating conditions are appropriately selected using this method, chlorine can be recovered and concentrated from chlorine-containing gas, and the chlorine content in the residual gas can be reduced to practically zero. Don't use it at all. If this invention were to be applied to the above-mentioned industrial method for producing chlorine, it would be possible to significantly improve the conversion rate of hydrogen chloride, so we conducted a study. As a result, it was observed that the hydrogen chloride conversion rate was improved by several percent compared to the conventional method, and the present invention was completed.

【0012】すなわち、塩化水素を含むガスを原料ガス
とし、これを酸化させて塩素を製造する方法において、
■原料ガス中に含まれる塩化水素1モルに対して、0.
25モル以上の酸素を用い、反応温度300〜500℃
で酸化クロム触媒の存在下、塩化水素の酸化反応を行い
、■主として塩素、水、未反応塩化水素、酸素、および
揮散・飛散クロムを含有する生成ガスを急冷、水洗して
該クロムを水溶液として回収した後、■生成ガスをさら
に水洗浄し、未反応塩化水素を水に吸収させて塩化水素
水溶液として回収し、■生成ガスをさらに硫酸で洗浄、
脱水し、■生成ガスを冷却、液化し、生成ガス中に含ま
れる塩素の一部を液化塩素として生成ガスより分離し、
■未凝縮の残ガスを吸着剤を充填した圧力スイング吸着
装置に該生成ガスを導入して塩素を吸着して回収し、未
吸着の残ガスの一部または全部を循環ガスとして前記工
程■の酸化工程へ戻し、■圧力スイング吸着装置に吸着
された塩素に富むガスを吸着圧力より減圧して回収する
、ことを特徴とする塩素の工業的製造方法、
That is, in a method for producing chlorine by oxidizing a gas containing hydrogen chloride as a raw material gas,
■0.0% per mole of hydrogen chloride contained in the raw material gas.
Using 25 moles or more of oxygen, reaction temperature 300-500°C
The oxidation reaction of hydrogen chloride is carried out in the presence of a chromium oxide catalyst at After recovery, ■ the generated gas is further washed with water, unreacted hydrogen chloride is absorbed into water and recovered as a hydrogen chloride aqueous solution, ■ the generated gas is further washed with sulfuric acid,
Dehydrate, ■ cool and liquefy the generated gas, and separate part of the chlorine contained in the generated gas from the generated gas as liquefied chlorine.
■The uncondensed residual gas is introduced into a pressure swing adsorption device filled with an adsorbent to adsorb and recover chlorine, and part or all of the unadsorbed residual gas is used as a circulating gas in step (2). An industrial method for producing chlorine, characterized in that the chlorine-rich gas adsorbed in the pressure swing adsorption device is recovered by reducing the pressure from the adsorption pressure by returning it to the oxidation step;

【0013
】または、■原料ガス中に含まれる塩化水素1モルに対
して、0.25モル以上の酸素を用い、反応温度300
〜500℃で酸化クロム触媒の存在下、塩化水素の酸化
反応を行い、■主として塩素、水、未反応塩化水素、酸
素、および揮散・飛散クロムを含有する生成ガスを急冷
、水洗して該クロムを水溶液として回収した後、■生成
ガスをさらに水洗浄し、未反応塩化水素を水に吸収させ
て塩化水素水溶液として回収し、■生成ガスをさらに硫
酸で洗浄、脱水し、■生成ガスを冷却、液化し、生成ガ
ス中に含まれる塩素の一部を液化塩素として生成ガスよ
り分離し、■未凝縮の残ガスを吸着剤を充填した圧力ス
イング吸着装置に該生成ガスを導入して塩素を吸着して
回収し、未吸着の残ガスの一部または全部を循環ガスと
して前記工程■の酸化工程へ戻し、■圧力スイング吸着
装置に吸着された塩素に富むガスを吸着圧力より減圧し
て回収し、このガスを前記工程■に戻す、ことを特徴と
する塩素の工業的製造方法を完成した。
0013
] Or, ■ Use 0.25 mol or more of oxygen per 1 mol of hydrogen chloride contained in the raw material gas, and use a reaction temperature of 300 ml.
An oxidation reaction of hydrogen chloride is carried out at ~500°C in the presence of a chromium oxide catalyst, and the resulting gas containing mainly chlorine, water, unreacted hydrogen chloride, oxygen, and volatile/scattered chromium is rapidly cooled and washed with water to remove the chromium. After recovering it as an aqueous solution, ■ the generated gas is further washed with water, unreacted hydrogen chloride is absorbed into water and recovered as a hydrogen chloride aqueous solution, ■ the generated gas is further washed with sulfuric acid and dehydrated, and ■ the generated gas is cooled. , a part of the chlorine contained in the produced gas is separated from the produced gas as liquefied chlorine, and the remaining uncondensed gas is introduced into a pressure swing adsorption device filled with an adsorbent to remove chlorine. Part or all of the unadsorbed residual gas is returned to the oxidation step in step (2) above as a circulating gas, and the chlorine-rich gas adsorbed in the pressure swing adsorption device is recovered by reducing the pressure from the adsorption pressure. Then, an industrial method for producing chlorine was completed, which is characterized in that this gas is returned to the step (2).

【0014】次に、本発明による好ましい製法を一つの
例として、第1図のフローシートを参考に詳しく説明す
る。
Next, a preferred manufacturing method according to the present invention will be explained in detail as an example with reference to the flow sheet shown in FIG.

【0015】塩化水素(1)中の有機化合物は極力除去
するのが好ましく、また生成ガス中には通常炭酸ガス等
の無機性ガスが含有されているが、そのまま反応器(6
)へ入っても特に問題はない。従って塩化水素(1)は
活性炭充填塔に通じ微量の有機化合物を活性炭吸着によ
って除去した後に、反応器(6)へ入る。本発明に用い
る酸化クロム触媒は、主成分がクロミア(Cr2O3)
であり、沈澱法または浸漬法で調整することができる。
It is preferable to remove the organic compounds in the hydrogen chloride (1) as much as possible, and the generated gas usually contains inorganic gases such as carbon dioxide.
) There is no particular problem in entering. Therefore, hydrogen chloride (1) passes through an activated carbon-packed tower to remove trace amounts of organic compounds by adsorption on activated carbon, and then enters the reactor (6). The main component of the chromium oxide catalyst used in the present invention is chromia (Cr2O3).
It can be prepared by precipitation method or dipping method.

【0016】本発明において、反応器(6)の圧力は0
.1〜5kg/cm2Gの範囲、好ましくは3〜4kg
/cm2Gである。また反応温度は300〜500℃、
好ましくは350〜450℃である。反応温度が高い程
塩化水素の転化速度は速くなるが、それに伴い触媒から
蒸気状で揮散したクロミルクロライド量が大きくなる。 塩化水素と酸素との反応は次式(化1)の反応式に示さ
れる。
In the present invention, the pressure in the reactor (6) is 0.
.. Range of 1-5 kg/cm2G, preferably 3-4 kg
/cm2G. In addition, the reaction temperature is 300-500℃,
Preferably it is 350-450°C. The higher the reaction temperature, the faster the conversion rate of hydrogen chloride, but the greater the amount of chromyl chloride vaporized from the catalyst. The reaction between hydrogen chloride and oxygen is shown by the following reaction formula (Chemical formula 1).

【0017】[0017]

【化1】             4HCl  +  O2  
→    2Cl2  +  2H2O
[Chemical formula 1] 4HCl + O2
→ 2Cl2 + 2H2O

【0018】反
応式に示される通り、塩化水素4モルに対し、酸素1モ
ルが理論当量である。使用する酸化クロム触媒は反応時
、常に酸化雰囲気下にしておく必要があるので、反応器
(6)に入る混合ガス流路(5)での塩化水素と酸素の
比率は、塩化水素1モルに対し、酸素0.25モル以上
でなければならず、0.25〜10モルの範囲が好まし
い。更に好ましくは0.3〜2モルの範囲になるように
酸素流路(4)および循環ガス流路(35)の流量を調
整する。
As shown in the reaction formula, the theoretical equivalent is 1 mole of oxygen to 4 moles of hydrogen chloride. Since the chromium oxide catalyst used needs to be kept under an oxidizing atmosphere during the reaction, the ratio of hydrogen chloride and oxygen in the mixed gas flow path (5) entering the reactor (6) is set to 1 mole of hydrogen chloride. On the other hand, oxygen must be 0.25 mol or more, preferably in the range of 0.25 to 10 mol. More preferably, the flow rates of the oxygen flow path (4) and the circulating gas flow path (35) are adjusted to be in the range of 0.3 to 2 mol.

【0019】反応器(6)を出た生成ガスは水、塩素、
未反応塩化水素、酸素及び触媒成分から由来する揮散・
飛散クロムや微量の無機性ガスを含む約300〜500
℃の高温ガスである。生成ガスは次にクロム回収塔(8
)に入り、急冷、水洗される。このクロム回収塔(8)
にて揮散・飛散クロム化合物を塩酸水としてガスより分
離するが、3〜4kg/cm2G付近の運転圧力では9
0〜130℃で操作する。揮散・飛散クロムを除去した
生成ガスを、塩酸ガス吸収塔(9)に導入する。 この吸収塔(9)は20〜100℃、望ましくは60℃
以下の水を循環し、生成ガスを水にて急速に冷却する。 反応で生成した生成ガス中の水の大部分を凝縮し、また
生成ガス中のほとんどの塩化水素ガスが分離する。
The generated gas leaving the reactor (6) contains water, chlorine,
Volatile gas derived from unreacted hydrogen chloride, oxygen and catalyst components
Approximately 300 to 500, including scattered chromium and trace amounts of inorganic gas
It is a high temperature gas at ℃. The generated gas is then sent to a chromium recovery tower (8
), then rapidly cooled and washed with water. This chromium recovery tower (8)
The volatilized and scattered chromium compounds are separated from the gas as hydrochloric acid water, but at an operating pressure of around 3 to 4 kg/cm2G, the
Operate at 0-130°C. The generated gas from which volatilized and scattered chromium has been removed is introduced into a hydrochloric acid gas absorption tower (9). This absorption tower (9) is 20 to 100°C, preferably 60°C.
The following water is circulated and the generated gas is rapidly cooled with water. Most of the water in the product gas produced in the reaction is condensed, and most of the hydrogen chloride gas in the product gas is separated.

