JPH0436183B2 - - Google Patents

Info

Publication number
JPH0436183B2
JPH0436183B2 JP15935083A JP15935083A JPH0436183B2 JP H0436183 B2 JPH0436183 B2 JP H0436183B2 JP 15935083 A JP15935083 A JP 15935083A JP 15935083 A JP15935083 A JP 15935083A JP H0436183 B2 JPH0436183 B2 JP H0436183B2
Authority
JP
Japan
Prior art keywords
weight
layer
parts
monomer
graft copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15935083A
Other languages
Japanese (ja)
Other versions
JPS6051737A (en
Inventor
Kazumasa Kamata
Kazuo Ueda
Kyokazu Kitai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP58159350A priority Critical patent/JPS6051737A/en
Priority to IE2188/84A priority patent/IE57758B1/en
Priority to CA000461984A priority patent/CA1235544A/en
Priority to US06/645,358 priority patent/US4564653A/en
Priority to EP84110350A priority patent/EP0136552B1/en
Priority to DE8484110350T priority patent/DE3480347D1/en
Priority to ES535521A priority patent/ES8607346A1/en
Priority to PT79160A priority patent/PT79160B/en
Publication of JPS6051737A publication Critical patent/JPS6051737A/en
Publication of JPH0436183B2 publication Critical patent/JPH0436183B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高い耐衝撃性および良好な成形加工性
を付与し得、且つ耐候性も良好な熱可塑性樹脂用
耐衝撃性改質剤に関する。 熱可塑性樹脂、とりわけ塩化ビニル系樹脂(以
下PVCと略記する。)は汎用樹脂として広く使用
されているが、その機械的性質は必ずしも満足し
得るものではない。即ちPVCは衝撃強度、特に
ノツチ付きの衝撃強度に劣り、かかる衝撃強度を
改良する目的で種々の改質剤が提案されている。 これら提案の内最も有効な方法として共役ジエ
ン弾性体にメタクリル酸アルキルエステルおよび
芳香族ビニル化合物をグラフト重合したいわゆる
MBS樹脂、共役ジエン弾性体にビニルシアン化
合物および芳香族ビニル化合物をグラフト重合し
たABS樹脂をPVCとブレンドする方法が知られ
ている。しかしながらこれらMBS樹脂、ABS樹
脂は弾性体成分の主鎖に多くの二重結合を含むた
め、屋外で長時間使用された場合、チヨーキング
現象、衝撃強度の低下等を引き起こし易く屋外用
途には適さない。 また飽和のアクリル酸アルキルエステルを共役
ジエンに一部代替した弾性体を用いる方法も提案
されている。この場合には高い衝撃強度改良効果
を示すが、耐候性はMBS樹脂やABS樹脂程でな
いにしてもやはり悪いという欠点を有している。 さらに弾性体として飽和のポリアクリル酸アル
キルエステルを用い、メタクリル酸アルキルエス
テル、芳香族ビニル化合物およびビニルシアン化
合物等をグラフト重合した共重合体をPVCとブ
レンドした耐候性良好な樹脂組成物も種々提案さ
れている。 しかしながらこれらの共重合体はよく混練りの
きく条件(以下低滑性条件という。)ではMBS樹
脂程ではないにしても、かなにの衝撃強度改良効
果を示すが、多量の滑剤を用いた場合、あるいは
比較的低温加工された場合等の混練のきかない条
件(以下高滑性条件という。)では殆んど衝撃強
度改良効果を示さない。 本発明者らはかかる現状に鑑み鋭意検討した結
果アクリル酸アルキルエステル弾性体を用いた多
層グラフト共重合体をPVC中に均一に分散させ
ることが衝撃強度発現性に大きく寄与することに
着目し最外層のガラス転移温度(以下Tgと略記
する。)が0℃以下、最外層から2番目の層のT
gが60℃以上、最外層から3番目の層のTgが0
℃以下である少なくとも三層構造からなる多層グ
ラフト共重合体が、例えばこれをPVCとブレン
ドした場合、高滑性条件で剪断応力が低い場合で
もかかる多層グラフト共重合体が速かに溶融し易
く、PVC組成物のゲル化が早まり分散状態が極
めて良好となり、しかもかかるPVC組成物は低
滑性条件で剪断応力が高いところから上述の如き
高滑性条件で剪断応力が低いところまでの広範囲
の成形条件において高い衝撃強度を示すことが可
能であり熱可塑性樹脂の耐衝撃性改質剤として有
効であることを見出し先に特許出願したが、その
後の検討の結果さらにこの多層グラフト共重合体
に特定の不飽和酸単量体を必須成分とする特定の
共重合体を特定量配合したものがより優れた耐衝
撃性改質剤として作用し、しかも加工性が良好
で、表面光沢にも優れ、さらに耐候性も良好であ
ることを見出し本発明に到達した。 即ち本発明の要旨とするところはアクリル酸ア
ルキルエステル、メタクリル酸アルキルエステ
ル、芳香族ビニル化合物およびビニルシアン化合
物からなる単量体群から選ばれた単量体から構成
され、最外層(A)を構成する重合体のガラス転
移温度が0℃以下、最外層(A)から2番目の層
(B)を構成する重合体のガラス転移温度が60℃
以上、最外層(A)から3番目の層(C)を構成
する重合体のガラス転移温度が0℃以下である層
(A),(B)および(C)の少なくとも三層構造
からなる多層構造を有し、且つ各層において各層
に対して多官能性架橋剤0〜5重量%を含有する
多層グラフト共重合体(1)100重量部に、不飽
和酸単量体3〜30重量%およびこれと共重合可能
なビニル単量体97〜70重量%を共重合して得られ
る共重合体(2)0.1〜20重量部を配合してなる
耐衝撃性改質剤にある。 本発明の耐衝撃性改質剤は上記多層グラフト共
重合体(1)と共重合体(2)のブレンド物から
なるものであり、上述した如き多層グラフト共重
合体は少なくとも三段階にわたつて重合して得ら
れた三層以上の多層構造を有することが必須であ
り、最外層から数えて4番目の層がその単独重合
体のTgが60℃以上である重合体からなる四層グ
ラフト共重合体であつても、また最外層から数え
て5番目の層がその単独重合体のTgが0℃以下
である重合体からなる五層グラフト共重合体のよ
うな多層グラフト共重合体であつてもよく、かか
る場合でも耐衝撃性改良効果は同様に示す。 本発明の耐衝撃性改質剤の一成分である多層グ
ラフト共重合体(1)を構成する単量体群はアク
リル酸アルキルエステル、メタクリル酸アルキル
エステル、芳香族ビニル化合物およびビニルシア
ン化合物から構成されるものである。 アクリル酸アルキルエステルとしては、アルキ
ル基の炭素数が2〜10個のものが好ましく、例え
ばアクリル酸エチル、アクリル酸プロピル、アク
リル酸n−ブチル、アクリル酸イソブチル、アク
