JPH04362002A - Industrial separation and recovery of chlorine - Google Patents

Industrial separation and recovery of chlorine

Info

Publication number
JPH04362002A
JPH04362002A JP3138750A JP13875091A JPH04362002A JP H04362002 A JPH04362002 A JP H04362002A JP 3138750 A JP3138750 A JP 3138750A JP 13875091 A JP13875091 A JP 13875091A JP H04362002 A JPH04362002 A JP H04362002A
Authority
JP
Japan
Prior art keywords
chlorine
gas
volume
concentration
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3138750A
Other languages
Japanese (ja)
Other versions
JP2726774B2 (en
Inventor
Hiroyuki Ito
洋之 伊藤
Yoshitsugu Jinno
神野 嘉嗣
Satoshi Tsuruta
鶴田 智
Shinji Takenaka
竹中 慎司
Teruo Hirayama
平山 照夫
Isao Kikuchi
菊地 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP3138750A priority Critical patent/JP2726774B2/en
Publication of JPH04362002A publication Critical patent/JPH04362002A/en
Application granted granted Critical
Publication of JP2726774B2 publication Critical patent/JP2726774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0743Purification ; Separation of gaseous or dissolved chlorine

Abstract

PURPOSE:To obtain chlorine with high yield and high purity by compressing and cooling mixed gas containing chlorine of a specified concentration to produce condensate, by removing the condensate to the outside of the system and by making the residual gas adsorbed in an adsorber. CONSTITUTION:After mixed gas 1 of 10 to 60vol.% chlorine concentration is pressurized by a compressor 3 and cooled in a cooling condenser 5 to about -24 deg.C, it is fed to a separator 7, causing liquid chlorine (condensate) 8 of about 97.6vol.% purity and noncondensable gas 9 to be obtained from the bottom and the top of the separator 7 respectively. Then, the gas 9 is first supplied to 13a, from among adsorbers 13a to 13c packed with synthetic Y type zeolite, to obtain gas 14 containing chlorine of about <=100ppm from the top of the 13a. Then, the gas 9 is supplied to the 13b to which the adsorption has been changed over from the 13a and the adsorber 13a is evacuated by a vacuum pump 11 to obtain gas 12 of about 81.0vol.% chlorine concentration. Thus the adsorption operation is continuously performed in the order of 13a, 13b, 13c to obtain the gases 12 and 14, and simultaneously the gas 12 is mixed with the gas 1 and again compressed and cooled to industrially separate and recover chlorine.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、塩素を含む混合ガス、
しかも塩素の濃度が50容量%前後、もしくはそれ以下
の混合ガスより塩素を分離回収する方法に関するもので
ある。
[Industrial Application Field] The present invention provides a mixed gas containing chlorine,
Furthermore, the present invention relates to a method for separating and recovering chlorine from a mixed gas having a chlorine concentration of around 50% by volume or less.

【0002】0002

【従来の技術】塩素を含む混合ガスより塩素を回収する
方法については、すでに様々な方法が提案されている。
2. Description of the Related Art Various methods have already been proposed for recovering chlorine from a mixed gas containing chlorine.

【0003】即ち、(1)米国特許第3,972,69
1号は、20〜90容量%塩素、10〜80容量%二酸
化炭素、窒素、酸素および一酸化炭素からなる気体混合
物を4〜8atmの範囲で圧縮した後、全還流方式の精
留塔で冷却液化し、精留塔底部にたまる液体塩素の温度
を調節することにより、液体塩素中に溶存する二酸化炭
素を放散して液体塩素を高純度で回収する方法を述べて
いる。(2)英国特許第1,164,069号は、窒素
を含む非凝縮性ガスと塩素よりなる気体混合物を6〜1
0atmに圧縮した後、2段階の冷却を行い、さらに熱
交換により−120  °F  〜−150  °F 
 に冷却することにより液体塩素と非凝縮性ガスに分離
できることを示した。(3)米国特許第2,540,9
05号は、5〜10重量%の塩素を含む二酸化炭素、一
酸化炭素、水素、窒素および酸素その他のガス成分から
なる食塩電解後の液化残留ガスから塩素を塩素化した溶
媒で吸収し、同時に吸収される二酸化炭素を吸収塔下部
の加熱等により吸収温度より高い温度で放散せしめるこ
とによって、二酸化炭素を含まない塩素を回収する方法
を提案している。(4)米国特許第2,765,873
号は、30〜50重量%の塩素および空気よりなる含塩
素ガスを2.0  〜14.3atmの加圧下、塔頂の
温度が−22.8〜32.2℃、かつ塔底の温度が塔頂
の温度より27.8〜52.8℃高い条件で、溶媒によ
り吸収することにより実質的に非凝縮性ガスを含まない
塩素を回収する方法を得ている。(5)特開平1−21
2201号は、塩素を含むガスを圧縮、冷却、して塩素
を液化分離し、残ガスをハロゲン化炭化水素溶剤と接触
させて塩素を吸収させて残ガス中の塩素濃度を1%以下
とし、塩素を吸収した溶剤を蒸留して塩素と溶剤に分離
し、塩素を前記ガス圧縮工程へ戻して塩素回収する方法
を提案している。
(1) US Pat. No. 3,972,69
No. 1 compresses a gas mixture consisting of 20 to 90 volume % chlorine, 10 to 80 volume % carbon dioxide, nitrogen, oxygen, and carbon monoxide to a range of 4 to 8 atm, and then cools it in a total reflux rectification column. This paper describes a method for recovering high-purity liquid chlorine by dissipating carbon dioxide dissolved in the liquid chlorine by controlling the temperature of the liquid chlorine that liquefies and accumulates at the bottom of the rectification column. (2) British Patent No. 1,164,069 discloses that a gas mixture consisting of a non-condensable gas containing nitrogen and chlorine is
After compressing to 0 atm, two stages of cooling are performed, followed by heat exchange to -120 °F to -150 °F.
It was shown that liquid chlorine and non-condensable gas can be separated by cooling to . (3) U.S. Patent No. 2,540,9
No. 05 uses a chlorinated solvent to absorb chlorine from the liquefied residual gas after salt electrolysis, which consists of carbon dioxide, carbon monoxide, hydrogen, nitrogen, oxygen, and other gas components containing 5 to 10% by weight of chlorine. We have proposed a method for recovering chlorine that does not contain carbon dioxide by dissipating the absorbed carbon dioxide at a temperature higher than the absorption temperature by heating the lower part of the absorption tower. (4) U.S. Patent No. 2,765,873
No. 2 is a gas containing chlorine containing 30 to 50% by weight of chlorine and air under a pressure of 2.0 to 14.3 atm, with a temperature at the top of the column of -22.8 to 32.2°C and a temperature at the bottom of the column. A method for recovering chlorine substantially free of non-condensable gases has been obtained by absorbing it with a solvent under conditions that are 27.8 to 52.8° C. higher than the temperature at the top of the column. (5) Unexamined Japanese Patent Publication No. 1-21
No. 2201 compresses and cools a chlorine-containing gas to liquefy and separate the chlorine, and brings the remaining gas into contact with a halogenated hydrocarbon solvent to absorb the chlorine to reduce the chlorine concentration in the remaining gas to 1% or less, A method has been proposed in which the solvent that has absorbed chlorine is distilled to separate the chlorine and the solvent, and the chlorine is returned to the gas compression process to recover the chlorine.