【0020】生成ガスは塩素、微量の水、塩化水素およ
び無機性ガスを含み水洗後の生成ガス流路(20)を経
て、硫酸洗浄塔(21)へ導入する。硫酸洗浄塔(21
)は20〜80℃、好ましくは60℃以下の硫酸を硫酸
ポンプ(23)にて循環しており、生成ガスは硫酸と接
触し生成ガス中の残存水分を完全に硫酸に吸収する。 硫酸循環系(24)の硫酸濃度を適度に保つように硫酸
補給口(22)の硫酸と希硫酸抜出口(26)の希硫酸
の流量を調節する。硫酸は冷却器(25)にて冷却し、
所定温度に調節する。
The generated gas contains chlorine, a trace amount of water, hydrogen chloride, and an inorganic gas, and is introduced into the sulfuric acid washing tower (21) through the generated gas flow path (20) after washing with water. Sulfuric acid cleaning tower (21
) circulates sulfuric acid at a temperature of 20 to 80°C, preferably 60°C or less, using a sulfuric acid pump (23), and the produced gas is brought into contact with the sulfuric acid so that the remaining moisture in the produced gas is completely absorbed by the sulfuric acid. The flow rates of sulfuric acid at the sulfuric acid supply port (22) and diluted sulfuric acid at the diluted sulfuric acid extraction port (26) are adjusted so as to maintain a suitable sulfuric acid concentration in the sulfuric acid circulation system (24). Cool the sulfuric acid in a cooler (25),
Adjust to the specified temperature.

【0021】硫酸洗浄塔(21)を出た生成ガスは(2
7)を経て、圧縮機(28)で圧縮し、その後(29)
を経て冷却器  (30)で冷却する。
The generated gas leaving the sulfuric acid cleaning tower (21) is (2
7), compressed with a compressor (28), and then (29)
and then cooled in a cooler (30).

【0022】ガス(31)をさらに冷却し塩素を液化さ
せてガス相より分離する。塩素の液化については、圧力
と温度にて規定される液化範囲が存在する。その範囲で
低温にすればする程、圧縮圧力は低くてよい。工業的に
は設備費等の問題もあり、圧縮圧力や冷却する温度は、
この範囲内の最適な経済条件を考慮して決められる。通
常の運転においては、圧縮圧力10〜25kg/cm2
G、温度−15  〜−30℃で実施するのがよい。得
られる液体塩素の純度が高いことが望まれるならば、図
1に示すように蒸留塔を設置して、塩素を蒸留すること
も可能である。すなわちガス(31)を蒸留塔(38)
に送入し、蒸留塔(38)上部の冷凍機にて冷却された
冷却器(39)により冷却、液化し、蒸留する。冷却器
(39)内では、液化塩素と、酸素ガス、無機性ガス、
微量の塩化水素ガス、未凝縮の塩素を含むガス相に分か
れ、塔底より液化塩素(40)として取り出す。蒸留塔
は、特殊な構造は必要なく、通常の加圧、又は常圧操作
での段塔や、充填塔などの型式でよい。特に高純度の液
体塩素が必要でなければ蒸留塔を省略し冷却器(39)
で冷却、液化し液体塩素をガス相より分離する。
The gas (31) is further cooled to liquefy the chlorine and separate it from the gas phase. Regarding the liquefaction of chlorine, there is a liquefaction range defined by pressure and temperature. The lower the temperature within that range, the lower the compression pressure may be. Industrially, there are issues such as equipment costs, and compression pressure and cooling temperature are
It is determined by considering the optimal economic conditions within this range. In normal operation, compression pressure is 10-25 kg/cm2
G. It is preferable to carry out at a temperature of -15 to -30°C. If it is desired that the obtained liquid chlorine has high purity, it is also possible to install a distillation column as shown in FIG. 1 to distill the chlorine. That is, the gas (31) is passed through the distillation column (38)
It is cooled, liquefied, and distilled by a cooler (39) cooled by a refrigerator at the top of the distillation column (38). In the cooler (39), liquefied chlorine, oxygen gas, inorganic gas,
It is separated into a gas phase containing a trace amount of hydrogen chloride gas and uncondensed chlorine, and taken out from the bottom of the tower as liquefied chlorine (40). The distillation column does not require a special structure, and may be of a type such as a plate column or a packed column operated under normal pressure or normal pressure. If particularly high-purity liquid chlorine is not required, the distillation column can be omitted and the cooler (39)
It is cooled and liquefied, and liquid chlorine is separated from the gas phase.

【0023】生成ガス(41)を圧力スイング吸着装置
の吸着塔(32a,32b,32c)のいずれか1台)
に導入する。吸着塔(32a,32b,32c)には後
に述べる塩素とそれ以外のガスとを分離するに最適な吸
着剤を充填しており、この吸着剤に塩素が吸着し生成ガ
ス(41)より塩素を実際上無視できる程度に除去し、
生成ガス(34)を得る。生成ガス(34)は酸素濃度
が高いので原料の塩化水素の酸化に再使用するため、循
環ガス流路(35)を経て原料塩化水素、及び酸素の混
合ガスに混入する。その際、継続運転中に原料塩化水素
、及び酸素に含まれる無機性ガスが逐次増加してくるた
め、常時その一部を廃ガス(36)として系外へ放出す
る。
[0023] The generated gas (41) is transferred to one of the adsorption towers (32a, 32b, 32c) of the pressure swing adsorption device).
to be introduced. The adsorption towers (32a, 32b, 32c) are filled with an adsorbent that is optimal for separating chlorine from other gases, which will be described later.Chlorine is adsorbed to this adsorbent, and chlorine is extracted from the generated gas (41). removed to a practically negligible extent,
A generated gas (34) is obtained. Since the generated gas (34) has a high oxygen concentration, it is mixed into the mixed gas of the raw material hydrogen chloride and oxygen via the circulating gas flow path (35) in order to be reused for oxidizing the raw material hydrogen chloride. At this time, since the raw material hydrogen chloride and the inorganic gas contained in oxygen gradually increase during continuous operation, a part of them is always discharged to the outside of the system as waste gas (36).

【0024】吸着塔(32a,32b,32c)の吸着
操作時の圧力は3〜15kg/cm2G、好ましくは3
〜10kg/cm2Gがよい。操作温度は0〜150℃
まで取ることができるが、通常は大気温度で操作する方
が経済的であり特に問題ない。
The pressure during the adsorption operation of the adsorption towers (32a, 32b, 32c) is 3 to 15 kg/cm2G, preferably 3
~10kg/cm2G is good. Operating temperature is 0~150℃
However, it is usually more economical to operate at atmospheric temperature and there is no particular problem.

【0025】吸着塔(32a,32b,32c)に充填
する吸着剤としては合成および天然ゼオライト、非ゼオ
ライト系多孔質酸性酸化物や活性炭および分子ふるいカ
ーボンのような炭素質吸着剤が使用できる。たとえばゼ
オライトとしてはA型、X型、Y型、L型、ZSM型、
天然モルデナイトなどがあげられるが、好ましくはX型
、Y型、L型、ZSM型である。活性炭は果実殻系・木
材系・石炭系・石油系などが吸着剤として使用できるが
この中でも分子ふるいカーボン、ヤシ殻活性炭が好まし
い。
As the adsorbent to be filled in the adsorption towers (32a, 32b, 32c), synthetic and natural zeolites, non-zeolite porous acid oxides, carbonaceous adsorbents such as activated carbon and molecular sieve carbon can be used. For example, zeolites include A type, X type, Y type, L type, ZSM type,
Examples include natural mordenite, but X-type, Y-type, L-type, and ZSM-type are preferable. Fruit shell-based, wood-based, coal-based, and petroleum-based activated carbons can be used as adsorbents, but among these, molecular sieve carbon and coconut shell activated carbon are preferred.

【0026】これらの吸着剤は酸素、窒素、二酸化炭素
、一酸化炭素、アルゴンなどの無機性ガスに比較し塩素
に対して強い親和性を有しているので、これらの吸着剤
を充填した吸着塔に、塩素を含有するガスを導入すると
、塩素が他のガスより優先的に吸着され、吸着塔のガス
出側では塩素濃度の低いガスが得られ、最適な操作条件
を、選択するならば吸着塔のガス出側では、塩素はほと
んど検出されない。
[0026] These adsorbents have a stronger affinity for chlorine than inorganic gases such as oxygen, nitrogen, carbon dioxide, carbon monoxide, and argon. When a gas containing chlorine is introduced into the tower, chlorine is adsorbed preferentially over other gases, and a gas with a low chlorine concentration is obtained at the gas outlet side of the adsorption tower.If the optimal operating conditions are selected, Almost no chlorine is detected on the gas outlet side of the adsorption tower.

【0027】仮に、吸着塔として(32a)を使用して
いるとすると、吸着塔(32a)への塩素の吸着が進み
飽和状態に近づいたところでガス(31)の導入を吸着
塔(32a)より吸着塔(32b)に切り換える。吸着
塔(32a)の操作圧力を降下させ、吸着している塩素
およびその他のガスを脱着させる。この時の操作圧力は
、吸着時の圧力以下とし、必要に応じては真空ポンプ(
37)により、大気圧以下にすることも有効であり、脱
着時の好ましい操作圧力は、10〜400torrであ
る。脱着圧力は、低い方が脱着により得られる塩素に富
んだガス(33)の塩素純度は高いが、使用する真空ポ
ンプ(37)が過大になりすぎるので、経済的理由によ
り操作圧力は決定される。また操作温度は、任意である
が、基本的には吸着時の温度と同じとする方が、経済的
である。
If (32a) is used as the adsorption tower, when the adsorption of chlorine to the adsorption tower (32a) progresses and approaches saturation, gas (31) is introduced from the adsorption tower (32a). Switch to the adsorption tower (32b). The operating pressure of the adsorption tower (32a) is lowered to desorb adsorbed chlorine and other gases. The operating pressure at this time should be less than the adsorption pressure, and if necessary, use a vacuum pump (
According to 37), it is also effective to lower the pressure to below atmospheric pressure, and the preferred operating pressure during desorption is 10 to 400 torr. The lower the desorption pressure, the higher the chlorine purity of the chlorine-rich gas (33) obtained by desorption, but the vacuum pump (37) used will be too large, so the operating pressure is determined for economic reasons. . Further, although the operating temperature is arbitrary, it is basically more economical to set it to the same temperature as the temperature during adsorption.