リル酸ヘキシル、アクリル酸オクチルおよびアク
リル酸2エチル−ヘキシル等が挙げられる。 メタクリル酸アルキルエステルとしては、アル
キル基の炭素数が1〜4個ものが好ましく、例え
ばメタクリル酸メチル、メタクリル酸エチル、メ
タクリル酸プロピル、メタクリル酸イソプロピ
ル、メタクリル酸n−ブチル、メタクリル酸イソ
ブチルおよびメタクリル酸タ−シヤリブチル等が
挙げられる。PVCとの相溶性を考慮するとメタ
クリル酸メチルが特に好ましいものである。 また芳香族ビニル化合物としては、スチレン、
α−置換スチレン、核置換スチレンおよびその誘
導体、例えばα−メチルスチレン、クロルスチレ
ン、ビニルトルエン等が挙げられる。 さらにビニルシアン化合物としてはアクリロニ
トリル、メタクリロニトリル等が挙げられる。 多層グラフト共重合体(1)を構成する最外層
(A)成分は、最外層(A)自体のTgが0℃以
下となるように前記単量体群の中から選ばれる。
最外層(A)中の前記単量体の組成割合はアクリ
ル酸アルキルエステルが60〜100重量%、メタク
リル酸アルキルエステル0〜40重量%、芳香族ビ
ニル化合物0〜40重量%、ビニルシアン化合物0
〜20重量%の範囲で使用可能である。最外層
(A)自体のTgが0℃を超える場合には最終的
に得られる改質剤をPVCとブレンドして成形す
るとA層部分の溶融が遅く、所望とする耐衝撃性
改良効果が充分得られにくい。 最外層(A)の多層グラフト共重合体総量中に
占める割合は10〜50重量%が好ましく、10重量%
未満の割合では耐衝撃性改良効果が小さく、また
50重量%を超える割合ではPVCとブレンドして
成形する際の成形加工性が悪くなるので好ましく
ない。 また最外層(A)から2番目の層(B)の成分
は、層(B)自体のTgが60℃以上となるように
前記単量体群の中から選ばれる。層(B)中の前
記単量体の組成割合はメタクリル酸アルキルエス
テル0〜100重量%、芳香族ビニル化合物0〜100
重量%、ビニルシアン化合物0〜30重量%、アク
リル酸アルキルエステル0〜20重量%の範囲で使
用可能である。層(B)自体のTgが60℃未満で
は多層グラフト重合体が凝集し易く、耐衝撃性も
劣る。層(B)の成分としては、PVCとブレン
ドする場合にはメタクリル酸アルキルエステルが
好ましく、特にメタクリル酸メチルが好ましい。
芳香族ビニル化合物はPVCとのブレンド成形時
にその流動性を向上させるが、多量に用いた場合
には相溶性が悪化し、耐衝撃性が低下する。また
ビニルシアン化合物はPVCとのブレンド時のゲ
ル化を促進させるため好ましいものであるが多量
に用いると成形時に帯色しやすくなつたり、また
その加工性が悪化する。 層(B)の多層グラフト共重合体総量中に占め
る割合は20〜60重量%が好ましく、20重量%未満
の割合ではPVCとブレンドして成形する際の成
形加工性が劣るので好ましくない。また60重量%
を超える割合では多層グラフト共重合体全体に占
める弾性体成分量が減少することになり耐衝撃性
改良効果が小さく好ましくない。 さらに最外層(A)から3番目の層(C)の成
分は、層(C)自体のTgが0℃以下となるよう
に前記単量体群の中から選ばれる。層(C)中の
前記単量体の組成割合はアクリル酸アルキルエス
テル60〜100重量%、メタクリル酸アルキルエス
テル0〜40重量%、芳香族ビニル化合物0〜40重
量%、ビニルシアン化合物0〜20重量%の範囲で
使用可能である。層(C)自体のTgが0℃を超
える場合には層(C)自体の弾性的性質が損わ
れ、所望とする耐衝撃性改良効果が得られにく
い。 層(C)の多層グラフト共重合体総量中に占め
る割合は10〜60重量%が好ましく、10重量%未満
の割合では耐衝撃性改良効果が小さく、また60重
量%を超える割合ではPVCとブレンドして成形
する際の成形加工性が劣るので好ましくない。 本発明における多官能性架橋剤は前記多層グラ
フト共重合体を製造する際のグラフト交叉結合を
容易にならしめるだけでなく、乳化重合体ラテツ
クスの凝固性も大幅に改良するものである。多官
能性架橋剤としては、ジビニルベンゼン、アクリ
ル酸またはメタクリル酸と多価アルコールとのエ
ステルであるジアクリル酸エステルまたはメタク
リル酸エステル、あるいはシアヌル酸トリアリ
ル、イソシアヌル酸トリアリル、アクリル酸アリ
ル、メタクリル酸アリル、イタコン酸ジアリル、
フタル酸ジアリル等が挙げられる。なおグラフト
交叉性を考えるならばアリル基を有する架橋剤が
好ましいものである。 多官能性架橋剤の各層中に占める割合は0〜5
重量%である。5重量%を超えて使用する場合に
は弾性体層なる最外層(A)または層(C)があ
まりにも弾性的性質を損う。また樹脂層なる層
(B)はPVCとの相溶性が悪化するため、いずれ
も耐衝撃性改良効果が低下するため好ましくな
い。多官能性架橋剤の各層中に占める割合は多層
グラフト共重合体製造時の乳化重合体ラテツクス
の凝固性、さらには得られる多層グラフト共重合
体の耐衝撃性改良効果を考慮すると0.1〜3重量
%の範囲が好ましい。 本発明における多層グラフト共重合体は通常の
乳化重合法で製造することが好ましい。 乳化剤としては、脂肪酸塩、アルキル硫酸エス
テル塩、アルキルベンゼンスルフオン酸塩、アル
キルリン酸エステル塩、ジアルキルスルフオコハ
ク酸塩等のアニオン性界面活性剤、またポリオキ
シエチレンアルキルエーテル、ポリオキシエチレ
ン脂肪酸エステル、ソルビタン脂肪酸エステル、
グリセリン脂肪酸エステル等のノニオン性界面活
性剤、さらにアルキルアミン塩等のカチオン性界
面活性剤を使用することができる。これらの界面
活性剤は単独でまたは併用して使用することがで
きる。また乳化剤の種類により、重合系のPHがア
ルカリ側となる時はアクリル酸アルキルエステル
の加水分解を防止するため、適当なPH調節剤を使
用することもできる。 重合開始剤としては、通常の過硫酸塩などの無
機開始剤または有機過酸化物、アゾ化合物等を単
独で用いるか、あるいは上記化合物と亜硫酸塩、
亜硫酸水素塩、チオ硫酸塩、第一金属塩、ナトリ
ウムホルムアルデヒドスルホキシレート等とを組
み合わせ、レドツクス系開始剤として用いること
もできる。開始剤として好ましい過硫酸塩は過硫
酸ナトリウム、過硫酸カリウム、過硫酸アンモニ
ウム等であり、有機過酸化物としては、t−ブチ
ルハイドロパーオキシド、クメンヒドロパーオキ
シド、過酸化ベンゾイル、過酸化ラウロイル等で
ある。 重合体の分子量を調節するために連鎖移動剤を
使用してもよく、炭素数5〜20のアルキルメルカ
プタン等が使用可能である。 重合は開始剤の分解温度以上の温度にて、通常
の乳化重合条件下で少なくとも最外層(A)、最
外層(A)から2番目の層(B)および最外層
(A)から3番目の層(C)が前述したような構
造になるように行うことができる。この際に各段
階いずれの重合についても、各単量体または単量
体の混合物の全量を一度に、あるいは全量または
一部を連続的に添加しながら行うことができる。
ただし重合の安定性、重合反応熱の除去等の点か
らは全量または一部を添加しながら重合を行うこ
とが好ましい。 また本発明の耐衝撃性改質剤の他の成分である
共重合体(2)は不飽和酸単量体3〜30重量%と
これと共重合可能なビニル単量体97〜70重量%と
を共重合して得られるものであり、その製造法と
しては乳化重合法が好ましいものである。 不飽和酸単量体としてはアクリル酸、メタクリ
ル酸、クロトン酸、イタコン酸、桂皮酸、無水マ
レイン酸、ブテントリカルボン酸等の酸基含有単
量体である。共重合体(2)中の不飽和酸単量体
の量が3重量%未満では多層グラフト共重合体
(1)とブレンドして耐衝撃性改質剤としてもそ
の耐衝撃性改良効果が少なく好ましくない。また
30重量%を超えると乳化重合して得る場合のラテ
ツクスが安定でなく、また前述の多層グラフト共