【0004】これらの方法のうち、(1)および(2)
は元来高濃度塩素ガスを対象とするものであり、対象と
なる含塩素混合ガスを圧縮、冷却して塩素を液化させる
ことにより分離しているが、高純度塩素の回収を主眼と
しているため、塩素から分離された非凝縮性ガスを主と
する廃ガス中には、(1)の方法で5〜9容量%、(2
)の方法でも10容量%以上の塩素が残存している。
Among these methods, (1) and (2)
Originally, the target was high-concentration chlorine gas, and the target chlorine-containing mixed gas is compressed and cooled to liquefy the chlorine to separate it, but the main purpose is to recover high-purity chlorine. , 5 to 9% by volume by method (1), (2
Even in the method of ), more than 10% by volume of chlorine remains.

【0005】工業的な塩素の回収において、このような
濃度の塩素を含む廃ガスを系外へ放出するには、公害防
止上塩素を除害せねばならず、そのための設備はもちろ
ん、除害に要する薬品の量も膨大となり、さらに塩素の
ロスにもなるので経済的でない。廃ガス中の塩素濃度を
無視できる程度に微量にしようとすれば、圧縮圧力をよ
り高く、冷却液化温度をより低くする必要があり、動力
費、冷凍コストが増大する。しかも、含塩素混合ガスの
高圧への圧縮は設備の安全性から好ましくなく、また冷
却液化温度は(1)でも述べているように、ドライアイ
ス発生による機器の閉塞防止のため二酸化炭素の凝固点
(5.2atmで−56.6℃)以下に下げることは不
可能である。したがって、このような液化法では廃ガス
中に、所定濃度の塩素が残存することが避けられない。
[0005] In industrial chlorine recovery, in order to release waste gas containing such a concentration of chlorine out of the system, chlorine must be removed to prevent pollution. The amount of chemicals required for this process is enormous, and chlorine is lost, making it uneconomical. In order to reduce the chlorine concentration in the waste gas to a negligible level, it is necessary to increase the compression pressure and lower the cooling liquefaction temperature, which increases power costs and refrigeration costs. Moreover, compressing chlorine-containing mixed gas to high pressure is not desirable from the standpoint of equipment safety, and as mentioned in (1), the cooling liquefaction temperature is set at the freezing point of carbon dioxide to prevent equipment clogging due to dry ice generation. It is impossible to lower the temperature below -56.6°C at 5.2 atm. Therefore, in such a liquefaction method, it is inevitable that a predetermined concentration of chlorine remains in the waste gas.

【0006】(3)、(4)および(5)は、ともに溶
媒を利用して吸収放散させることにより塩素を回収する
方法である。これらの方法は廃ガス中の塩素濃度を(1
)または(2)の方法に比較し下げることができる点優
れている。しかし使用される溶媒はハロゲン化炭化水素
であり、特に塩素に対して安定な四塩化炭素が用いられ
ている。しかし四塩化炭素は近年のフロン問題に関連し
て使用禁止の方向にあり、これらの方法は今後実施する
ことは困難である。
[0006] (3), (4) and (5) are all methods of recovering chlorine by absorbing and dissipating it using a solvent. These methods reduce the chlorine concentration in waste gas to (1
) or (2), it is superior in that it can be lowered. However, the solvent used is a halogenated hydrocarbon, in particular carbon tetrachloride, which is stable against chlorine. However, the use of carbon tetrachloride is being banned due to the recent fluorocarbon problem, and it will be difficult to implement these methods in the future.

【0007】[0007]

【発明が解決しようとする課題】従来の技術では四塩化
炭素などの有害な溶媒の使用なしにガス中の塩素をほぼ
完全に分離・回収する方法はなかった。
[Problems to be Solved by the Invention] In the prior art, there was no method for almost completely separating and recovering chlorine in gas without using harmful solvents such as carbon tetrachloride.