【0028】この脱着操作により、導入ガスよりも塩素
濃度の高いガスを得ることができるとともに、塩素を吸
着した吸着塔(32a)を脱塩素することで、再生する
ことができるので、再び次の吸着操作に使用できる。
[0028] Through this desorption operation, a gas with a higher chlorine concentration than the introduced gas can be obtained, and the adsorption tower (32a) that has adsorbed chlorine can be dechlorinated and regenerated. Can be used for adsorption operations.

【0029】吸着塔は、たとえば(32b)が吸着操作
にある時には、(32a)は脱着操作にあり、(32c
)は脱着再生を完了して待機状態であり、(32b)が
塩素により飽和直前となった時に(32b)より(32
c)に切り換える。このような動きを順次行いながら吸
着塔(32a,32b,32c)は常に塩素の吸着と脱
着再生を行う。
In the adsorption tower, for example, when (32b) is in an adsorption operation, (32a) is in a desorption operation, and (32c) is in a desorption operation.
) is in a standby state after completing desorption and regeneration, and when (32b) is about to be saturated with chlorine, (32b)
Switch to c). While sequentially performing such movements, the adsorption towers (32a, 32b, 32c) constantly perform adsorption and desorption regeneration of chlorine.

【0030】吸着塔は塩素が破過する前に上記の切り換
え操作を行うならば、ガス(34)には実際上塩素はゼ
ロとすることができる。このガスを流路(35)から反
応器(6)  へ戻すことにより、前記したように塩化
水素の転化率を数%向上させることができる。
[0030] If the above switching operation is performed before the adsorption tower is chlorine breakthrough, the gas (34) can be practically free of chlorine. By returning this gas from the flow path (35) to the reactor (6), the conversion rate of hydrogen chloride can be improved by several percent as described above.

【0031】脱着により得られる塩素に富んだガス(3
3)は、操作条件により塩素純度40〜90mol%で
あるので可能であればこのまま塩素として利用する。し
かし、さらに高純度の塩素が必要なばあいには、通常の
液化操作を行い塩素を精製することもできるが、さらに
圧縮機で昇圧し、ガス流路(28)または(29)へ送
入し、蒸留塔(38)で蒸留し、液体塩素(40)とし
て回収することができる。圧力スイング吸着法によって
塩素を濃縮しているので、塩素ガス(33)にはガス(
31)に含まれる不純物以外には含まれておらず、蒸留
塔(38)の運転にはまったく支障がない。もし圧力ス
イング吸着法の代わりに四塩化炭素などの有機溶剤での
吸収・蒸留などの方法で塩素を回収するならば、液体塩
素中には、吸収に使用した溶剤が混入する可能性があり
、製品塩素の品質に大きな影響を与えることになる。
Chlorine-rich gas obtained by desorption (3
Since 3) has a chlorine purity of 40 to 90 mol% depending on the operating conditions, it is used as chlorine if possible. However, if even higher purity chlorine is required, it is possible to purify the chlorine by performing a normal liquefaction operation, but the pressure is further increased by a compressor and then sent to the gas flow path (28) or (29). It can be distilled in a distillation column (38) and recovered as liquid chlorine (40). Since chlorine is concentrated using the pressure swing adsorption method, chlorine gas (33) contains gas (
It does not contain any impurities other than those contained in 31), and there is no problem at all with the operation of the distillation column (38). If chlorine is recovered by absorption and distillation with an organic solvent such as carbon tetrachloride instead of the pressure swing adsorption method, the solvent used for absorption may be mixed into the liquid chlorine. This will have a significant impact on the quality of the chlorine product.

【0032】[0032]

【実施例】以下、実施例で本発明を詳しく説明する。実
施例1圧力3kg/cm2G、温度25℃の塩化水素ガ
ス(1)40.2kg/h(1.12kgモル、塩化水
素:93.70wt%,  酸素:1.33wt%,窒
素:2.02wt%,  一酸化炭素:2.88wt%
,  オルソジクロルベンゼン:0.04wt%)をヤ
シガラを乾留した活性炭(4×6mmの粒状  )充填
塔(2)に通して、塩化水素ガス中の有機化合物を除去
した。酸素ガス(4)10.6kg/h(0.33kg
  mol、酸素:99.6wt%,  窒素:0.4
wt%)、含酸素循環ガス11.5kg/h(0.34
kg  mol、塩化水素:トレース、酸素:59.8
wt%,  水分:  トレース、塩素:トレース、窒
素:12.5wt%、炭酸ガス:27.6wt%)を加
えて(  原料塩化水素1モルに酸素0.54モルの割
合)、加熱器に送入し、加熱蒸気で200℃に加熱し流
動床反応器(6)に送入した。
[Examples] The present invention will be explained in detail with reference to Examples below. Example 1 Hydrogen chloride gas (1) at a pressure of 3 kg/cm2G and a temperature of 25°C 40.2 kg/h (1.12 kg mol, hydrogen chloride: 93.70 wt%, oxygen: 1.33 wt%, nitrogen: 2.02 wt%) , Carbon monoxide: 2.88wt%
, orthodichlorobenzene: 0.04 wt%) was passed through a column (2) packed with activated carbon (4 x 6 mm granules) obtained by carbonizing coconut shell to remove organic compounds in the hydrogen chloride gas. Oxygen gas (4) 10.6 kg/h (0.33 kg
mol, oxygen: 99.6wt%, nitrogen: 0.4
wt%), oxygen-containing circulating gas 11.5 kg/h (0.34
kg mol, hydrogen chloride: trace, oxygen: 59.8
wt%, moisture: trace, chlorine: trace, nitrogen: 12.5 wt%, carbon dioxide gas: 27.6 wt%) (ratio of 0.54 mole of oxygen to 1 mole of raw hydrogen chloride) and sent to the heater. The mixture was heated to 200°C with heated steam and sent to a fluidized bed reactor (6).

【0033】反応器内に、装着している触媒の製造は、
別途に次のように行なった。即ち、硝酸クロム9水塩6
.0kgを脱イオン水60リットルに溶解させ、よく撹
拌しながら28%のアンモニア水58kgを30分間を
要して滴下注入した。生じた沈澱スラリーをデカンテー
ションで洗浄後、焼成後の全重量の10%にあたるコロ
イダルシリカを加えた。この混合スラリーをスプレード
ライヤーで乾燥して得られた粒状粉末を、空気雰囲気中
600℃で3時間焼成し、平均粒径50〜60μの触媒
を得た。以上の操作を繰返して合計79kgの触媒を得
た。
[0033] The production of the catalyst installed in the reactor is as follows:
The following was done separately. That is, chromium nitrate nonahydrate 6
.. 0 kg was dissolved in 60 liters of deionized water, and 58 kg of 28% ammonia water was injected dropwise over 30 minutes while stirring well. After washing the resulting precipitate slurry by decantation, colloidal silica corresponding to 10% of the total weight after firing was added. The granular powder obtained by drying this mixed slurry with a spray dryer was calcined in an air atmosphere at 600° C. for 3 hours to obtain a catalyst having an average particle size of 50 to 60 μm. The above operation was repeated to obtain a total of 79 kg of catalyst.

【0034】流動床反応器(6)は直径約0.3m、高
さ約3m  、Ni内張り製の円筒状反応器であり、こ
の中に前述の触媒40.2kgを装着した。
The fluidized bed reactor (6) was a cylindrical reactor with a diameter of about 0.3 m and a height of about 3 m, lined with Ni, and 40.2 kg of the aforementioned catalyst was installed therein.

【0035】原料の塩化水素ガスと酸素ガスおよび含酸
素循環ガスを、触媒の存在下410℃で酸化反応を行っ
た。酸化による生成ガス(塩化水素:12.7wt%,
  酸素:17.2wt%,  水:11.8wt%,
  塩素:46.5wt%,  窒素:3.7wt%,
  炭酸ガス:8.0wt%)は62.2kg/h(1
.6kgmol)の流量にてクロム回収塔(8)へ送入
した。クロム回収塔(8)は上部に塩酸ガス吸収塔(9
)を併せもち、内部に充填物を有する直径約0.3m、
高さ約6mの塔である。下部のクロム回収塔はクロム回
収の塔で、該回収塔の上部より散水し、塔底より水を抜
き、その水は常時循環しており、循環水は50℃に冷却
器で調節した。
[0035] Hydrogen chloride gas, oxygen gas, and oxygen-containing circulating gas as raw materials were subjected to an oxidation reaction at 410°C in the presence of a catalyst. Gas produced by oxidation (hydrogen chloride: 12.7 wt%,
Oxygen: 17.2wt%, Water: 11.8wt%,
Chlorine: 46.5wt%, Nitrogen: 3.7wt%,
Carbon dioxide gas: 8.0wt%) is 62.2kg/h (1
.. It was sent to the chromium recovery tower (8) at a flow rate of 6 kg mol). The chromium recovery tower (8) has a hydrochloric acid gas absorption tower (9
), with a diameter of approximately 0.3 m and a filling inside.
It is a tower approximately 6m high. The lower chromium recovery tower was a chromium recovery tower, and water was sprinkled from the top of the recovery tower and water was drained from the bottom of the tower, and the water was constantly circulated, and the circulating water was adjusted to 50° C. with a cooler.

【0036】生成ガス中の塩化水素、及び触媒の主成分
のクロムが揮散飛散したものは水で水洗し、それぞれ水
溶液となるが循環使用のため、クロム濃度を一定水溶液
として取り出すため、循環系内に常時一定量の水を補給
し、連続的に約0.15重量%クロム水溶液の取出しを
行った。クロム分を溶解した塩酸水溶液はその後、アル
カリで中和し回収した。
Hydrogen chloride in the generated gas and chromium, which is the main component of the catalyst, are volatilized and scattered and washed with water to form an aqueous solution, but for cyclical use, the chromium concentration is kept constant in the circulation system. A constant amount of water was constantly replenished and an approximately 0.15% by weight chromium aqueous solution was taken out continuously. The aqueous hydrochloric acid solution in which chromium was dissolved was then neutralized with an alkali and recovered.