重合体(1)のラテツクスとブレンドした際もラ
テツクス安定性を悪化させたり、加工性を悪化さ
せたりするので好ましくない。 不飽和酸単量体と共重合可能なビニル単量体と
してはアクリル酸アルキルエステル、メタクリル
酸アルキルエステル、芳香族ビニル化合物、ビニ
ルシアン化合物等が挙げられ、これらは前述した
単量体群のものを単独で、または混合して用いる
ことができる。 なお共重合体(2)を乳化重合法にて製造する
に際しては多層グラフト共重合体(1)の製造の
際に使用できる乳化剤、重合開始剤、連鎖移動剤
等の同様のものを使用することが可能であり、多
層グラフト共重合体(1)の製造と同様の方法で
共重合することができる。 本発明の耐衝撃性改質剤は上述の如き得られる
多層グラフト共重合体(1)と共重合体(2)の
ブレンド物であり、その配合割合は多層グラフト
共重合体(1)100重量部に対し共重合体(2)
が0.1〜20重量部である。共重合体(2)の配合
量が0.1重量部未満では耐衝撃性改良効果が少な
く、また20重量部を超える量では双方の共重合体
をラテツクスブレンドした場合のラテツクスが不
安定になつたり、この改質剤をPVCとブレンド
した場合加工性が低下するので好ましくない。 本発明を実施するに際しては多層グラフト共重
合体(1)と共重合体(2)のブレンドは夫々の
ラテツクスを固形分換算で上述した配合割合にて
行い、このブレンドラテツクスを通常塩析、ある
いは酸析凝固し、過水洗し粉末状で回収する
か、あるいは噴霧乾燥、凍結乾燥を行い粉末状に
て回収すればよい。また特開昭57−187322号公報
に記載される方法で回収することもできる。さら
には多層グラフト共重合体(1)と共重合体
(2)の個々の粉末を後でブレンドする方法も取
り得る。上記ラテツクスブレンドで得る方法が特
に好ましいものである。 本発明の耐衝撃性改質剤は種々の熱可塑性樹脂
と配合することにより、熱可塑性樹脂に高い衝撃
性、良好な加工性を付与し、且つ成形品の耐候性
も良好なものとするものである。 本発明の耐衝撃性改質剤を熱可塑性樹脂に配合
する割合は熱可塑性樹脂100重量部に対し3〜50
重量部である。3重量部未満の配合割合では耐衝
撃性改良効果が少なく、また50重量部を超える場
合には熱可塑性樹脂が本来有する機械的性質が損
われてしまうので共に好ましくない。ここで熱可
塑性樹脂とはPVC、ポリカーボネート樹脂、ポ
リエステル樹脂、アクリロニトリル−スチレン系
樹脂、メタクリル酸メチル−スチレン系樹脂等が
挙げられる。PVCとしてはポリ塩化ビニルの他、
塩化ビニル70重量%以上からなる塩化ビニル系共
重合体が使用できる。塩化ビニルに共重合するモ
ノマーとしてはエチレン、プロピレン、臭化ビニ
ル、塩化ビニリデン、酢酸ビニル、アクリル酸エ
ステル、メタクリル酸エステル等が用いられる。 本発明の耐衝撃性改質剤と熱可塑性樹脂との配
合は好ましくは粉末状で、例えばリボンブレンダ
ー、ヘンシエルミキサー等により行い、公知の混
練機、例えばミキシングロール、バンバリーミキ
サー、押出機および射出成形機等によつて成形加
工される。なお配合に際しては公知の安定剤、可
塑剤、滑剤および着色剤等を必要に応じて添加し
てもよい。 本発明の耐衝撃性改質剤は特定の不飽和酸単量
体を必須成分とする特定の共重合体を含有してい
ることによりこれまでの耐衝撃性改質剤に比べよ
り優れた効果を奏する。 以下実施例により本発明を具体的に説明する。
なお実施例中「部」および「%」は夫々「重量
部」,「重量%」を意味するものである。また共重
合体のTgはFoxの式より求めたものである。 実施例 1 (a) 多層グラフト共重合体(1)の製造 反応容器に窒素置換したイオン交換水190部
を入れ、半硬化牛脂脂肪酸石けん1.2部、過硫
酸カリ0.6部を溶解し、70℃に保持しながら、
層(C)成分としてアクリル酸n−ブチル
19.85部、イソシアヌル酸トリアリル0.15部よ
りなる混合物を1時間にわたり滴下した。滴下
終了後同温度に保ちながら1時間保持し、重合
を完結させた。重合率は99.0%であつた。 この重合体ラテツクスに層(B)成分として
メタクリル酸メチル49.7部、イソシアヌル酸ト
リアリル0.3部とからなる混合物を2時間にわ
たり、温度を70℃に保ちながら滴下し、滴下終
了後1時間保持を行い、重合を完結させた。重
合率は99.5%であつた。 得られた重合体ラテツクスに過硫酸カリ0.2
部を水10部に溶解して追加し、層(A)成分と
してアクリル酸n−ブチル29.8部、イソシアヌ
ル酸トリアリル0.2部の混合物を90分にわたり、
温度を70℃に保ちながら滴下し、滴下終了後1
時間保持を行い重合を完結させた、重合率は
99.3%で、得られたグラフト共重合体の平均粒
子径は0.25μであつた。 (b) 共重合体(2)の製造 反応容器に窒素置換したイオン交換水200部
を入れ、半硬化牛脂脂肪酸石けん3部、過硫酸
カリ0.6部を溶解し、アクリル酸エチル90部、
メタクリル酸10部からなる混合物を温度を70℃
に保ちながら4時間にわたり滴下し、3時間保
持を行い、重合して共重合体(2)ラテツクス
を得た。重合率は99.9%以上であつた。 (c) ラテツクスブレンドおよびポリマー回収 多層グラフト共重合体(1)ラテツクス100
部(固形分として)を攪拌機を備えた反応釜に
入れ、共重合体(2)ラテツクス2部(固形分
として)を攪拌しながら10秒間で添加し15分間
攪拌を行つた。 得られたラテツクス混合物を硫酸水溶液に加
え、酸析凝固したのち、洗浄脱水し、乾燥を行
い、粉末状でポリマーの回収を行つた(実施例
1−1)。 なお共重合体(2)の添加量を種々変更した
ものを第1表に併せて示す。 (d) 塩化ビニル樹脂との配合組成物の製造 平均重合度1100の塩化ビニル樹脂100部に三
塩基性硫酸鉛1.0部、二塩基性ステアリン酸0.3
部、ステアリン酸鉛2.4部、ステアリン酸0.3
部、ポリエチレンワツクス0.3部、上記(c)で得
られたそれぞれの改質剤10部を加え、ヘンシエ
ルミキサー中で115℃まで昇温させて均一な混
合物を得た。この塩化ビニル樹脂組成物を30mm
単軸押出機で以下の条件で角棒成形を行つた。
The present invention relates to an impact modifier for thermoplastic resins that can impart high impact resistance and good moldability, and also has good weather resistance. Thermoplastic resins, particularly vinyl chloride resins (hereinafter abbreviated as PVC), are widely used as general-purpose resins, but their mechanical properties are not always satisfactory. That is, PVC has poor impact strength, particularly notched impact strength, and various modifiers have been proposed for the purpose of improving this impact strength. Among these proposals, the most effective method is the so-called graft polymerization of methacrylic acid alkyl ester and aromatic vinyl compound onto a conjugated diene elastomer.