【0008】[0008]

【発明を解決するための手段】本発明者らは、先に塩素
を圧力スイング吸着法によりガス中から塩素を分離・濃
縮する方法を提案した(特願平2−75500)。この
方法により操作条件を適切に選択するならば、塩素を含
むガスより塩素を回収・濃縮し、その残ガス中の塩素を
実用上ゼロにすることができ、しかも四塩化炭素などの
溶剤をまったく使用しない。しかし、この圧力スイング
吸着法では得られる塩素に富んだガスは高々80容量%
程度で、工業的に用いられるレベルの塩素濃度は97容
量%以上なので、このままでは工業的に使用できるプロ
セスとは言いがたい。そこで発明者らはさらに検討を重
ね、圧力スイング吸着法と塩素液化法を組み合わせるこ
とにより本発明に至った。
Means for Solving the Invention The present inventors have previously proposed a method for separating and concentrating chlorine from a gas by a pressure swing adsorption method (Japanese Patent Application No. 75500/1999). If operating conditions are appropriately selected using this method, chlorine can be recovered and concentrated from chlorine-containing gas, and the chlorine content in the residual gas can be reduced to practically zero. Moreover, solvents such as carbon tetrachloride can be completely eliminated. do not use. However, in this pressure swing adsorption method, the chlorine-rich gas obtained is at most 80% by volume.
Since the chlorine concentration at the industrial level is 97% by volume or more, it is difficult to say that the process can be used industrially as it is. Therefore, the inventors conducted further studies and arrived at the present invention by combining the pressure swing adsorption method and the chlorine liquefaction method.

【0009】すなわち、塩素を含む混合ガスより塩素を
分離回収する方法において、■塩素濃度10〜60容量
%の混合ガスを圧縮、冷却して一部を液化させ、主とし
て非凝縮性ガスよりなる残ガスと主として塩素よりなる
凝縮液とに分け、塩素を凝縮液として系外に取り出し、
■未凝縮の塩素を含む前記残ガスを、吸着剤を充填した
圧力スイング吸着装置に導入して塩素を吸着して残ガス
より分離し、濃度1容量%以下の塩素を含む未吸着のガ
スを分離して系外へ放出し、■圧力スイング吸着装置に
吸着された塩素に富むガスを吸着圧力より減圧して回収
し、この回収したガスを前記工程■の圧縮工程へ戻す、
ことよりなる塩素の工業的分離回収方法であり、または
、塩素を含む混合ガスより塩素を分離回収する方法にお
いて、■塩素濃度10〜60容量%の混合ガスを圧縮、
冷却して一部を液化させ、主として非凝縮性ガスよりな
る残ガスと主として塩素よりなる凝縮液とに分け、■凝
縮液のみ放散塔へ給液して、溶存する塩素以外のガス成
分を放散せしめて塩素を分離回収し、■放散塔塔頂より
留出する塩素を含む放散ガスと前記工程■の残ガスを合
流し、このガスを吸着剤を充填した圧力スイング吸着装
置に導入して塩素を吸着して残ガスより分離し、濃度1
容量%以下の塩素を含む未吸着のガスを分離して系外へ
放出し、■圧力スイング吸着装置に吸着された塩素に富
むガスを吸着圧力より減圧して回収し、この回収したガ
スを前記工程■の圧縮工程へ戻す、ことよりなる塩素の
工業的分離回収方法である。
That is, in a method for separating and recovering chlorine from a mixed gas containing chlorine, (1) compressing and cooling a mixed gas with a chlorine concentration of 10 to 60% by volume to liquefy a portion of the gas, and then converting the remaining gas, which is mainly a non-condensable gas; The gas is separated into a condensate consisting mainly of chlorine, and the chlorine is taken out of the system as a condensate.
■The residual gas containing uncondensed chlorine is introduced into a pressure swing adsorption device filled with adsorbent to adsorb chlorine and separate it from the residual gas, and the unadsorbed gas containing chlorine with a concentration of 1% by volume or less is extracted. The chlorine-rich gas adsorbed by the pressure swing adsorption device is recovered by reducing the pressure from the adsorption pressure, and the recovered gas is returned to the compression step of step (2).
This is an industrial method for separating and recovering chlorine, or a method for separating and recovering chlorine from a mixed gas containing chlorine.
It is cooled and partially liquefied, and separated into residual gas, which is mainly non-condensable gas, and condensed liquid, which is mainly chlorine. Only the condensed liquid is supplied to the stripping tower, and dissolved gas components other than chlorine are diffused. At the very least, chlorine is separated and recovered, and the diffused gas containing chlorine distilled from the top of the stripping column and the residual gas from the step is adsorbed and separated from the remaining gas, and the concentration is 1.
The unadsorbed gas containing less than % by volume of chlorine is separated and released outside the system, and the chlorine-rich gas adsorbed in the pressure swing adsorption device is recovered by reducing the pressure from the adsorption pressure, and this recovered gas is This is an industrial method for separating and recovering chlorine, which is returned to the compression step in step (2).

【0010】次に、本発明を図面を参照しながら詳しく
説明する。
Next, the present invention will be explained in detail with reference to the drawings.

【0011】図1は本発明を実施する装置の1例である
。図において、(2)  は圧縮機、(5)  は冷却
・凝縮器、(7)は気液セパレータ、(13a,13b
,13c)は吸着塔、(11)は真空ポンプを示す。
FIG. 1 shows an example of an apparatus for implementing the present invention. In the figure, (2) is a compressor, (5) is a cooling/condenser, (7) is a gas-liquid separator, and (13a, 13b)
, 13c) is an adsorption tower, and (11) is a vacuum pump.