【0037】クロム回収塔の充填物上に設けられている
ミストセパレーターを出た生成ガスは上部の塩酸ガス吸
収塔(9)に送入した。該吸収塔内には1インチのラッ
シリングを充填し、上部より25℃の水を40.0kg
/hの流量で送入して向流式に洗浄を行った。洗浄後の
33℃の水は、冷却器で15℃に冷却し、循環洗浄した
。循環洗浄中は、循環ポンプ出口より33℃の洗浄水(
塩酸水溶液)  約26kg/h(塩化水素:30.2
wt%,  水分:69.4wt%,  塩素:0.4
wt%)の流量で抜出した。不足する水は塩酸ガス吸収
塔(9)へ追加した。
The generated gas exiting the mist separator provided on the packing of the chromium recovery tower was sent to the upper hydrochloric acid gas absorption tower (9). The absorption tower was filled with a 1-inch Rassi ring, and 40.0 kg of 25°C water was poured from the top.
Cleaning was carried out in a countercurrent manner by feeding at a flow rate of /h. The water at 33° C. after washing was cooled to 15° C. with a cooler and circulated for washing. During circulation cleaning, 33℃ cleaning water (
Hydrochloric acid aqueous solution) Approximately 26 kg/h (Hydrogen chloride: 30.2
wt%, moisture: 69.4wt%, chlorine: 0.4
wt%). The insufficient water was added to the hydrochloric acid gas absorption tower (9).

【0038】塩酸ガス吸収塔(9)で水洗され、ガス中
の塩化水素ガスが僅かとなった生成ガスを硫酸洗浄塔(
21)に送入した。硫酸洗浄塔(21)は、内部に充填
物を有し、PVCライニングの上部、下部の2段に分か
れた直径約0.3m、高さ約7mの塔である。上段の洗
浄塔上部には、15℃の、90〜95%硫酸を送入し、
向流式に生成ガスを洗浄し、ガス中の脱水を行った。ガ
ス洗浄後の塔底の硫酸は、一部は抜き出し冷却器にて1
5℃に冷却し、循環ポンプで硫酸洗浄塔の洗浄に循環使
用した。この循環系には硫酸濃度を90〜95%に保つ
ため98%硫酸約2.0kg/hを常時補給した。上段
の硫酸洗浄塔底に流下した硫酸の残部は、下段の硫酸洗
浄塔上部に流下し、更に生成ガスの向流洗浄、脱水を行
った。
The generated gas, which has been washed with water in the hydrochloric acid gas absorption tower (9) and contains only a small amount of hydrogen chloride gas, is sent to the sulfuric acid cleaning tower (9).
21). The sulfuric acid cleaning tower (21) is a tower with a diameter of about 0.3 m and a height of about 7 m, which has a packing inside and is divided into two stages, an upper part and a lower part, lined with PVC. 90-95% sulfuric acid at 15°C is fed into the upper part of the upper washing tower,
The produced gas was washed in a countercurrent manner to dehydrate the gas. A portion of the sulfuric acid at the bottom of the tower after gas cleaning is extracted and stored in a cooler.
The mixture was cooled to 5°C and circulated using a circulation pump for cleaning the sulfuric acid cleaning tower. Approximately 2.0 kg/h of 98% sulfuric acid was constantly supplied to this circulation system to maintain the sulfuric acid concentration at 90 to 95%. The remainder of the sulfuric acid that had flowed down to the bottom of the upper sulfuric acid cleaning tower flowed down to the upper part of the lower sulfuric acid cleaning tower, and the produced gas was further washed countercurrently and dehydrated.

【0039】下段の硫酸洗浄塔底に流下した硫酸は、抜
き出され冷却器で、15℃に調節して70%硫酸として
循環ポンプで下段硫酸洗浄塔上部へ送液、循環して生成
ガスの洗浄、脱水を行った。この循環系の循環ポンプ出
口からは約70〜90%硫酸を硫酸洗浄塔底の液面が一
定となるように抜き出した。
The sulfuric acid that has flowed down to the bottom of the lower sulfuric acid cleaning tower is extracted, adjusted to 15°C in a cooler, and converted to 70% sulfuric acid. The sulfuric acid is sent to the upper part of the lower sulfuric acid cleaning tower using a circulation pump, and is circulated to remove the generated gas. Washed and dehydrated. Approximately 70 to 90% sulfuric acid was extracted from the circulation pump outlet of this circulation system so that the liquid level at the bottom of the sulfuric acid cleaning tower remained constant.

【0040】硫酸洗浄塔を出た約20℃の生成ガス(塩
化水素:トレース、酸素:22.9wt%,  水:ト
レース,  塩素:61.5wt%,  窒素:4.9
wt%,炭酸ガス:10.6wt%)  は46.8k
g/h(0.9kg  mol)の流量で圧縮機(28
)に送入圧縮し、3kg/cm2Gより7kg/cm2
Gとし25℃に冷却した。
[0040] The generated gas at about 20°C exiting the sulfuric acid cleaning tower (hydrogen chloride: trace, oxygen: 22.9 wt%, water: trace, chlorine: 61.5 wt%, nitrogen: 4.9
wt%, carbon dioxide gas: 10.6wt%) is 46.8k
compressor (28 kg mol) with a flow rate of g/h (0.9 kg mol)
) and compressed it to 7kg/cm2 from 3kg/cm2G.
G and cooled to 25°C.

【0041】この圧縮生成ガスを蒸留塔(38)に送入
した。蒸留塔は内径約0.15m、高さ約6mの塔で、
その内部には充填物を有し、上部には冷凍機により冷却
する冷却器(39)が設けられてあり、蒸留塔(38)
中段に送入された圧縮生成ガスは、上部の冷却器で冷却
され、約−25℃で生成ガス中の塩素は液化、凝縮され
、塔内充填物間を流下し塔底に至る。その間、液化塩素
は精製され、液化塩素中の不純物は酸素などの残ガスと
共に塔頂へ排出され、塔底の液化塩素を液体塩素(40
)として分離した。この液体塩素(40)は純度99.
0wt%で20.7kg/h(0.3kg  mol)
の流量にて得ることができた。また冷却器(39)のガ
ス出口からは未凝縮ガス(41)を流量26.1kg/
h(酸素:41.0wt%,  塩素:31.2wt%
,  窒素:8.8wt%,炭酸ガス:10.6wt%
)で得た。
[0041] This compressed product gas was sent to the distillation column (38). The distillation column has an inner diameter of approximately 0.15 m and a height of approximately 6 m.
It has a filling inside, and a cooler (39) that is cooled by a refrigerator is installed at the top, and a distillation column (38).
The compressed product gas fed into the middle stage is cooled by an upper cooler, and at about -25° C., the chlorine in the product gas is liquefied and condensed, flowing down between the packings in the column and reaching the bottom of the column. During this time, the liquefied chlorine is purified, impurities in the liquefied chlorine are discharged to the top of the tower together with residual gas such as oxygen, and the liquefied chlorine at the bottom of the tower is converted into liquid chlorine (40
) was separated as This liquid chlorine (40) has a purity of 99.
20.7 kg/h (0.3 kg mol) at 0 wt%
It was possible to obtain this at a flow rate of . In addition, uncondensed gas (41) is supplied from the gas outlet of the cooler (39) at a flow rate of 26.1 kg/
h (oxygen: 41.0wt%, chlorine: 31.2wt%
, Nitrogen: 8.8wt%, Carbon dioxide: 10.6wt%
).

【0042】直径約0.3m、高さ約2mの吸着塔3台
(32a,32b,32c)に合成Y型ゼオライト(東
洋シーシーアイより購入)各90kgを充填し、前もっ
て真空下に窒素を通気して乾燥を行った。この吸着塔の
内1台(32a)に前記未凝縮ガス(41)を10分間
通気した。この間吸着塔(32a)の塔頂から得られる
ガス(34)には塩素はほとんど検出されなかった。1
0分間通気したのちに次の吸着塔(32b)に切り換え
、吸着塔(32a)を真空ポンプ(37)で20tor
rまで減圧し、10分間排気した。この時得られたガス
(33)の塩素濃度は90.0wt%であった。10分
間排気したのちに吸着塔(32a)は再び圧縮ガスを吸
着すべく待機状態とした。この吸着操作を32a,32
b,32cの順に順次実行して連続的に圧縮ガスを処理
しガス(33)およびガス(34)を得た。ガス(33
)の流量は9.1kg/h、ガス(34)の流量は17
.1kg/hであった。
Three adsorption towers (32a, 32b, 32c) each having a diameter of about 0.3 m and a height of about 2 m were filled with 90 kg each of synthetic Y-type zeolite (purchased from Toyo CCI), and nitrogen was previously bubbled under vacuum. and dried. The uncondensed gas (41) was passed through one of the adsorption towers (32a) for 10 minutes. During this time, almost no chlorine was detected in the gas (34) obtained from the top of the adsorption tower (32a). 1
After venting for 0 minutes, switch to the next adsorption tower (32b), and pump the adsorption tower (32a) to 20 tor with the vacuum pump (37).
The pressure was reduced to r and evacuated for 10 minutes. The chlorine concentration of the gas (33) obtained at this time was 90.0 wt%. After evacuating for 10 minutes, the adsorption tower (32a) was placed on standby to adsorb compressed gas again. This adsorption operation is performed at 32a, 32
Gas (33) and gas (34) were obtained by sequentially processing compressed gas by executing steps b and 32c in this order. Gas (33
) The flow rate of gas (34) is 9.1 kg/h, and the flow rate of gas (34) is 17
.. It was 1 kg/h.