A method is known in which MBS resin, an ABS resin in which a vinyl cyanide compound and an aromatic vinyl compound are graft-polymerized onto a conjugated diene elastomer, is blended with PVC. However, these MBS resins and ABS resins contain many double bonds in the main chain of the elastic body component, so if they are used outdoors for a long time, they tend to cause a yoking phenomenon and a decrease in impact strength, making them unsuitable for outdoor use. . A method using an elastic body in which conjugated diene is partially substituted for saturated acrylic acid alkyl ester has also been proposed. In this case, although it shows a high impact strength improvement effect, it has the disadvantage that its weather resistance is still poor, although it is not as good as MBS resin or ABS resin. Furthermore, we have proposed various resin compositions with good weather resistance that use saturated polyacrylic acid alkyl ester as the elastic body and blend copolymers obtained by graft polymerization of methacrylic acid alkyl ester, aromatic vinyl compounds, vinyl cyan compounds, etc. with PVC. has been done. However, under well-kneaded conditions (hereinafter referred to as low-lubricity conditions), these copolymers show some impact strength improvement effect, although not as good as MBS resin, but when a large amount of lubricant is used. or under conditions where kneading is not possible (hereinafter referred to as high slip conditions), such as when processed at a relatively low temperature, there is almost no impact strength improvement effect. The present inventors conducted extensive studies in view of the current situation, and found that uniformly dispersing a multilayer graft copolymer using an acrylic acid alkyl ester elastomer in PVC greatly contributes to the development of impact strength. The glass transition temperature (hereinafter abbreviated as Tg) of the outer layer is 0°C or less, and the T of the second layer from the outermost layer is
g is 60℃ or more, Tg of the third layer from the outermost layer is 0
When a multilayer graft copolymer having at least three layers and having a temperature below , the gelation of the PVC composition is accelerated and the dispersion state is extremely good. Moreover, such a PVC composition has a wide range of properties, from high shear stress under low slip conditions to low shear stress under high slip conditions as described above. After discovering that this multilayer graft copolymer can exhibit high impact strength under molding conditions and is effective as an impact modifier for thermoplastic resins, we filed a patent application. A product containing a specific amount of a specific copolymer containing a specific unsaturated acid monomer as an essential component acts as a better impact resistance modifier, has good processability, and has excellent surface gloss. The present invention was achieved by discovering that the material also has good weather resistance. That is, the gist of the present invention is that the outermost layer (A) is composed of a monomer selected from the monomer group consisting of an acrylic acid alkyl ester, a methacrylic acid alkyl ester, an aromatic vinyl compound, and a vinyl cyanide compound. The glass transition temperature of the constituent polymer is 0°C or lower, and the glass transition temperature of the polymer forming the second layer (B) from the outermost layer (A) is 60°C.
The above is a multilayer structure consisting of at least three layers (A), (B), and (C) in which the glass transition temperature of the polymer constituting the third layer (C) from the outermost layer (A) is 0°C or lower. To 100 parts by weight of a multilayer graft copolymer (1) having a structure and containing 0 to 5% by weight of a multifunctional crosslinking agent in each layer, 3 to 30% by weight of an unsaturated acid monomer and An impact resistance modifier containing 0.1 to 20 parts by weight of a copolymer (2) obtained by copolymerizing this with 97 to 70% by weight of a vinyl monomer copolymerizable with the present invention. The impact modifier of the present invention is composed of a blend of the multilayer graft copolymer (1) and the copolymer (2), and the multilayer graft copolymer as described above is prepared in at least three stages. It is essential to have a multilayer structure of three or more layers obtained by polymerization, and the fourth layer counting from the outermost layer is a four-layer graft consisting of a polymer whose homopolymer has a Tg of 60°C or more. Even if it is a polymer, it is also a multilayer graft copolymer such as a five-layer graft copolymer in which the fifth layer counting from the outermost layer is a polymer whose homopolymer has a Tg of 0°C or less. Even in such a case, the effect of improving impact resistance is similarly exhibited. The monomer group constituting the multilayer graft copolymer (1), which is a component of the impact modifier of the present invention, is composed of an acrylic acid alkyl ester, a methacrylic acid alkyl ester, an aromatic vinyl compound, and a vinyl cyanide compound. It is something that will be done. The acrylic acid alkyl ester preferably has an alkyl group having 2 to 10 carbon atoms, such as ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, octyl acrylate, and acrylic acid. Examples include 2-ethyl-hexyl acid. The methacrylic acid alkyl ester preferably has an alkyl group having 1 to 4 carbon atoms, such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, and methacrylic acid. Examples include tertiary butyl. Considering compatibility with PVC, methyl methacrylate is particularly preferred. In addition, aromatic vinyl compounds include styrene,
Examples include α-substituted styrene, nuclear-substituted styrene, and derivatives thereof, such as α-methylstyrene, chlorostyrene, vinyltoluene, and the like. Furthermore, examples of vinyl cyanide compounds include acrylonitrile and methacrylonitrile. The outermost layer (A) component constituting the multilayer graft copolymer (1) is selected from the above monomer group so that the outermost layer (A) itself has a Tg of 0° C. or less.
The composition ratio of the monomers in the outermost layer (A) is 60-100% by weight of alkyl acrylate, 0-40% by weight of alkyl methacrylate, 0-40% by weight of aromatic vinyl compound, and 0% by weight of vinyl cyanide compound.
It can be used in a range of ~20% by weight. If the Tg of the outermost layer (A) itself exceeds 0°C, blending the final modifier with PVC and molding will slow the melting of the A layer and provide the desired impact resistance improvement effect. Hard to obtain. The proportion of the outermost layer (A) in the total amount of the multilayer graft copolymer is preferably 10 to 50% by weight, and 10% by weight.
If the ratio is less than
If the proportion exceeds 50% by weight, the molding processability when blended with PVC and molded becomes poor, which is not preferable. Further, the components of the second layer (B) from the outermost layer (A) are selected from the above monomer group so that the Tg of the layer (B) itself is 60° C. or higher. The composition ratio of the monomers in layer (B) is 0 to 100% by weight of alkyl methacrylate and 0 to 100% by weight of aromatic vinyl compound.