【0012】10〜60容量%の塩素と二酸化炭素およ
び非凝縮性ガスよりなる混合ガス(1)  を、真空ポ
ンプ(11)よりの回収ガス(12)と混合した後、圧
縮機にて所定の圧力に圧縮する。非凝縮性ガスとしては
、例えば窒素、酸素、一酸化炭素等が上げられる。圧縮
圧力はゲージ圧で3〜15kg/cm2、好ましくは5
〜12kg/cm2である。混合ガスを冷却・凝縮器で
冷却・液化する。ここで混合ガスに含まれる塩素の2/
3  以上が液化する。冷却液化温度は−10〜−50
℃、好ましくは−20〜−40℃である。セパレータ(
7)で非凝縮性ガスを主とする残ガス(9)と、塩素を
主とする凝縮液(8)に分ける。凝縮液(8)は塩素濃
度は通常97容量%程度の液体塩素を得ることができる
A mixed gas (1) consisting of 10 to 60% by volume of chlorine, carbon dioxide, and non-condensable gas is mixed with the recovered gas (12) from the vacuum pump (11), and then the compressor is used to Compress to pressure. Examples of the non-condensable gas include nitrogen, oxygen, and carbon monoxide. Compression pressure is 3 to 15 kg/cm2 in gauge pressure, preferably 5
~12 kg/cm2. The mixed gas is cooled and liquefied in a cooling/condenser. Here, 2/2 of the chlorine contained in the mixed gas
3 or more is liquefied. Cooling liquefaction temperature is -10 to -50
°C, preferably -20 to -40 °C. Separator (
At step 7), the residual gas (9) is mainly composed of non-condensable gases, and the condensate liquid (8) is mainly composed of chlorine. Liquid chlorine having a chlorine concentration of about 97% by volume can be obtained from the condensate (8).

【0013】前記残ガス(9)を圧力スイング吸着装置
の吸着塔(13a,13b,13c)のいずれか1台に
導入する。吸着塔(13a,13b,13c)には後に
述べる塩素とそれ以外のガスとを分離するに最適な吸着
剤を充填しており、この吸着剤に塩素を吸着させ残ガス
(9)より塩素を除去し、濃度1容量%以下の塩素を含
むガス(14)を得る。
The residual gas (9) is introduced into any one of the adsorption towers (13a, 13b, 13c) of the pressure swing adsorption apparatus. The adsorption towers (13a, 13b, 13c) are filled with an adsorbent that is optimal for separating chlorine from other gases, which will be described later.The adsorbent absorbs chlorine and extracts chlorine from the residual gas (9). A gas (14) containing chlorine with a concentration of 1% by volume or less is obtained.

【0014】吸着塔(13a,13b,13c)の吸着
操作時の圧力は3から15kg/cm2G  、好まし
くは3から10kg/cm2G  がよい。操作温度は
0から150℃まで取ることができるが、通常は大気温
度で操作する方が経済的であり特に問題ない。
The pressure of the adsorption tower (13a, 13b, 13c) during adsorption operation is preferably 3 to 15 kg/cm2G, preferably 3 to 10 kg/cm2G. Although the operating temperature can range from 0 to 150°C, it is usually more economical to operate at atmospheric temperature and there is no particular problem.

【0015】吸着塔(13a,13b,13c)に充填
する吸着剤としては、合成および天然ゼオライト、非ゼ
オライト系多孔質酸性酸化物や活性炭および分子ふるい
カーボンのような炭素質吸着剤が使用できる。たとえば
、ゼオライトとしては、A型、X型、Y型、L型、ZS
M型、天然モルデナイトなどがあげられるが、好ましく
は、X型、Y型、L型、ZSM型である。
As the adsorbent to be filled in the adsorption towers (13a, 13b, 13c), synthetic and natural zeolites, non-zeolite porous acidic oxides, carbonaceous adsorbents such as activated carbon and molecular sieve carbon can be used. For example, zeolites include A type, X type, Y type, L type, and ZS type.
Examples include M type, natural mordenite, etc., and X type, Y type, L type, and ZSM type are preferable.

【0016】活性炭は果実殻系・木材系・石炭系・石油
系などが吸着剤として使用できるが、この中でも分子ふ
るいカーボン、ヤシ殻活性炭が好ましい。これらの吸着
剤は酸素、窒素、二酸化炭素、一酸化炭素、アルゴンな
どの無機性ガスに比較し塩素に対して強い親和性を有し
ているので、これらの吸着剤を充填した吸着塔に塩素を
含有するガスを導入すると塩素が他のガスより優先的に
吸着され、吸着塔のガス出側では塩素濃度の低いガスが
得られ、最適な操作条件を選択するならば吸着塔のガス
出側では塩素はほとんど検出されない。
[0016] Activated carbon based on fruit shells, wood, coal, petroleum, etc. can be used as an adsorbent, and among these, molecular sieve carbon and coconut shell activated carbon are preferred. These adsorbents have a stronger affinity for chlorine than inorganic gases such as oxygen, nitrogen, carbon dioxide, carbon monoxide, and argon. When introducing a gas containing Almost no chlorine is detected.

【0017】仮に吸着塔として(13a)を使用してい
るとすると、吸着塔(13a)  への塩素の吸着が進
み飽和状態に近づいたところでガス(9)の導入を吸着
塔(13a)より吸着塔(13b)に切り換える。吸着
塔(13a)の操作圧力を降下させ、吸着している塩素
およびその他のガスを脱着させる。この時の操作圧力は
吸着時の圧力以下とし、必要に応じて真空ポンプ(11
)により大気圧以下にすることも有効であり、脱着時の
好ましい操作圧力は10から400torrである。脱
着圧力は低い方が脱着により得られる塩素に富んだガス
(12)の塩素純度は高いが、使用する真空ポンプ(1
1)が過大になりすぎるので、経済的理由により操作圧
力は決定される。また操作温度は任意であるが、基本的
には吸着時の温度と同じとする方が経済的である。
Assuming that (13a) is used as the adsorption tower, when the adsorption of chlorine to the adsorption tower (13a) progresses and approaches saturation, gas (9) is introduced from the adsorption tower (13a) for adsorption. Switch to the tower (13b). The operating pressure of the adsorption tower (13a) is lowered to desorb adsorbed chlorine and other gases. The operating pressure at this time should be lower than the adsorption pressure, and if necessary, a vacuum pump (11
) is also effective, and the preferred operating pressure during desorption is 10 to 400 torr. The lower the desorption pressure, the higher the chlorine purity of the chlorine-rich gas (12) obtained by desorption;
1) becomes too excessive, the operating pressure is determined for economic reasons. Although the operating temperature is arbitrary, it is basically more economical to set it to the same temperature as the temperature during adsorption.