【0043】ガス(34)は主に酸素からなり、その他
に無機性ガスを含んでいるが、この内11.5kg/h
を循環ガス流路(35)を経て反応器入口ガスに混合し
、塩化水素の酸化に再利用した。また、一部の残ガス(
36)は約6kg/hの流量で除害塔で水洗後、大気へ
廃棄した。
Gas (34) mainly consists of oxygen and also contains inorganic gas, of which 11.5 kg/h
was mixed with the reactor inlet gas through the circulation gas flow path (35) and reused for oxidation of hydrogen chloride. In addition, some residual gas (
36) was washed with water in an abatement tower at a flow rate of approximately 6 kg/h and then disposed of into the atmosphere.

【0044】原料塩酸ガス(1)に対する液体塩素(4
0)、ガス(33)およびガス(36)に含まれる塩素
の合計の収率は79%であった。
Liquid chlorine (4) to raw material hydrochloric acid gas (1)
The total yield of chlorine contained in 0), gas (33) and gas (36) was 79%.

【0045】実施例2圧力3kg/cm2G、温度25
℃の塩化水素ガス(1)39.4kg/h(1.10k
gモル、塩化水素:93.70wt%,  酸素:1.
33wt%,窒素:2.02wt%,  一酸化炭素:
2.88wt%,  オルソジクロルベンゼン:0.0
4wt%)をヤシガラを乾留した活性炭(4×6mmの
粒状)充填塔(2)に通して、塩化水素ガス中の有機化
合物を除去した。酸素ガス(4)10.4kg/h(0
.32kg  mol、酸素:99.6wt%,  窒
素:0.4wt%)、含酸素循環ガス  11.4kg
/h(0.34kg  mol、塩化水素:トレース、
酸素:59.2wt%,  水分:トレース、塩素:ト
レース,  窒素:13.2wt%、炭酸ガス:27.
6wt%)  を加えて(  原料塩化水素1モルに酸
素0.54モルの割合)、加熱器に送入し、加熱蒸気で
200℃に加熱し流動床反応器(6)に送入した。
Example 2 Pressure 3 kg/cm2G, temperature 25
Hydrogen chloride gas (1) 39.4 kg/h (1.10 k
g mol, hydrogen chloride: 93.70 wt%, oxygen: 1.
33wt%, nitrogen: 2.02wt%, carbon monoxide:
2.88wt%, orthodichlorobenzene: 0.0
4 wt %) was passed through a column (2) packed with activated carbon (4 x 6 mm granules) obtained by carbonizing coconut shell to remove organic compounds in the hydrogen chloride gas. Oxygen gas (4) 10.4 kg/h (0
.. 32kg mol, oxygen: 99.6wt%, nitrogen: 0.4wt%), oxygen-containing circulating gas 11.4kg
/h (0.34 kg mol, hydrogen chloride: trace,
Oxygen: 59.2wt%, Moisture: Trace, Chlorine: Trace, Nitrogen: 13.2wt%, Carbon dioxide: 27.
(6 wt%) (ratio of 0.54 moles of oxygen to 1 mole of raw material hydrogen chloride), the mixture was fed into a heater, heated to 200°C with heated steam, and then fed into a fluidized bed reactor (6).

【0046】反応器内に装着している触媒の製造は実施
例1と同様の方法で製造した。流動床反応器(6)は実
施例1と同じ機器であり、この中に前述の触媒39.4
kgを装着した。
The catalyst installed in the reactor was produced in the same manner as in Example 1. The fluidized bed reactor (6) is the same equipment as in Example 1, in which the aforementioned catalyst 39.4
I installed kg.

【0047】原料の塩化水素ガスと酸素ガスおよび含酸
素循環ガスを、触媒の存在下410℃で酸化反応を行っ
た。酸化による生成ガス(塩化水素:12.7wt%,
  酸素:17.2wt%,  水:11.8wt%,
  塩素:46.4wt%,  窒素:3.8wt%,
  炭酸ガス:8.1wt%)は61.1kg/h(1
.5kgmol)の流量にてクロム回収塔(8)へ送入
した。クロム回収塔(8)は実施例1と同じ機器であり
、実施例1と同様の操作をした。
[0047] Hydrogen chloride gas as a raw material, oxygen gas and oxygen-containing circulating gas were subjected to an oxidation reaction at 410°C in the presence of a catalyst. Gas produced by oxidation (hydrogen chloride: 12.7 wt%,
Oxygen: 17.2wt%, Water: 11.8wt%,
Chlorine: 46.4wt%, Nitrogen: 3.8wt%,
Carbon dioxide gas: 8.1wt%) is 61.1kg/h (1
.. It was sent to the chromium recovery tower (8) at a flow rate of 5 kg mol). The chromium recovery tower (8) was the same equipment as in Example 1, and the same operation as in Example 1 was performed.

【0048】クロム回収塔の充填物上に設けられている
ミストセパレーターを出た生成ガスは上部の実施例1と
同じ塩酸ガス吸収塔(9)に送入し、実施例1と同様の
操作をした。すなわち25℃の水を40.0kg/hの
流量で送入して向流式に洗浄を行い、洗浄後の水は、冷
却器で15℃に冷却し、循環洗浄した。循環洗浄中は、
循環ポンプ出口よりの洗浄水(  塩酸水溶液)  約
26kg/h(塩化水素:29.3wt%,  水分:
70.3wt%,  塩素:0.4wt%)の流量で抜
出した。 不足する水は塩酸ガス吸収塔(9)へ追加した。
The produced gas exiting the mist separator provided on the packing of the chromium recovery tower is fed into the upper hydrochloric acid gas absorption tower (9), which is the same as in Example 1, and the same operation as in Example 1 is carried out. did. That is, water at 25° C. was fed at a flow rate of 40.0 kg/h to perform countercurrent washing, and the water after washing was cooled to 15° C. with a cooler and circulated for washing. During circulation cleaning,
Washing water from the circulation pump outlet (hydrochloric acid aqueous solution) approximately 26 kg/h (hydrogen chloride: 29.3 wt%, moisture:
It was extracted at a flow rate of 70.3 wt%, chlorine: 0.4 wt%). The insufficient water was added to the hydrochloric acid gas absorption tower (9).

【0049】塩酸ガス吸収塔(9)で水洗され、ガス中
の塩化水素ガスが僅かとなった生成ガスを実施例1と同
じ硫酸洗浄塔(21)に送入し、実施例1と同様の操作
をした。すなわち上段の洗浄塔上部には、15℃の、9
0〜95%硫酸を送入し、向流式に生成ガスを洗浄し、
ガス中の脱水を行った。ガス洗浄後の塔底の硫酸は、一
部は抜き出し冷却器にて15℃に冷却し、循環ポンプで
硫酸洗浄塔の洗浄に循環使用した。この循環系には硫酸
濃度を90〜95%に保つため98%硫酸約2.0kg
/hを常時補給した。上段の硫酸洗浄塔底に流下した硫
酸の残部は、下段の硫酸洗浄塔上部に流下し、更に生成
ガスの向流洗浄、脱水を行った。
The generated gas, which has been washed with water in the hydrochloric acid gas absorption tower (9) and has a small amount of hydrogen chloride gas in the gas, is sent to the same sulfuric acid washing tower (21) as in Example 1, and is treated in the same manner as in Example 1. I did the operation. In other words, at the top of the upper washing tower, there is a temperature of 15°C.
Inject 0-95% sulfuric acid and wash the generated gas in a countercurrent manner.
Dehydration in gas was performed. A portion of the sulfuric acid at the bottom of the tower after gas cleaning was extracted and cooled to 15° C. in a cooler, and then circulated and used for cleaning the sulfuric acid cleaning tower using a circulation pump. Approximately 2.0 kg of 98% sulfuric acid is used in this circulation system to maintain the sulfuric acid concentration at 90-95%.
/h was constantly replenished. The remainder of the sulfuric acid that had flowed down to the bottom of the upper sulfuric acid cleaning tower flowed down to the upper part of the lower sulfuric acid cleaning tower, and the produced gas was further washed countercurrently and dehydrated.

【0050】下段の硫酸洗浄塔底に流下した硫酸は、抜
き出され冷却器で、15℃に調節して70%硫酸として
循環ポンプで下段硫酸洗浄塔上部へ送液、循環して生成
ガスの洗浄、脱水を行った。この循環系の循環ポンプ出
口からは約70〜90%硫酸を硫酸洗浄塔底の液面が一
定となるように抜き出した。
The sulfuric acid that has flowed down to the bottom of the lower sulfuric acid washing tower is extracted, adjusted to 15°C in a cooler, and converted to 70% sulfuric acid. The sulfuric acid is sent to the upper part of the lower sulfuric acid washing tower using a circulation pump and circulated to remove the produced gas. Washed and dehydrated. Approximately 70 to 90% sulfuric acid was extracted from the circulation pump outlet of this circulation system so that the liquid level at the bottom of the sulfuric acid cleaning tower remained constant.

【0051】硫酸洗浄塔を出た約20℃の生成ガス(塩
化水素:トレース、酸素:22.9wt%,水:トレー
ス,  塩素:61.4wt%,  窒素:5.1wt
%,  炭酸ガス:10.7wt%)は46.0kg/
h(0.9kg  mol)の流量であり、これに後で
述べるガス(22)を合流させて圧縮機(28)に送入
圧縮し、  3kg/cm2Gより  7kg/cm2
Gとし25℃に冷却した。
[0051] The generated gas at about 20°C exiting the sulfuric acid cleaning tower (hydrogen chloride: trace, oxygen: 22.9 wt%, water: trace, chlorine: 61.4 wt%, nitrogen: 5.1 wt)
%, carbon dioxide gas: 10.7wt%) is 46.0kg/
h (0.9 kg mol), and gas (22), which will be described later, is combined with this and sent to the compressor (28) for compression, resulting in a flow rate of 7 kg/cm2 from 3 kg/cm2G.
G and cooled to 25°C.