The vinyl cyanide compound can be used in a range of 0 to 30% by weight, and the acrylic acid alkyl ester can be used in a range of 0 to 20% by weight. If the Tg of the layer (B) itself is less than 60°C, the multilayer graft polymer is likely to aggregate and the impact resistance will be poor. As a component of layer (B), when blended with PVC, methacrylic acid alkyl ester is preferred, and methyl methacrylate is particularly preferred.
Aromatic vinyl compounds improve the fluidity of PVC during blend molding, but when used in large amounts, compatibility deteriorates and impact resistance decreases. Vinyl cyanide compounds are preferable because they promote gelation when blended with PVC, but if used in large amounts, they tend to become discolored during molding, and their processability deteriorates. The proportion of the layer (B) in the total amount of the multilayer graft copolymer is preferably 20 to 60% by weight, and a proportion of less than 20% by weight is not preferable because molding processability when blended with PVC and molded is poor. Also 60% by weight
If the ratio exceeds the above, the amount of the elastomer component in the entire multilayer graft copolymer decreases, which is not preferable because the effect of improving impact resistance is small. Further, the components of the third layer (C) from the outermost layer (A) are selected from the above monomer group so that the Tg of the layer (C) itself is 0° C. or less. The composition ratio of the monomers in layer (C) is 60 to 100% by weight of alkyl acrylate, 0 to 40% by weight of alkyl methacrylate, 0 to 40% by weight of aromatic vinyl compound, and 0 to 20% by weight of vinyl cyanide compound. It can be used in a range of % by weight. If the Tg of the layer (C) itself exceeds 0° C., the elastic properties of the layer (C) itself will be impaired, making it difficult to obtain the desired effect of improving impact resistance. The proportion of the layer (C) in the total amount of the multilayer graft copolymer is preferably 10 to 60% by weight. If the proportion is less than 10% by weight, the impact resistance improvement effect will be small, and if the proportion exceeds 60% by weight, it will be blended with PVC. This is not preferred because the molding processability when molding is poor. The multifunctional crosslinking agent of the present invention not only facilitates graft crosslinking during the production of the multilayer graft copolymer, but also greatly improves the coagulation properties of the emulsion polymer latex. Examples of the polyfunctional crosslinking agent include divinylbenzene, diacrylic ester or methacrylic ester which is an ester of acrylic acid or methacrylic acid and polyhydric alcohol, or triallyl cyanurate, triallyl isocyanurate, allyl acrylate, allyl methacrylate, diallyl itaconate,
Examples include diallyl phthalate. Note that in consideration of graft cross-reactivity, a crosslinking agent having an allyl group is preferable. The proportion of the polyfunctional crosslinking agent in each layer is 0 to 5.
Weight%. If it is used in an amount exceeding 5% by weight, the elastic properties of the outermost layer (A) or layer (C), which is the elastic body layer, will be impaired too much. In addition, the resin layer (B) is not preferable because its compatibility with PVC deteriorates, and the effect of improving impact resistance in both cases decreases. The proportion of the multifunctional crosslinking agent in each layer is 0.1 to 3% by weight, considering the coagulation properties of the emulsion polymer latex during production of the multilayer graft copolymer and the effect of improving the impact resistance of the resulting multilayer graft copolymer. A range of % is preferred. The multilayer graft copolymer in the present invention is preferably produced by a conventional emulsion polymerization method. Examples of emulsifiers include anionic surfactants such as fatty acid salts, alkyl sulfate ester salts, alkylbenzene sulfonates, alkyl phosphate ester salts, and dialkyl sulfosuccinates, as well as polyoxyethylene alkyl ethers and polyoxyethylene fatty acid esters. , sorbitan fatty acid ester,
Nonionic surfactants such as glycerin fatty acid esters and cationic surfactants such as alkylamine salts can be used. These surfactants can be used alone or in combination. Furthermore, depending on the type of emulsifier, when the pH of the polymerization system becomes alkaline, an appropriate pH regulator may be used to prevent hydrolysis of the acrylic acid alkyl ester. As a polymerization initiator, an inorganic initiator such as a normal persulfate, an organic peroxide, an azo compound, etc. may be used alone, or the above compound and a sulfite,
It can also be used as a redox initiator in combination with bisulfite, thiosulfate, first metal salt, sodium formaldehyde sulfoxylate, etc. Preferred persulfates as initiators include sodium persulfate, potassium persulfate, ammonium persulfate, etc., and organic peroxides include t-butyl hydroperoxide, cumene hydroperoxide, benzoyl peroxide, lauroyl peroxide, etc. be. A chain transfer agent may be used to adjust the molecular weight of the polymer, and alkyl mercaptans having 5 to 20 carbon atoms can be used. Polymerization is carried out at a temperature above the decomposition temperature of the initiator under normal emulsion polymerization conditions, at least the outermost layer (A), the second layer (B) from the outermost layer (A), and the third layer from the outermost layer (A). This can be done so that the layer (C) has the structure as described above. At this time, the polymerization at each stage can be carried out by adding the entire amount of each monomer or a mixture of monomers at once, or while continuously adding the entire amount or a portion thereof.
However, from the viewpoint of stability of polymerization, removal of heat of polymerization reaction, etc., it is preferable to carry out polymerization while adding all or part of it. Copolymer (2), which is another component of the impact modifier of the present invention, contains 3 to 30% by weight of unsaturated acid monomer and 97 to 70% by weight of vinyl monomer copolymerizable therewith. It is obtained by copolymerizing the following, and the preferred method for producing it is emulsion polymerization. Examples of unsaturated acid monomers include acid group-containing monomers such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, cinnamic acid, maleic anhydride, and butenetricarboxylic acid. If the amount of unsaturated acid monomer in the copolymer (2) is less than 3% by weight, the effect of improving impact resistance will be small even when blended with the multilayer graft copolymer (1) as an impact modifier. Undesirable. Also
If it exceeds 30% by weight, the latex obtained by emulsion polymerization will not be stable, and when blended with the latex of the multilayer graft copolymer (1) described above, the stability of the latex will deteriorate and the processability will deteriorate. This is not desirable because it causes Vinyl monomers that can be copolymerized with unsaturated acid monomers include acrylic acid alkyl esters, methacrylic acid alkyl esters, aromatic vinyl compounds, vinyl cyan compounds, etc., and these are from the monomer groups mentioned above. These can be used alone or in combination. When producing the copolymer (2) by emulsion polymerization, use the same emulsifiers, polymerization initiators, chain transfer agents, etc. that can be used in producing the multilayer graft copolymer (1). is possible, and can be copolymerized in the same manner as in the production of multilayer graft copolymer (1). The impact resistance modifier of the present invention is a blend of the multilayer graft copolymer (1) and copolymer (2) obtained as described above, and the blending ratio is 100% by weight of the multilayer graft copolymer (1). copolymer (2)
is 0.1 to 20 parts by weight. If the amount of copolymer (2) is less than 0.1 parts by weight, the effect of improving impact resistance will be small, and if the amount exceeds 20 parts by weight, the latex blended with both copolymers may become unstable. If this modifier is blended with PVC, the processability will decrease, which is not preferable. When carrying out the present invention, the multilayer graft copolymer (1) and the copolymer (2) are blended at the above-mentioned blending ratio in terms of solid content, and this blended latex is usually salted out, Alternatively, it may be coagulated by acid precipitation, washed with water and recovered in powder form, or spray-dried or freeze-dried and recovered in powder form. It can also be recovered by the method described in JP-A-57-187322. Furthermore, a method may be adopted in which the individual powders of the multilayer graft copolymer (1) and the copolymer (2) are blended later. Particularly preferred is the method of obtaining the latex blend described above. By blending the impact resistance modifier of the present invention with various thermoplastic resins, it imparts high impact resistance and good processability to the thermoplastic resin, and also gives molded products good weather resistance. It is. The proportion of the impact modifier of the present invention blended into the thermoplastic resin is 3 to 50 parts by weight per 100 parts by weight of the thermoplastic resin.