【0018】この脱着操作により導入ガスよりも塩素濃
度の高いガスを得ることができるとともに、塩素を吸着
した吸着塔(13a)を脱塩素することで再生すること
ができるので、再び次の吸着操作に使用できる。
[0018] Through this desorption operation, a gas with a higher chlorine concentration than the introduced gas can be obtained, and the adsorption tower (13a) that has adsorbed chlorine can be regenerated by dechlorination, so that it can be used again for the next adsorption operation. Can be used for

【0019】吸着塔はたとえば(13b)が吸着操作に
ある時には、(13a)は脱着操作にあり、(13c)
は脱着再生を完了して待機状態であり、(13b)が塩
素により飽和直前となった時に(13b)より(13c
)に切り換える。このような動きを順次行いながら吸着
塔(13a,  13b,  13c)は常に塩素の吸
着と脱着再生を行う。
In the adsorption tower, for example, when (13b) is in an adsorption operation, (13a) is in a desorption operation, and (13c) is in a desorption operation.
is in a standby state after completing desorption and regeneration, and when (13b) is about to be saturated with chlorine, (13c) is removed from (13b).
). While performing such movements in sequence, the adsorption towers (13a, 13b, 13c) constantly perform adsorption and desorption regeneration of chlorine.

【0020】吸着塔は塩素が破過する前に上記の切り換
え操作を行うならば、ガス(14)には実際上塩素はゼ
ロとすることができる。
If the above-mentioned switching operation is carried out before the adsorption column breaks through, the gas (14) can be practically free of chlorine.

【0021】脱着により得られる塩素に富んだガス(1
2)は操作条件により塩素純度40から90mol%の
範囲にある。ガス(12)をガス(1)と合流させ、再
び圧縮機(3)で昇圧し、最終的に塩素を液体塩素(8
)として回収する。
Chlorine-rich gas obtained by desorption (1
2) has a chlorine purity in the range of 40 to 90 mol% depending on the operating conditions. Gas (12) is combined with gas (1), and the pressure is increased again by the compressor (3), and finally the chlorine is converted into liquid chlorine (8
).

【0022】図1に示す例のように、液体塩素に精製操
作を特に加えない場合には、得られる液体塩素は97v
ol%程度である。もし、さらに高純度の塩素が必要な
場合にはセパレータ(7)で得られる液体塩素(8)を
ストリッピングして精製すればよい。その一例を図2に
示す。
[0022] As shown in the example shown in Fig. 1, when the liquid chlorine is not particularly purified, the liquid chlorine obtained is 97v.
It is about ol%. If higher purity chlorine is required, the liquid chlorine (8) obtained in the separator (7) may be purified by stripping. An example is shown in FIG.

【0023】図2には、図1にストリッパー(15)を
追加設置している。図1の例と同様にして液化した液体
塩素(8)をストリッパー(15)の塔頂に供給し、ス
トリッパー(15)の塔底にはリボイラー(16)を備
えており、リボイラー(16)にて熱を加え溶存してい
る塩素以外の成分を放散させ、塔底より高純度の液体塩
素(17)を得ることができる。放散されたストリッパ
ー(15)の塔頂より得られる塩素を含むガス(18)
はガス(9)と混合し、吸着塔(13a,13b,13
c)  へ導入する。
In FIG. 2, a stripper (15) is additionally installed in FIG. Liquid chlorine (8) liquefied in the same manner as the example in Figure 1 is supplied to the top of the stripper (15), and the bottom of the stripper (15) is equipped with a reboiler (16). By applying heat to diffuse dissolved components other than chlorine, high purity liquid chlorine (17) can be obtained from the bottom of the column. Chlorine-containing gas (18) obtained from the top of the stripped stripper (15)
is mixed with gas (9), and adsorption towers (13a, 13b, 13
c) introduce into.

【0024】以下、図1の例で説明したように、圧力ス
イング吸着法により塩素を分離・回収し、ガス(14)
は系外へ、塩素に富むガス(12)は再び圧縮され、最
終的に塩素は液体塩素(17)として回収される。
As explained in the example of FIG. 1, chlorine is separated and recovered by the pressure swing adsorption method, and the gas (14) is
The chlorine-rich gas (12) is compressed again and the chlorine is finally recovered as liquid chlorine (17).

【0025】[0025]

【作用および効果】本発明方法によれば、塩素を含む混
合ガスより塩素を高収率、かつ、高純度で分離回収でき
る他、従来法で使用していた四塩化炭素などの有害な溶
媒を使用しない特徴を有しているのでその工業的な塩素
の分離回収方法としての効果は非常に大きい。
[Operations and Effects] According to the method of the present invention, chlorine can be separated and recovered from a mixed gas containing chlorine in high yield and with high purity, and harmful solvents such as carbon tetrachloride used in conventional methods can be removed. Since it has the characteristic that it is not used, it is very effective as an industrial method for separating and recovering chlorine.

【0026】[0026]

【実施例】以下、実施例にて本発明を詳しく説明する。[Examples] The present invention will be explained in detail below with reference to Examples.

【0027】実施例1 本実施例に使用した装置のフローシートを図1に示す。Example 1 A flow sheet of the apparatus used in this example is shown in FIG.