【0052】25℃に冷却された圧縮生成ガスを実施例
1と同じ蒸留塔(38)とこれに続く冷却器(39)に
送入した。蒸留塔(38)中段に送入された圧縮生成ガ
スは、上部の冷却器で冷却され、約−25℃で生成ガス
中の塩素は液化、凝縮され、塔内充填物間を流下し塔底
に至る。その間、液化塩素は精製され、液化塩素中の不
純物は酸素などの残ガスと共に塔頂へ排出され、塔底の
液化塩素を液体塩素(40)として分離した。この液体
塩素(40)は純度99.0wt%で28.3kg/h
(0.4kg  mol)の流量にて得ることができた
。 また冷却器(39)のガス出口からは未凝縮ガス(41
)を流量27.2kg/h(酸素:  40.6wt%
,  塩素:31.1wt%,  窒素:9.3wt%
,  炭酸ガス:19.0wt%)で得た。
The compressed product gas cooled to 25° C. was fed into the same distillation column (38) as in Example 1 and the condenser (39) following it. The compressed product gas sent to the middle stage of the distillation column (38) is cooled by the upper cooler, and at about -25°C, the chlorine in the product gas is liquefied and condensed, and flows between the packings in the column to the bottom of the column. leading to. During this time, the liquefied chlorine was purified, impurities in the liquefied chlorine were discharged to the top of the tower together with residual gas such as oxygen, and the liquefied chlorine at the bottom of the tower was separated as liquid chlorine (40). This liquid chlorine (40) has a purity of 99.0wt% and weighs 28.3kg/h.
(0.4 kg mol). In addition, uncondensed gas (41
) at a flow rate of 27.2 kg/h (oxygen: 40.6 wt%
, Chlorine: 31.1wt%, Nitrogen: 9.3wt%
, carbon dioxide gas: 19.0 wt%).

【0053】実施例1と同じ吸着塔3台(32a,  
32b,  32c)に実施例1と同様に合成Y型ゼオ
ライトを充填し、前もって真空下に窒素を通気して乾燥
を行った。この吸着塔の内1台(32a)  に前記未
凝縮ガス(41)を10分間通気した。この間吸着塔(
32a)  の塔頂から得られるガス(34)には塩素
はほとんど検出されなかった。10分間通気したのちに
次の吸着塔(32b)に切り換え、吸着塔(32a)を
真空ポンプ(37)で20torrまで減圧し、10分
間排気した。この時得られたガス(33)の塩素濃度は
88.7wt%であった。10分間排気したのちに吸着
塔(32a)は再び圧縮ガスを吸着すべく待機状態とし
た。この吸着操作を32a,32b,32cの順に順次
実行して連続的に圧縮ガスを処理しガス(33)および
ガス(34)を得た。ガス(33)の流量は9.4kg
/h、ガス(34)の流量は17.8kg/hであった
。 この内ガス(33)をガス(27)と合流させ圧縮機(
28)に供給し再び圧縮液化・蒸留を行った。
Three adsorption towers (32a, 32a,
32b, 32c) were filled with synthetic Y-type zeolite in the same manner as in Example 1, and dried by previously blowing nitrogen under vacuum. The uncondensed gas (41) was passed through one of the adsorption towers (32a) for 10 minutes. During this time, the adsorption tower (
32a) Almost no chlorine was detected in the gas (34) obtained from the top of the column. After venting for 10 minutes, the adsorption tower (32b) was switched to the next adsorption tower (32b), the pressure of the adsorption tower (32a) was reduced to 20 torr using a vacuum pump (37), and the adsorption tower (32a) was evacuated for 10 minutes. The chlorine concentration of the gas (33) obtained at this time was 88.7 wt%. After evacuating for 10 minutes, the adsorption tower (32a) was placed on standby to adsorb compressed gas again. This adsorption operation was performed in the order of 32a, 32b, and 32c to continuously treat the compressed gas and obtain gas (33) and gas (34). The flow rate of gas (33) is 9.4 kg
/h, and the flow rate of gas (34) was 17.8 kg/h. Of these, the gas (33) is combined with the gas (27) and the compressor (
28) and compression liquefaction and distillation were performed again.

【0054】ガス(34)は主に酸素からなり、その他
に無機性ガスを含んでいるが、この内11.4kg/h
を循環ガス流路(35)を経て反応器入口ガスに混合し
、塩化水素の酸化に再利用した。また、一部の残ガス(
36)は約6kg/hの流量で除害塔で水洗後、大気へ
廃棄した。
Gas (34) mainly consists of oxygen and also contains inorganic gas, of which 11.4 kg/h
was mixed with the reactor inlet gas through the circulation gas flow path (35) and reused for oxidation of hydrogen chloride. In addition, some residual gas (
36) was washed with water in an abatement tower at a flow rate of approximately 6 kg/h and then disposed of into the atmosphere.

【0055】原料塩酸ガス(1)に対する液体塩素(4
0)およびガス(36)に含まれる塩素の合計の収率は
79%であった。
Liquid chlorine (4) to raw material hydrochloric acid gas (1)
The total yield of chlorine contained in 0) and gas (36) was 79%.

【0056】比較例1圧力3kg/cm2G、温度25
℃の塩化水素ガス(1)42.6kg/h(1.19k
gモル、塩化水素:93.70wt%,  酸素:1.
33wt%,窒素:2.02wt%,  一酸化炭素:
2.88wt%,オルソジクロルベンゼン:0.04w
t%)をヤシガラを乾留した活性炭(4  ×6mmの
粒状)充填塔(2)に通して、塩化水素ガス中の有機化
合物を除去した。酸素ガス(4)11.2kg/h(0
.35kg  mol、酸素:99.6wt%,  窒
素:0.4wt%)、含酸素循環ガス  15.8kg
/h(0.39kg  mol、塩化水素:トレース、
酸素:46.0wt%,  水分:トレース、塩素:3
2wt%,  窒素:8.7wt%、炭酸ガス:13.
3wt%)を加えて(  原料塩化水素1モルに酸素 
 0.54モルの割合)、加熱器に送入し、加熱蒸気で
200℃に加熱し流動床反応器(6)に送入した。
Comparative Example 1 Pressure: 3 kg/cm2G, Temperature: 25
Hydrogen chloride gas (1) 42.6 kg/h (1.19 k
g mol, hydrogen chloride: 93.70 wt%, oxygen: 1.
33wt%, nitrogen: 2.02wt%, carbon monoxide:
2.88wt%, orthodichlorobenzene: 0.04w
t%) was passed through a column (2) packed with activated carbon (4 x 6 mm granules) obtained by carbonizing coconut shell to remove organic compounds in the hydrogen chloride gas. Oxygen gas (4) 11.2 kg/h (0
.. 35kg mol, oxygen: 99.6wt%, nitrogen: 0.4wt%), oxygen-containing circulating gas 15.8kg
/h (0.39 kg mol, hydrogen chloride: trace,
Oxygen: 46.0wt%, Moisture: Trace, Chlorine: 3
2wt%, nitrogen: 8.7wt%, carbon dioxide gas: 13.
3wt%) (oxygen to 1 mole of raw material hydrogen chloride)
(proportion of 0.54 mol) was fed into a heater, heated to 200° C. with heated steam, and fed into a fluidized bed reactor (6).

【0057】反応器内に装着している触媒の製造は実施
例1と同様の方法で製造した。流動床反応器(6)は実
施例1と同じ機器であり、この中に前述の触媒  42
.7kgを装着した。
The catalyst installed in the reactor was manufactured in the same manner as in Example 1. The fluidized bed reactor (6) is the same equipment as in Example 1, in which the aforementioned catalyst 42
.. I installed 7kg.

【0058】原料の塩化水素ガスと酸素ガスおよび含酸
素循環ガスを、触媒の存在下410℃で酸化反応を行っ
た。酸化による生成ガス(塩化水素:13.6wt%,
  酸素:16.6wt%,  水:10.7wt%,
  塩素:49.9wt%,  窒素:3.3wt%,
  炭酸ガス:5.7wt%)は69.6kg/h(1
.7kgmol)の流量にてクロム回収塔(8)へ送入
した。クロム回収塔(8)は実施例1と同じ機器であり
、実施例1と同様の操作をした。
[0058] Hydrogen chloride gas as a raw material, oxygen gas, and oxygen-containing circulating gas were subjected to an oxidation reaction at 410°C in the presence of a catalyst. Gas produced by oxidation (hydrogen chloride: 13.6 wt%,
Oxygen: 16.6wt%, Water: 10.7wt%,
Chlorine: 49.9wt%, Nitrogen: 3.3wt%,
Carbon dioxide gas: 5.7wt%) is 69.6kg/h (1
.. It was sent to the chromium recovery tower (8) at a flow rate of 7 kg mol). The chromium recovery tower (8) was the same equipment as in Example 1, and the same operation as in Example 1 was performed.

【0059】クロム回収塔の充填物上に設けられている
ミストセパレーターを出た生成ガスは上部の実施例1と
同じ塩酸ガス吸収塔(9)に送入し、実施例1と同様の
操作をした。すなわち25℃の水を40.0kg/hの
流量で送入して向流式に洗浄を行い、洗浄後の水は、冷
却器で15℃に冷却し、循環洗浄した。循環洗浄中は、
循環ポンプ出口よりの洗浄水(塩酸水溶液)  約10
kg/h(塩化水素:29.3wt%,  水分:70
.3wt%,  塩素:0.4wt%)の流量で抜出し
た。不足する水は塩酸ガス吸収塔(9)へ追加した。
The generated gas exiting the mist separator provided on the packing of the chromium recovery tower was sent to the upper hydrochloric acid gas absorption tower (9), which is the same as in Example 1, and the same operation as in Example 1 was carried out. did. That is, water at 25° C. was fed at a flow rate of 40.0 kg/h to perform countercurrent washing, and the water after washing was cooled to 15° C. with a cooler and circulated for washing. During circulation cleaning,
Washing water from circulation pump outlet (hydrochloric acid aqueous solution) Approx. 10
kg/h (hydrogen chloride: 29.3 wt%, moisture: 70
.. 3 wt%, chlorine: 0.4 wt%). The insufficient water was added to the hydrochloric acid gas absorption tower (9).