Parts by weight. If the blending ratio is less than 3 parts by weight, the effect of improving the impact resistance will be small, and if it exceeds 50 parts by weight, the inherent mechanical properties of the thermoplastic resin will be impaired, so both are not preferred. Examples of the thermoplastic resin include PVC, polycarbonate resin, polyester resin, acrylonitrile-styrene resin, methyl methacrylate-styrene resin, and the like. In addition to polyvinyl chloride, PVC includes
A vinyl chloride copolymer containing 70% by weight or more of vinyl chloride can be used. As the monomer copolymerized with vinyl chloride, ethylene, propylene, vinyl bromide, vinylidene chloride, vinyl acetate, acrylic ester, methacrylic ester, etc. are used. The impact modifier of the present invention and the thermoplastic resin are preferably blended in powder form using, for example, a ribbon blender, a Henschel mixer, etc., and are blended using a known kneading machine, such as a mixing roll, a Banbury mixer, an extruder, or an injection molding machine. It is molded using a molding machine or the like. In addition, when compounding, known stabilizers, plasticizers, lubricants, colorants, etc. may be added as necessary. The impact resistance modifier of the present invention contains a specific copolymer containing a specific unsaturated acid monomer as an essential component, so it has better effects than conventional impact resistance modifiers. play. The present invention will be specifically explained below using Examples.
In the examples, "parts" and "%" mean "parts by weight" and "% by weight," respectively. Further, the Tg of the copolymer was determined from the Fox equation. Example 1 (a) Production of multilayer graft copolymer (1) 190 parts of ion-exchanged water purged with nitrogen was placed in a reaction vessel, 1.2 parts of semi-hardened tallow fatty acid soap and 0.6 parts of potassium persulfate were dissolved, and the mixture was heated to 70°C. While holding
n-butyl acrylate as layer (C) component
A mixture consisting of 19.85 parts of triallyl isocyanurate and 0.15 parts of triallyl isocyanurate was added dropwise over 1 hour. After the dropwise addition was completed, the temperature was kept at the same temperature for 1 hour to complete the polymerization. The polymerization rate was 99.0%. A mixture consisting of 49.7 parts of methyl methacrylate and 0.3 parts of triallyl isocyanurate as the layer (B) component was added dropwise to this polymer latex over 2 hours while maintaining the temperature at 70°C, and after the addition was completed, the mixture was maintained for 1 hour. Polymerization was completed. The polymerization rate was 99.5%. Add 0.2 of potassium persulfate to the resulting polymer latex.
part was dissolved in 10 parts of water, and a mixture of 29.8 parts of n-butyl acrylate and 0.2 parts of triallyl isocyanurate was added as a layer (A) component over 90 minutes.
Drop while keeping the temperature at 70℃, and after dropping 1
The polymerization rate was
99.3%, and the average particle size of the obtained graft copolymer was 0.25μ. (b) Production of copolymer (2) Pour 200 parts of ion-exchanged water purged with nitrogen into a reaction vessel, dissolve 3 parts of semi-hardened tallow fatty acid soap, 0.6 part of potassium persulfate, 90 parts of ethyl acrylate,
A mixture consisting of 10 parts of methacrylic acid was brought to a temperature of 70°C.
The mixture was added dropwise over a period of 4 hours while maintaining the same temperature, and was maintained for 3 hours to polymerize to obtain a copolymer (2) latex. The polymerization rate was 99.9% or more. (c) Latex blend and polymer recovery Multilayer graft copolymer (1) Latex 100
(as a solid content) was placed in a reaction vessel equipped with a stirrer, and 2 parts (as a solid content) of copolymer (2) latex was added over 10 seconds with stirring, followed by stirring for 15 minutes. The obtained latex mixture was added to an aqueous sulfuric acid solution, solidified by acid precipitation, washed, dehydrated, and dried, and the polymer was recovered in powder form (Example 1-1). Table 1 also shows results in which the amount of copolymer (2) added was varied. (d) Production of blended composition with vinyl chloride resin 100 parts of vinyl chloride resin with an average degree of polymerization of 1100, 1.0 part of tribasic lead sulfate, and 0.3 part of dibasic stearic acid.
parts, lead stearate 2.4 parts, stearic acid 0.3 parts
1 part, 0.3 parts of polyethylene wax, and 10 parts of each of the modifiers obtained in (c) above were added, and the mixture was heated to 115° C. in a Henschel mixer to obtain a homogeneous mixture. 30mm of this vinyl chloride resin composition
Square bar molding was performed using a single screw extruder under the following conditions.

【表】 成形品の衝撃強度は2mm深さのUノツチを付け
た試片を用いる以外はASTM D−256に従い測
定した。これらの測定結果を第1表に示した。
[Table] The impact strength of the molded product was measured in accordance with ASTM D-256, except that a specimen with a 2 mm deep U-notch was used. The results of these measurements are shown in Table 1.

【表】【table】

【表】 以上の結果から共重合体(2)を特定量ブレン
ドすることで、耐衝撃性改良効果が向上すること
がわかる。 実施例 2 実施例1の(a)と同様に操作し、ただし層(C)
の成分をアクリル酸2エチル−ヘキシル39.75部
とメタクリル酸アリル0.25部とし、層(B)の成
分をメタクリル酸メチル27.9部、スチレン11.9
部、メタクリル酸アリル0.2部とし、層(A)の
成分をアクリル酸2エチル−ヘキシル19.85部と
メタクリル酸アリル0.15部として多層グラフト共
重合体(1)ラテツクスを得た。この多層グラフ
ト共重合体ラテツクス100部(固形分として)に
実施例1の(b)で得られた共重合体(2)ラテツク
スを4部(固形分として)ブレンドし、実施例1
の(c)と同様に操作してポリマーを回収した。この
ポリマーを実施例1の(d)と同様に操作し、塩化ビ
ニル樹脂組成物を得た。この組成物の耐衝撃性を
実施例1の(d)と同様の方法で測定した結果を第2
表に示す。同様に層(C)成分、層(B)成分お
よび層(A)成分の単量体および架橋剤の種類な
らびに使用部数を第2表に示すように変更する以
外は実施例1と全く同じように操作して得た多層
グラフト共重合体(1)ラテツクス100部(固形
分として)に実施例1の(b)で得られた共重合体
(2)ラテツクスを夫々4部(固形分として)ブ
レンドし、実施例1の(c),(d)と同様に操作して得
られた塩化ビニル樹脂組成物の耐衝撃性を同じ評
価法により測定した結果を第2表に併せて示す。
[Table] From the above results, it can be seen that the effect of improving impact resistance is improved by blending a specific amount of copolymer (2). Example 2 Proceed as in Example 1 (a), except that layer (C)
The components of layer (B) are 39.75 parts of 2-ethyl-hexyl acrylate and 0.25 parts of allyl methacrylate, and the components of layer (B) are 27.9 parts of methyl methacrylate and 11.9 parts of styrene.
and 0.2 parts of allyl methacrylate, and the components of layer (A) were 19.85 parts of 2-ethyl-hexyl acrylate and 0.15 parts of allyl methacrylate to obtain a multilayer graft copolymer (1) latex. 100 parts (as solid content) of this multilayer graft copolymer latex were blended with 4 parts (as solid content) of the copolymer (2) latex obtained in (b) of Example 1.