【0028】この装置に塩素43.2容量%、酸素35
.6容量%、窒素9.1容量%、二酸化炭素12.1容
量%よりなる混合ガス(1)20.7Nm3/hを送り
、真空ポンプ(11)からのガス(12)3.3Nm3
/hと混合して圧縮機(3)で圧力を7kg/cm2G
まで昇圧し、冷却・凝縮器(5)で−24℃に冷却し、
セパレータ(7)に供給した。セパレータ(7)の下部
から純度97.6容量%の液体塩素を28.3kg/h
を得、上部より塩素17.8容量%、酸素51.4容量
%、窒素13.4容量%、二酸化炭素17.5容量%の
未凝縮ガス(9)を得た。
[0028] In this apparatus, 43.2% by volume of chlorine and 35% by volume of oxygen were added.
.. A mixed gas (1) consisting of 6% by volume, 9.1% by volume of nitrogen, and 12.1% by volume of carbon dioxide (1) is fed at 20.7Nm3/h, and the gas (12) from the vacuum pump (11) is 3.3Nm3.
/h and compressor (3) increases the pressure to 7kg/cm2G.
The pressure is increased to -24°C in the cooling/condenser (5),
It was supplied to the separator (7). 28.3 kg/h of liquid chlorine with a purity of 97.6% by volume is supplied from the bottom of the separator (7).
An uncondensed gas (9) containing 17.8% by volume of chlorine, 51.4% by volume of oxygen, 13.4% by volume of nitrogen, and 17.5% by volume of carbon dioxide was obtained from the upper part.

【0029】直径約0.3m、高さ約2mの吸着塔3台
(13a,13b,13c)に合成Y型ゼオライト(東
洋シーシーアイより購入)各90kgを充填し、前もっ
て真空下に窒素を通気して乾燥を行った。この吸着塔の
内1台(13a)に前記未凝縮ガス(9)を10分間通
気した。この間吸着塔(13a)の塔頂から得られるガ
ス(14)には塩素は100ppm以下であった。10
分間通気したのちに次の吸着塔(13b)に切り換え、
吸着塔(13a)を真空ポンプ(11)で20torr
まで減圧し、10分間排気した。この時得られたガス(
12)の塩素濃度は81.0vol%であった。10分
間排気したのちに吸着塔(13a)は再び圧縮ガスを吸
着すべく待機状態とした。この吸着操作を13a,  
13b,13cの順に順次実行して連続的に圧縮ガスを
処理し、ガス(12)およびガス(14)を得た。ガス
(12)の流量は3.3Nm3/h、ガス(14)の流
量は11.7Nm3/h  であった。
Three adsorption towers (13a, 13b, 13c) each having a diameter of about 0.3 m and a height of about 2 m were each filled with 90 kg of synthetic Y-type zeolite (purchased from Toyo CCI), and nitrogen was bubbled through it under vacuum in advance. and dried. The uncondensed gas (9) was passed through one of the adsorption towers (13a) for 10 minutes. During this time, the gas (14) obtained from the top of the adsorption tower (13a) contained 100 ppm or less of chlorine. 10
After venting for a minute, switch to the next adsorption tower (13b),
The adsorption tower (13a) is heated to 20 torr by the vacuum pump (11).
and evacuated for 10 minutes. The gas obtained at this time (
The chlorine concentration in 12) was 81.0 vol%. After evacuating for 10 minutes, the adsorption tower (13a) was put into a standby state to adsorb compressed gas again. This adsorption operation is performed in 13a,
Steps 13b and 13c were executed in order to continuously treat the compressed gas and obtain gas (12) and gas (14). The flow rate of gas (12) was 3.3 Nm3/h, and the flow rate of gas (14) was 11.7 Nm3/h.

【0030】ガス(12)は混合ガス(1)と混合し、
再び圧縮・冷却して塩素を液化塩素(8)  として回
収した。
Gas (12) is mixed with mixed gas (1),
It was compressed and cooled again to recover chlorine as liquid chlorine (8).

【0031】実施例2 本実施例に使用した装置のフローシートを図2に示す。Example 2 A flow sheet of the apparatus used in this example is shown in FIG.

【0032】この装置に、塩素37.5容量%、酸素3
0.9容量%、窒素13.2容量%、二酸化炭素18.
4容量%よりなる混合ガス(1)27.3Nm3/hを
送り、真空ポンプ(11)からのガス(12)4.9N
m3/hと混合して圧縮機(3)  で圧力を7kg/
cm2G  まで昇圧し、冷却・凝縮器(5)で−24
℃に冷却し、セパレータ(7)に供給した。セパレータ
(7)の下部から凝縮液(8)を得、上部より未凝縮ガ
ス(9)を得た。
In this apparatus, 37.5% by volume of chlorine and 3% by volume of oxygen were added.
0.9% by volume, 13.2% by volume of nitrogen, 18% carbon dioxide.
A mixed gas (1) consisting of 4% by volume of 27.3Nm3/h is sent, and a gas (12) of 4.9N from the vacuum pump (11) is fed.
m3/h and compressor (3) to a pressure of 7 kg/h.
Increase the pressure to cm2G, and use the cooling/condenser (5) to reduce the pressure to -24
It was cooled to ℃ and supplied to the separator (7). A condensed liquid (8) was obtained from the lower part of the separator (7), and an uncondensed gas (9) was obtained from the upper part.

【0033】凝縮液(8)を直径0.15m  、高さ
3.5m、0X型カスケードミニリング2mを充填した
ストリッパー(15)の塔頂部に供給し、ストリッパー
(15)下部のリボイラー(16)より熱媒体で25℃
前後に加熱した。塔底から液体塩素が流量20.7kg
/h、純度99.8vol%で得られた。
The condensate (8) is supplied to the top of the stripper (15), which has a diameter of 0.15 m, a height of 3.5 m, and is filled with 2 m of 0X type cascade mini rings, and is then fed to the reboiler (16) at the bottom of the stripper (15). 25℃ with more heat medium
heated back and forth. Flow rate of liquid chlorine from the bottom of the tower is 20.7 kg.
/h, with a purity of 99.8 vol%.