【0060】塩酸ガス吸収塔(9)で水洗され、ガス中
の塩化水素ガスが僅かとなった生成ガスを実施例1と同
じ硫酸洗浄塔(21)に送入し、実施例1と同様の操作
をした。すなわち上段の洗浄塔上部には、15℃の、9
0〜95%硫酸を送入し、向流式に生成ガスを洗浄し、
ガス中の脱水を行った。ガス洗浄後の塔底の硫酸は、一
部は抜き出し冷却器にて15℃に冷却し、循環ポンプで
硫酸洗浄塔の洗浄に循環使用した。この循環系には硫酸
濃度を90〜95%に保つため98%硫酸約2.0kg
/hを常時補給した。上段の硫酸洗浄塔底に流下した硫
酸の残部は、下段の硫酸洗浄塔上部に流下し、更に生成
ガスの向流洗浄、脱水を行った。
The generated gas, which has been washed with water in the hydrochloric acid gas absorption tower (9) and has a small amount of hydrogen chloride gas in the gas, is sent to the same sulfuric acid washing tower (21) as in Example 1, and is treated in the same manner as in Example 1. I did the operation. In other words, at the top of the upper washing tower, there is a temperature of 15°C.
Inject 0-95% sulfuric acid and wash the generated gas in a countercurrent manner.
Dehydration in gas was performed. A portion of the sulfuric acid at the bottom of the tower after gas cleaning was extracted and cooled to 15° C. in a cooler, and then circulated and used for cleaning the sulfuric acid cleaning tower using a circulation pump. Approximately 2.0 kg of 98% sulfuric acid is used in this circulation system to maintain the sulfuric acid concentration at 90-95%.
/h was constantly replenished. The remainder of the sulfuric acid that had flowed down to the bottom of the upper sulfuric acid cleaning tower flowed down to the upper part of the lower sulfuric acid cleaning tower, and the produced gas was further washed countercurrently and dehydrated.

【0061】下段の硫酸洗浄塔底に流下した硫酸は、抜
き出され冷却器で、15℃に調節して70%硫酸として
循環ポンプで下段硫酸洗浄塔上部へ送液、循環して生成
ガスの洗浄、脱水を行った。この循環系の循環ポンプ出
口からは約70%硫酸を硫酸洗浄塔底の液面が一定とな
るように約2kg/hで抜き出した。
The sulfuric acid that has flowed down to the bottom of the lower sulfuric acid cleaning tower is extracted, adjusted to 15°C in a cooler, and converted into 70% sulfuric acid. The sulfuric acid is sent to the upper part of the lower sulfuric acid cleaning tower using a circulation pump, where it is circulated to remove the generated gas. Washed and dehydrated. Approximately 70% sulfuric acid was extracted from the circulation pump outlet of this circulation system at a rate of approximately 2 kg/h so that the liquid level at the bottom of the sulfuric acid cleaning tower remained constant.

【0062】硫酸洗浄塔を出た約20℃の生成ガス(塩
化水素:トレース、酸素:22.0wt%,水:トレー
ス,  塩素:67.0wt%,  窒素:4.3wt
%,  炭酸ガス:7.6wt%)は52.8kg/h
(1.0kg  mol)の流量で圧縮機(28)に送
入圧縮し、  3kg/cm2Gより7kg/cm2G
とし25℃に冷却した。
[0062] The generated gas at about 20°C exiting the sulfuric acid cleaning tower (hydrogen chloride: trace, oxygen: 22.0 wt%, water: trace, chlorine: 67.0 wt%, nitrogen: 4.3 wt)
%, carbon dioxide gas: 7.6wt%) is 52.8kg/h
(1.0 kg mol) is fed into the compressor (28) and compressed, reducing the flow rate from 3 kg/cm2G to 7kg/cm2G.
It was then cooled to 25°C.

【0063】25℃に冷却された圧縮生成ガスを蒸留塔
(38)に送入した。蒸留塔は内径約0.15m、高さ
約6mの塔で、その内部には充填物を有し、上部には冷
凍機により冷却する冷却器(39)が設けられてあり、
蒸留塔(38)中段に送入された圧縮生成ガスは、上部
の冷却器で冷却され、約−25℃で生成ガス中の塩素は
液化、凝縮され、塔内充填物間を流下し塔底に至る。そ
の間、液化塩素は精製され、液化塩素中の不純物は酸素
などの残ガスと共に塔頂へ排出され、塔底の液化塩素を
液体塩素(40)として分離した。この液体塩素(40
)は純度99.0wt%で26.7kg/h(  0.
4kg  mol)の流量にて得ることができた。
[0063] The compressed product gas cooled to 25°C was fed into the distillation column (38). The distillation column is a column with an inner diameter of about 0.15 m and a height of about 6 m, and has a packing inside, and a cooler (39) that is cooled by a refrigerator at the top.
The compressed product gas sent to the middle stage of the distillation column (38) is cooled by the upper cooler, and at about -25°C, the chlorine in the product gas is liquefied and condensed, and flows between the packings in the column to the bottom of the column. leading to. During this time, the liquefied chlorine was purified, impurities in the liquefied chlorine were discharged to the top of the tower together with residual gas such as oxygen, and the liquefied chlorine at the bottom of the tower was separated as liquid chlorine (40). This liquid chlorine (40
) has a purity of 99.0 wt% and a weight of 26.7 kg/h (0.
It could be obtained at a flow rate of 4 kg mol).

【0064】またガス(34)は主に酸素からなり、そ
の他に無機性ガスを含んでいるが、この内15.8kg
/hを循環ガス流路(35)を経て反応器入口ガスに混
合し、塩化水素の酸化に再利用した。また、一部の残ガ
ス(36)は約9kg/hの流量で除害塔で水洗後、大
気へ廃棄した。
[0064] Gas (34) mainly consists of oxygen and also contains inorganic gas, of which 15.8 kg
/h was mixed with the reactor inlet gas through the circulation gas flow path (35) and reused for oxidation of hydrogen chloride. In addition, some residual gas (36) was washed with water in an abatement tower at a flow rate of about 9 kg/h, and then disposed of into the atmosphere.

【0065】原料塩酸ガス(1)に対する生成ガス(3
4)と液体塩素(40)に含まれる塩素の合計の収率は
76%であった。
[0065] Produced gas (3) for raw material hydrochloric acid gas (1)
The total yield of chlorine contained in 4) and liquid chlorine (40) was 76%.

【0066】比較例1の反応および生成ガスの脱水まで
の操作条件は実施例1および実施例2と同一であるが、
塩素収率は比較例1が実施例1および実施例2に比較し
3%程度低い。
The operating conditions for the reaction and dehydration of the produced gas in Comparative Example 1 were the same as in Examples 1 and 2, but
The chlorine yield in Comparative Example 1 is about 3% lower than in Examples 1 and 2.

【0067】[0067]

【発明の効果】本発明の方法によると、含塩化水素ガス
を酸化することにより、塩素を製造する方法において、
圧力スイング吸着装置を用い、循環ガス中の塩素分を実
質上ゼロにすることにより、酸化反応の平衡転化率が上
昇し、塩素の収率アップとなり、工業的にきわめて重要
な塩素の製造方法である。
[Effects of the Invention] According to the method of the present invention, in the method of producing chlorine by oxidizing hydrogen chloride gas,
By using a pressure swing adsorption device and reducing the chlorine content in the circulating gas to virtually zero, the equilibrium conversion rate of the oxidation reaction increases and the yield of chlorine increases, making it an extremely important industrially important chlorine production method. be.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明方法を実施する場合の好ましいフローシ
ートの一例を説明するための図である。
FIG. 1 is a diagram for explaining an example of a preferred flow sheet for carrying out the method of the present invention.

【図2】比較例を説明するための図である。FIG. 2 is a diagram for explaining a comparative example.

【符号の説明】[Explanation of symbols]

1:塩化水素              2:活性炭
充填塔          3:塩化水素流路 4:酸素流路              5:混合ガ
ス流路          6:反応器 7:生成ガス流路          8:クロム回収
塔          9:塩酸ガス吸収塔 10:ポンプ              11:クロ
ム水溶液循環系  12:冷却器 13:水補給口            14:塩酸水
溶液抜出口    15:ポンプ 16:塩酸水溶液循環系    17:冷却器    
          18:水補給口 19:塩酸水溶液抜出口    20:水洗後の生成ガ
ス    21:硫酸洗浄塔 22:硫酸補給口          23:硫酸ポン
プ          24:硫酸循環系 25:冷却器              26:希硫
酸抜出口        27:脱水生成ガス流 路 28:圧縮機              29:圧縮
ガス流路        30:冷却器 31:圧縮、冷却ガス流路  32a,  b,  c
:吸着塔        33:塩素ガ ス 34:残ガス流路          35:循環ガス
流路        36:残ガス流路 37:真空ポンプ          38:蒸留塔 
             39:凝縮器
1: Hydrogen chloride 2: Activated carbon packed tower 3: Hydrogen chloride flow path 4: Oxygen flow path 5: Mixed gas flow path 6: Reactor 7: Product gas flow path 8: Chromium recovery tower 9: Hydrochloric acid gas absorption tower 10: Pump 11: Chromium aqueous solution circulation system 12: Cooler 13: Water supply port 14: Hydrochloric acid aqueous solution outlet 15: Pump 16: Hydrochloric acid aqueous solution circulation system 17: Cooler
18: Water supply port 19: Hydrochloric acid aqueous solution extraction port 20: Generated gas after water washing 21: Sulfuric acid cleaning tower 22: Sulfuric acid supply port 23: Sulfuric acid pump 24: Sulfuric acid circulation system 25: Cooler 26: Dilute sulfuric acid extraction port 27: Dehydration Generated gas flow path 28: Compressor 29: Compressed gas flow path 30: Cooler 31: Compression, cooling gas flow path 32a, b, c
: Adsorption tower 33: Chlorine gas 34: Residual gas flow path 35: Circulating gas flow path 36: Residual gas flow path 37: Vacuum pump 38: Distillation column
39: Condenser