The polymer was recovered in the same manner as in (c). This polymer was operated in the same manner as in Example 1 (d) to obtain a vinyl chloride resin composition. The impact resistance of this composition was measured in the same manner as in Example 1 (d).
Shown in the table. Similarly, the process is exactly the same as Example 1, except that the types and numbers of monomers and crosslinking agents used in the layer (C) component, layer (B) component, and layer (A) component are changed as shown in Table 2. To 100 parts (as solid content) of the multilayer graft copolymer (1) latex obtained in Example 1 (b), 4 parts (as solid content) of the copolymer (2) latex obtained in Example 1 (b) were added. Table 2 also shows the results of measuring the impact resistance of the vinyl chloride resin compositions obtained by blending and operating in the same manner as in Example 1 (c) and (d) using the same evaluation method.

【表】 第2表中の略号は次の通りであり、以後の場合
も同じである。 2EHA:2エチルヘキシルアクリレート MMA:メタクリル酸メチル St:スチレン AN:アクリロニトリル AMA:メタクリル酸アリル 比較例3,4からわかるように、層成分(C)
あるいは層成分(A)のTgの高いものは耐衝撃
性改良効果は小さいことがわかる。また比較例
4′より層成分(B)のTgが低いものは粉体性状
が悪化することがわかる。 実施例 3 共重合体(2)ラテツクスとしてアクリル酸ブ
チル85部、アクリル酸15部からなる混合物を実施
例1の(b)と同様に操作して重合して共重合体
(2)ラテツクスを得た。この共重合体(2)ラ
テツクス3部(固形分として)を実施例1の(a)で
得られた多層グラフト共重合体(1)ラテツクス
100部(固形分として)にブレンドし、実施例1
の(c),(d)と同様に操作して得られた塩化ビニル樹
脂組成物の耐衝撃性を第3表に示す。なお共重合
体(2)ラテツクスとして、組成および添加量を
変更したものの評価結果を第3表に併せて示す。
[Table] The abbreviations in Table 2 are as follows, and the same applies hereafter. 2EHA: 2-ethylhexyl acrylate MMA: Methyl methacrylate St: Styrene AN: Acrylonitrile AMA: Allyl methacrylate As can be seen from Comparative Examples 3 and 4, layer component (C)
Alternatively, it can be seen that the effect of improving impact resistance is small when the layer component (A) has a high Tg. Also a comparative example
It can be seen that when the Tg of the layer component (B) is lower than that of 4', the powder properties deteriorate. Example 3 As copolymer (2) latex, a mixture consisting of 85 parts of butyl acrylate and 15 parts of acrylic acid was polymerized in the same manner as in Example 1 (b) to obtain copolymer (2) latex. Ta. 3 parts (solid content) of this copolymer (2) latex was mixed with the multilayer graft copolymer (1) latex obtained in Example 1 (a).
Example 1
Table 3 shows the impact resistance of the vinyl chloride resin composition obtained in the same manner as (c) and (d). Table 3 also shows the evaluation results of copolymer (2) latexes with different compositions and amounts added.

【表】 第3表中の略号は次の通りであり、以後の場合
も同じである。 BA:アクリル酸n−ブチル AA:アクリル酸 IA:イタコン酸 EA:アクリル酸エチル MA:アクリル酸メチル MAA:メタクリル酸 CA:クロトン酸 以上の結果から共重合体(2)ラテツクス中の
不飽和酸の少ないものは耐衝撃性改良効果が少な
く、また多いものはブレンド後のラテツクス安定
性が悪化することがわかる。 実施例 4 実施例1の(a)において、乳化剤をラウロイルベ
ンゼンスルフオン酸ナトリウム、触媒をナトリウ
ムホルムアルデヒドスルホキシレートを用い、層
(C)の成分としてアクリル酸n−ブチル29.8部
と、シアヌル酸トリアリル0.2部、t−ブチルハ
イドロパーオキシド0.15部、層(B)の成分とし
てメタクリル酸メチル36.8部、アクリロニトリル
3部、シアヌル酸トリアリル0.2部、t−ブチル
ハイドロパ−オキシド0.15部、層(C)の成分と
してアクリル酸n−オクチル29.8部、シアヌル酸
トリアリル0.2部、t−ブチルハイドロパ−オシ
キド0.15部とする以外は実施例1−1)と同様に
操作して多層グラフト共重合体(1)ラテツクス
を得た。 この多層グラフト共重合体(1)ラテツクス
100部(固形分として)に実施例1の(b)の共重合
体(2)ラテツクス2部(固形分として)をブレ
ンドし、実施例1の(c)と同様に操作し、ポリマー
を回収した。このポリマーを実施例1の(d)と同様
に操作し、塩化ビニル樹脂組成物を得た。この組
成物の耐衝撃性を実施例1の(d)と同様の方法で測
定した結果を第4表に示す。なお各層の成分中に
おける架橋剤量と単量体のみの比率を変更したも
のを夫々第4表に併せて示す。
[Table] The abbreviations in Table 3 are as follows, and the same applies hereafter. BA: n-butyl acrylate AA: acrylic acid IA: itaconic acid EA: ethyl acrylate MA: methyl acrylate MAA: methacrylic acid CA: crotonic acid From the above results, the amount of unsaturated acids in copolymer (2) latex It can be seen that when the amount is too low, the effect of improving impact resistance is small, and when the amount is too high, the stability of the latex after blending deteriorates. Example 4 In Example 1 (a), sodium lauroylbenzenesulfonate was used as the emulsifier, sodium formaldehyde sulfoxylate was used as the catalyst, and 29.8 parts of n-butyl acrylate and triallyl cyanurate were used as the components of layer (C). 0.2 parts, 0.15 parts of t-butyl hydroperoxide, 36.8 parts of methyl methacrylate, 3 parts of acrylonitrile, 0.2 parts of triallyl cyanurate, 0.15 parts of t-butyl hydroperoxide, as components of layer (C). A multilayer graft copolymer (1) latex was prepared in the same manner as in Example 1-1) except that the ingredients were 29.8 parts of n-octyl acrylate, 0.2 parts of triallyl cyanurate, and 0.15 parts of t-butyl hydroperoxide. I got it. This multilayer graft copolymer (1) latex
Blend 100 parts (as solid content) of copolymer (2) latex of Example 1 (b) with 2 parts (as solid content), operate in the same manner as Example 1 (c), and recover the polymer. did. This polymer was operated in the same manner as in Example 1 (d) to obtain a vinyl chloride resin composition. The impact resistance of this composition was measured in the same manner as in Example 1 (d), and the results are shown in Table 4. In addition, Table 4 also shows the changes in the amount of crosslinking agent and the ratio of only monomer in the components of each layer.