【0034】実施例1の吸着塔3台(13a,13b,
13c)に合成Y型ゼオライト(東洋シーシーアイ株よ
り購入)各90kgを充填し、前もって真空下に窒素を
通気して乾燥を行った。この吸着塔の内1台(13a)
  に前記未凝縮ガス(9)を10分間通気した。この
間吸着塔(13a)の塔頂から得られるガス(14)に
は塩素は100ppm以下であった。10分間通気した
のちに次の吸着塔(13b)に切り換え、吸着塔(13
a)を真空ポンプ(11)で20torrまで減圧し、
10分間排気した。この時得られたガス(12)の塩素
濃度は71.0vol%であった。10分間排気したの
ちに吸着塔(13a)は再び圧縮ガスを吸着すべく待機
状態とした。この吸着操作を13a,13b,13cの
順に順次実行して連続的に圧縮ガスを処理しガス(12
)およびガス(14)を得た。ガス(12)の流量は4
.9Nm3/h、ガス(14)の流量は15.9Nm3
/hであった。
Three adsorption towers (13a, 13b,
13c) was filled with 90 kg each of synthetic Y-type zeolite (purchased from Toyo CCI Co., Ltd.), and dried by previously blowing nitrogen under vacuum. One of these adsorption towers (13a)
Then, the uncondensed gas (9) was passed through for 10 minutes. During this time, the gas (14) obtained from the top of the adsorption tower (13a) contained 100 ppm or less of chlorine. After venting for 10 minutes, switch to the next adsorption tower (13b).
a) is reduced to 20 torr with a vacuum pump (11),
It was evacuated for 10 minutes. The chlorine concentration of the gas (12) obtained at this time was 71.0 vol%. After evacuating for 10 minutes, the adsorption tower (13a) was put into a standby state to adsorb compressed gas again. This adsorption operation is performed in the order of 13a, 13b, and 13c to continuously process the compressed gas and gas (12
) and gas (14) were obtained. The flow rate of gas (12) is 4
.. 9Nm3/h, the flow rate of gas (14) is 15.9Nm3
/h.

【0035】ガス(12)は混合ガス(1)と混合し、
再び圧縮・冷却して塩素を液化塩素(8)  として回
収した。
Gas (12) is mixed with mixed gas (1),
It was compressed and cooled again to recover chlorine as liquid chlorine (8).

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を実施する場合の好ましいフローシート
の一例である。
FIG. 1 is an example of a preferred flow sheet for carrying out the present invention.

【図2】実施例2のフローシートである。FIG. 2 is a flow sheet of Example 2.

【符号の説明】[Explanation of symbols]

1.  原料混合ガス            2. 
 圧縮機供給ガス3.  圧縮機          
        4.  圧縮ガス5.  冷却・凝縮
器            6.  冷却後ガス7. 
 気液セパレータ          8.  凝縮液
(液体塩素) 9.  未凝縮ガス              10
.  回収ガス11.  真空ポンプ        
      12.  回収ガス13a,13b,13
c  吸着塔 14.  未吸着ガス              1
5.  ストリッパー 16.  リボイラー              1
7.  液体塩素18.  放散ガス
1. Raw material mixed gas 2.
Compressor supply gas 3. compressor
4. Compressed gas5. Cooler/condenser 6. Gas after cooling 7.
Gas-liquid separator 8. Condensate (liquid chlorine) 9. Uncondensed gas 10
.. Recovery gas 11. Vacuum pump
12. Recovery gas 13a, 13b, 13
c Adsorption tower 14. Unadsorbed gas 1
5. Stripper 16. reboiler 1
7. Liquid chlorine18. diffused gas