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  塩化水素を含むガスを原料ガスとし、
これを酸化させて塩素を製造する方法において、■原料
ガス中に含まれる塩化水素1モルに対して、0.25モ
ル以上の酸素を用い、反応温度  300〜500℃で
酸化クロム触媒の存在下、塩化水素の酸化反応を行い、
■主として塩素、水、未反応塩化水素、酸素、および揮
散・飛散クロムを含有する生成ガスを急冷、水洗して該
クロムを水溶液として回収した後、■生成ガスをさらに
水洗浄し、未反応塩化水素を水に吸収させて塩化水素水
溶液として回収し、■生成ガスをさらに硫酸で洗浄、脱
水し、■生成ガスを冷却、液化し、生成ガス中に含まれ
る塩素の一部を液化塩素として生成ガスより分離し、■
未凝縮の残ガスを吸着剤を充填した圧力スイング吸着装
置に該生成ガスを導入して塩素を吸着して回収し、未吸
着の残ガスの一部または全部を循環ガスとして前記工程
■の酸化工程へ戻し、■圧力スイング吸着装置に吸着さ
れた塩素に富むガスを吸着圧力より減圧して回収する、
ことを特徴とする塩素の工業的製造方法。
[Claim 1] A gas containing hydrogen chloride is used as a raw material gas,
In the method of producing chlorine by oxidizing this, 1) 0.25 mol or more of oxygen is used per 1 mol of hydrogen chloride contained in the raw material gas, and the reaction temperature is 300 to 500°C in the presence of a chromium oxide catalyst. , carry out the oxidation reaction of hydrogen chloride,
■Produced gas containing mainly chlorine, water, unreacted hydrogen chloride, oxygen, and volatilized/scattered chromium is rapidly cooled and washed with water to recover the chromium as an aqueous solution.■Produced gas is further washed with water to remove unreacted chloride. Hydrogen is absorbed into water and recovered as a hydrogen chloride aqueous solution, ■ The generated gas is further washed with sulfuric acid and dehydrated, ■ The generated gas is cooled and liquefied, and a portion of the chlorine contained in the generated gas is generated as liquefied chlorine. Separated from gas, ■
The uncondensed residual gas is introduced into a pressure swing adsorption device filled with an adsorbent to adsorb and recover chlorine, and part or all of the unadsorbed residual gas is used as a circulating gas for the oxidation in step (2). Returning to the process, ■Recovering the chlorine-rich gas adsorbed by the pressure swing adsorption device by reducing the pressure from the adsorption pressure.
An industrial method for producing chlorine, characterized by the following.
【請求項2】  塩化水素を含むガスを原料ガスとし、
これを酸化させて塩素を製造する方法において、■原料
ガス中に含まれる塩化水素1モルに対して、0.25モ
ル以上の酸素を用い、反応温度300〜500℃で酸化
クロム触媒の存在下、塩化水素の酸化反応を行い、■主
として塩素、水、未反応塩化水素、酸素、および揮散・
飛散クロムを含有する生成ガスを急冷、水洗して該クロ
ムを水溶液として回収した後、■生成ガスをさらに水洗
浄し、未反応塩化水素を水に吸収させて塩化水素水溶液
して回収し、■生成ガスをさらに硫酸で洗浄、脱水し、
■生成ガスを冷却、液化し、生成ガス中に含まれる塩素
の一部を液化塩素として生成ガスより分離し、■未凝縮
の残ガスを吸着剤を充填した圧力スイング吸着装置に該
生成ガスを導入して塩素を吸着して回収し、未吸着の残
ガスの一部または全部を循環ガスとして前記工程■の酸
化工程へ戻し、■圧力スイング吸着装置に吸着された塩
素に富むガスを吸着圧力より減圧して回収し、このガス
を前記工程■に戻す、ことを特徴とする塩素の工業的製
造方法。
[Claim 2] A gas containing hydrogen chloride is used as a raw material gas,
In the method of producing chlorine by oxidizing this, (1) using 0.25 mol or more of oxygen per 1 mol of hydrogen chloride contained in the raw material gas, at a reaction temperature of 300 to 500°C in the presence of a chromium oxide catalyst; , conducts an oxidation reaction of hydrogen chloride, and mainly chlorine, water, unreacted hydrogen chloride, oxygen, and volatilized
After the generated gas containing scattered chromium is rapidly cooled and washed with water to recover the chromium as an aqueous solution, (1) the generated gas is further washed with water, unreacted hydrogen chloride is absorbed in water and recovered as a hydrogen chloride aqueous solution, (2) The generated gas is further washed with sulfuric acid, dehydrated,
■ Cool and liquefy the generated gas, separate some of the chlorine contained in the generated gas as liquefied chlorine, and ■ Transfer the uncondensed residual gas to a pressure swing adsorption device filled with adsorbent. chlorine is introduced, adsorbs and recovers chlorine, returns some or all of the unadsorbed residual gas as a circulating gas to the oxidation step in the step ①, and ② pressure swing absorbs the chlorine-rich gas adsorbed into the adsorption device. An industrial method for producing chlorine, characterized in that the gas is recovered under reduced pressure and returned to the step (2).
【請求項3】  圧力スイング吸着装置に充填した吸着
剤がゼオライト、活性炭、非ゼオライト系多孔質酸性酸
化物または分子ふるいカーボンである請求項1または2
記載の方法。
3. Claim 1 or 2, wherein the adsorbent filled in the pressure swing adsorption device is zeolite, activated carbon, non-zeolitic porous acidic oxide, or molecular sieve carbon.
Method described.
JP3134782A 1991-06-06 1991-06-06 Industrial production method of chlorine Expired - Lifetime JP2726771B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3134782A JP2726771B2 (en) 1991-06-06 1991-06-06 Industrial production method of chlorine
EP92305102A EP0518553B1 (en) 1991-06-06 1992-06-03 Method and apparatus for industrially preparing chlorine
DE69213342T DE69213342T2 (en) 1991-06-06 1992-06-03 Process and apparatus for the industrial production of chlorine
KR1019920009828A KR950011825B1 (en) 1991-06-06 1992-06-05 Method and apparatus for industsially preparing chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3134782A JP2726771B2 (en) 1991-06-06 1991-06-06 Industrial production method of chlorine

Publications (2)

Publication Number Publication Date
JPH04362005A true JPH04362005A (en) 1992-12-15
JP2726771B2 JP2726771B2 (en) 1998-03-11

Family

ID=15136429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3134782A Expired - Lifetime JP2726771B2 (en) 1991-06-06 1991-06-06 Industrial production method of chlorine

Country Status (1)

Country Link
JP (1) JP2726771B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531446A (en) * 2005-02-23 2008-08-14 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing chlorine
JP2009219998A (en) * 2008-03-14 2009-10-01 Sumitomo Chemical Co Ltd Waste gas treating method
WO2017170490A1 (en) * 2016-03-30 2017-10-05 三井化学株式会社 Heat exchanger having durability in acidic aqueous solution, and heat exchange method
CN107321123A (en) * 2017-04-06 2017-11-07 浙江奇彩环境科技股份有限公司 A kind of processing method and processing system of chlorination reaction organic exhaust gas
CN111330412A (en) * 2020-04-17 2020-06-26 杭州东日节能技术有限公司 System and process for absorbing and purifying byproduct hydrogen chloride gas in chlorination workshop section to form acid
CN114777421A (en) * 2022-03-31 2022-07-22 中科瑞奥能源科技股份有限公司 System and method for purifying hydrogen chloride from chloroacetic acid or chloroacetyl chloride synthesis tail gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531446A (en) * 2005-02-23 2008-08-14 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing chlorine
JP2009219998A (en) * 2008-03-14 2009-10-01 Sumitomo Chemical Co Ltd Waste gas treating method
WO2017170490A1 (en) * 2016-03-30 2017-10-05 三井化学株式会社 Heat exchanger having durability in acidic aqueous solution, and heat exchange method
CN107321123A (en) * 2017-04-06 2017-11-07 浙江奇彩环境科技股份有限公司 A kind of processing method and processing system of chlorination reaction organic exhaust gas
CN111330412A (en) * 2020-04-17 2020-06-26 杭州东日节能技术有限公司 System and process for absorbing and purifying byproduct hydrogen chloride gas in chlorination workshop section to form acid
CN111330412B (en) * 2020-04-17 2023-08-29 杭州东日节能技术有限公司 System and process for absorbing and purifying byproduct hydrogen chloride gas in chlorination section into acid
CN114777421A (en) * 2022-03-31 2022-07-22 中科瑞奥能源科技股份有限公司 System and method for purifying hydrogen chloride from chloroacetic acid or chloroacetyl chloride synthesis tail gas

Also Published As

Publication number Publication date
JP2726771B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
EP0233773B1 (en) Production of chlorine
US5488185A (en) Process for the production of ethanol and isopropanol
JP5158719B2 (en) A method for recovering (chloro) hydrocarbon-free hydrogen chloride and phosgene-free (chloro) hydrocarbon from a hydrogen chloride gas stream containing (chloro) hydrocarbon and phosgene.
US6387345B1 (en) Process for working up reaction gases during the oxidation HCI to chlorine
JP4921489B2 (en) Chlorine production method
KR910005983B1 (en) Separation and recapturing method of chlorine
KR102315161B1 (en) Method for producing chlorine gas through hydrogen chloride catalytic oxidation
JP4011139B2 (en) Method for separating high purity chlorine from chlorine containing feed gas
KR101952451B1 (en) Process for the preparation of isocyanates
KR950011825B1 (en) Method and apparatus for industsially preparing chlorine
KR100363179B1 (en) Process for the production of hydrocarbon partial oxidaton products
JPH04362005A (en) Industrial production of chlorine
JPH053405B2 (en)
EP1024136B1 (en) A process for producing dimethyl sulphoxide
CN110237659A (en) Natural gas and the lossless drying means of circular response gas in a kind of methane legal system chloromethanes
JP2726770B2 (en) Industrial production method of chlorine
AU674607B2 (en) Process for the production of ethanol and isopropanol
JP3822981B2 (en) Method for producing high purity carbon monoxide
HU214542B (en) Process for production of hydrocarbon partial oxidation product
CN215101984U (en) High-purity electronic-grade hydrogen chloride production device
US20220219981A1 (en) Methods for removing water from iodine (i2)
US20220219979A1 (en) Methods for producing anhydrous hydrogen iodide (hi)
US20020159945A1 (en) Process for the separation of hydrogen halides by adsorption
CN111991978A (en) Water removal device and method for hydrogen fluoride gas
CN114146555A (en) Carbon monoxide absorbent slurry and methods of making and using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 14