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  塩素を含む混合ガスより塩素を分離回
収する方法において、■塩素濃度10〜60容量%の混
合ガスを圧縮、冷却して一部を液化させ、主として非凝
縮性ガスよりなる残ガスと主として塩素よりなる凝縮液
とに分け、塩素を凝縮液として系外に取り出し、■未凝
縮の塩素を含む前記残ガスを、吸着剤を充填した圧力ス
イング吸着装置に導入して塩素を吸着して残ガスより分
離し、濃度1容量%以下の塩素を含む未吸着のガスを分
離して系外へ放出し、■圧力スイング吸着装置に吸着さ
れた塩素に富むガスを吸着圧力より減圧して回収し、こ
の回収したガスを前記工程■の圧縮工程へ戻す、ことよ
りなる塩素の工業的分離回収方法。
Claim 1: In a method for separating and recovering chlorine from a mixed gas containing chlorine, (1) compressing and cooling a mixed gas with a chlorine concentration of 10 to 60% by volume to liquefy a portion of the gas, and then converting the remaining gas, which is mainly a non-condensable gas; Separate the gas and a condensate mainly consisting of chlorine, remove the chlorine from the system as a condensate, and introduce the remaining gas containing uncondensed chlorine into a pressure swing adsorption device filled with an adsorbent to adsorb chlorine. The unadsorbed gas containing chlorine with a concentration of 1% by volume or less is separated and released from the system, and the chlorine-rich gas adsorbed in the pressure swing adsorption device is depressurized from the adsorption pressure. An industrial method for separating and recovering chlorine, comprising the steps of: recovering the recovered gas by using the gas, and returning the recovered gas to the compression step of step (2) above.
【請求項2】  塩素を含む混合ガスより塩素を分離回
収する方法において、■塩素濃度10〜60容量%の混
合ガスを圧縮、冷却して一部を液化させ、主として非凝
縮性ガスよりなる残ガスと、主として塩素よりなる凝縮
液とに分け、■凝縮液のみ放散塔へ給液して、溶存する
塩素以外のガス成分を放散せしめて塩素を分離回収し、
■放散塔塔頂より留出する塩素を含む放散ガスと前記工
程■の残ガスを合流し、このガスを吸着剤を充填した圧
力スイング吸着装置に導入して塩素を吸着して残ガスよ
り分離し、濃度1容量%以下の塩素を含む未吸着のガス
を分離して系外へ放出し、■圧力スイング吸着装置に吸
着された塩素に富むガスを吸着圧力より減圧して回収し
、この回収したガスを前記工程■の圧縮工程へ戻す、こ
とよりなる塩素の工業的分離回収方法。
2. In a method for separating and recovering chlorine from a mixed gas containing chlorine, (1) compressing and cooling a mixed gas with a chlorine concentration of 10 to 60% by volume to liquefy a portion of the gas, and then converting the remaining gas, which is mainly a non-condensable gas; Separate the gas and the condensate, which mainly consists of chlorine, and feed only the condensate to a stripping tower to diffuse the dissolved gas components other than chlorine and separate and recover the chlorine.
■The diffused gas containing chlorine distilled from the top of the stripping column is combined with the residual gas from the step (■) above, and this gas is introduced into a pressure swing adsorption device filled with an adsorbent to adsorb chlorine and separate it from the residual gas. Then, the unadsorbed gas containing chlorine with a concentration of 1% by volume or less is separated and released outside the system, and the chlorine-rich gas adsorbed in the pressure swing adsorption device is recovered by reducing the pressure from the adsorption pressure. An industrial method for separating and recovering chlorine, which comprises returning the extracted gas to the compression step of step (1) above.
【請求項3】  圧力スイング吸着装置に充填した吸着
剤が、ゼオライト、活性炭、非ゼオライト系多孔質酸性
酸化物または分子ふるいカーボンである請求項1または
2記載の方法。
3. The method according to claim 1, wherein the adsorbent packed in the pressure swing adsorption device is zeolite, activated carbon, non-zeolitic porous acidic oxide, or molecular sieve carbon.
【請求項4】  塩素を含む混合ガスには、二酸化炭素
、一酸化炭素、窒素、酸素およびアルゴンのうちより選
択された成分を含む請求項1または2記載の方法。
4. The method according to claim 1, wherein the chlorine-containing mixed gas contains a component selected from among carbon dioxide, carbon monoxide, nitrogen, oxygen, and argon.
JP3138750A 1991-06-11 1991-06-11 Industrial separation and recovery method of chlorine Expired - Lifetime JP2726774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3138750A JP2726774B2 (en) 1991-06-11 1991-06-11 Industrial separation and recovery method of chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3138750A JP2726774B2 (en) 1991-06-11 1991-06-11 Industrial separation and recovery method of chlorine

Publications (2)

Publication Number Publication Date
JPH04362002A true JPH04362002A (en) 1992-12-15
JP2726774B2 JP2726774B2 (en) 1998-03-11

Family

ID=15229312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3138750A Expired - Lifetime JP2726774B2 (en) 1991-06-11 1991-06-11 Industrial separation and recovery method of chlorine

Country Status (1)

Country Link
JP (1) JP2726774B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376164A (en) * 1993-08-09 1994-12-27 Uop Pressure swing adsorption process for chlorine plant offgas
US5500035A (en) * 1993-08-09 1996-03-19 Uop Pressure swing adsorption process for chlorine plant offgas
WO2005044725A1 (en) * 2003-11-05 2005-05-19 Toagosei Co., Ltd. Method for producing high purity liquid chlorine
JP2008531446A (en) * 2005-02-23 2008-08-14 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing chlorine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376164A (en) * 1993-08-09 1994-12-27 Uop Pressure swing adsorption process for chlorine plant offgas
US5500035A (en) * 1993-08-09 1996-03-19 Uop Pressure swing adsorption process for chlorine plant offgas
WO2005044725A1 (en) * 2003-11-05 2005-05-19 Toagosei Co., Ltd. Method for producing high purity liquid chlorine
JP2008531446A (en) * 2005-02-23 2008-08-14 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing chlorine

Also Published As

Publication number Publication date
JP2726774B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
US5587003A (en) Removal of carbon dioxide from gas streams
EP0302658B1 (en) Process for producing high purity oxygen gas from air
US5417742A (en) Removal of perfluorocarbons from gas streams
US5531808A (en) Removal of carbon dioxide from gas streams
EP0349655A1 (en) Process for separating and recovering carbonic acid gas from gas mixture by adsorption
JPS6026571B2 (en) Method and apparatus for increasing the proportion of component gases in a gas mixture
NO170260B (en) PREPARATION OF THE OXYGEN WITH HIGH PURITY
CN107789949A (en) A kind of gas separating method of negative pressure pressure-variable adsorption
JPH05132305A (en) Method for preparation of highly pure argon
US5551257A (en) Production of ultrahigh purity nitrogen
EP0640376B1 (en) Method for recovering ethylene from ethylene oxide plant vent gas
EP0284850B1 (en) Improved adsorptive purification process
JPH07207280A (en) Recovery of alkene from exhaust gas
JPH04362002A (en) Industrial separation and recovery of chlorine
US5891220A (en) O2 /CO removal from an inert gas by adsorption on porous metal oxide
CA2165377A1 (en) Recovery of hydrocarbons from gas streams
KR102017863B1 (en) Cyclic Separation Process of Olefin And Paraffin
JP2994843B2 (en) Recovery method of low concentration carbon dioxide
NZ248804A (en) Argon purification by cryogenic adsorption
JPH0733404A (en) Production of high concentration oxygen
KR101954816B1 (en) A method and an apparatus for recovering high purity Ne from gas mixture
KR100275858B1 (en) Pressure and apparatus for nitrogen production by pressure swing adsorption
KR100849987B1 (en) Enrichment of ethylene from fcc off-gas
JPH0525801B2 (en)
JP3256811B2 (en) Method for purifying krypton and xenon

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 14