【表】 第4表中の略号は次の通りである。 TAC:シアヌル酸トリアリル OA:アクリル酸n−オクチル 第4表に示すように、各成分中の架橋剤量が多
いものは、耐衝撃性改良効果は少ないことがわか
る。 実施例 5 市販のPVC改質剤であるメタクリル酸メチル
−ブタジエン−スチレン樹脂(MBS樹脂)、塩素
化ポリエチレン(CPE)および実施例1−1)
で得られた改質剤を実施例1の(d)と同様に操作し
てPVC組成物を得た。これらの耐候性を第5表
に示す。耐候性はウエザオメーター(東洋理化製
WE−型)により加速暴露処理した後のアイゾ
ツト衝撃強度および着色程度で示す。
[Table] The abbreviations in Table 4 are as follows. TAC: Triallyl cyanurate OA: n-octyl acrylate As shown in Table 4, it can be seen that the impact resistance improving effect is small when the amount of crosslinking agent in each component is large. Example 5 Commercially available PVC modifiers, methyl methacrylate-butadiene-styrene resin (MBS resin), chlorinated polyethylene (CPE), and Example 1-1)
The modifier obtained in the above was operated in the same manner as in Example 1 (d) to obtain a PVC composition. Their weather resistance is shown in Table 5. Weather resistance is measured by Weatherometer (manufactured by Toyo Rika)
It is indicated by the Izot impact strength and degree of coloring after accelerated exposure treatment using WE-type).

【表】 なお第5表中の着色程度の表示は次の通りであ
る。 ○:殆んど着色せず良好である。 △:やや着色しあまり好ましくない。 ×:着色して不良である。 第5表の結果から本発明に係る改質剤は市販の
MBS,CPEに比較して耐候性(初期インパク
ト保持率、帯色性)が非常に良好であることがわ
かる。 実施例 6 実施例1の(a)〜(c)で得られた改質剤20部、ポリ
カーボネート樹脂80部、酸化防止剤0.2部、ステ
アリン酸カルシウム0.1部をヘンシエルミキサー
にて混合し、シリンダー温度240℃にセツトされ
た30mmφ押出機でペレツト化した。乾燥後、射出
成形機により試験片を作製し、実施例1の(d)と同
じ評価法により衝撃強度を測定した結果を第6表
に示す。なお、共重合体(2)の添加量を種々変
更したものの結果を第6表に併せて示す。
[Table] The degree of coloring in Table 5 is as follows. ◯: Almost no coloring, good quality. Δ: Slightly colored, not very desirable. ×: Colored and defective. From the results in Table 5, the modifier according to the present invention is commercially available.
It can be seen that the weather resistance (initial impact retention rate, color bandability) is very good compared to MBS and CPE. Example 6 20 parts of the modifier obtained in (a) to (c) of Example 1, 80 parts of polycarbonate resin, 0.2 part of antioxidant, and 0.1 part of calcium stearate were mixed in a Henschel mixer, and the mixture was heated to the cylinder temperature. It was pelletized using a 30 mmφ extruder set at 240°C. After drying, a test piece was prepared using an injection molding machine, and the impact strength was measured using the same evaluation method as in Example 1 (d). The results are shown in Table 6. Table 6 also shows the results of various changes in the amount of copolymer (2) added.

【表】 以上の様に、本発明に係る改質剤は、ポリカー
ボネート樹脂に対し、良好な耐衝撃性改良効果を
示す。
[Table] As described above, the modifier according to the present invention exhibits a good impact resistance improving effect on polycarbonate resin.

Claims (1)

【特許請求の範囲】 1 アクリル酸アルキルエステル、メタクリル酸
アルキルエステル、芳香族ビニル化合物及びビニ
ルシアン化合物からなる単量体群から選ばれた単
量体から構成され、最外層(A)を構成する重合
体のガラス転移温度が0℃以下、最外層(A)か
ら2番目の層(B)を構成する重合体のガラス転
移温度が60℃以上、最外層(A)から3番目の層
(C)を構成する重合体のガラス転移温度が0℃
以下である層(A),(B)及び(C)の少なくと
も三層構造からなる多層構造を有し、且つ各層に
おいて各層に対して多官能性架橋剤0〜5重量%
を含有する多層グラフト共重合体(1)100重量
部に、不飽和酸単量体3〜30重量%及びアクリル
酸アルキルエステル、メタクリル酸アルキルエス
テル、芳香族ビニル化合物、ビニルシアン化合物
から選ばれる少なくとも一種のビニル単量体97〜
70重量%を共重合して得られる共重合体(2)
0.1〜20重量部を配合してなる耐衝撃性改質剤。 2 多層グラフト共重合体(1)が、最外層
(A)が、単量体群の中から層(A)を構成する
重合体のガラス転移温度が0℃以下となるように
選ばれた少なくとも一種の単量体95〜100重量%
と多官能性架橋剤0〜5重量%とからなる重合体
で、且つ多層グラフト共重合体中に占める割合が
10〜50重量%、最外層(A)から2番目の層
(B)が、単量体群の中から層(B)を構成する
重合体のガラス転移温度が60℃以上となるように
選ばれた少なくとも一種の単量体95〜100重量%
と多官能性架橋剤0〜5重量%とからなる重合体
で、且つ多層グラフト共重合体中に占める割合が
20〜60重量%、最外層(A)から3番目の層
(C)が、単量体群の中から層(C)を構成する
重合体のガラス転移温度が0℃以下となるように
選ばれた少なくとも一種の単量体95〜100重量%
と多官能性架橋剤0〜5重量%とからなる重合体
で、且つ多層グラフト共重合体中に占める割合が
10〜60重量%なる構造であることを特徴とする特
許請求の範囲第1項記載の耐衝撃性改質剤。
[Scope of Claims] 1 Consists of a monomer selected from the monomer group consisting of an acrylic acid alkyl ester, a methacrylic acid alkyl ester, an aromatic vinyl compound, and a vinyl cyanide compound, and constitutes the outermost layer (A) The glass transition temperature of the polymer is 0°C or lower, the glass transition temperature of the polymer constituting the second layer (B) from the outermost layer (A) is 60°C or higher, and the third layer (C) from the outermost layer (A) is ) has a glass transition temperature of 0°C.
It has a multilayer structure consisting of at least three layers of layers (A), (B) and (C) as follows, and in each layer, 0 to 5% by weight of a polyfunctional crosslinking agent with respect to each layer.
100 parts by weight of the multilayer graft copolymer (1) containing 3 to 30% by weight of an unsaturated acid monomer and at least one selected from acrylic acid alkyl esters, methacrylic acid alkyl esters, aromatic vinyl compounds, and vinyl cyanide compounds. A type of vinyl monomer 97~
Copolymer (2) obtained by copolymerizing 70% by weight
An impact modifier containing 0.1 to 20 parts by weight. 2 The multilayer graft copolymer (1) has at least one layer in which the outermost layer (A) is selected from the monomer group so that the glass transition temperature of the polymer constituting the layer (A) is 0°C or less. One kind of monomer 95-100% by weight
and 0 to 5% by weight of a multifunctional crosslinking agent, and the proportion in the multilayer graft copolymer is
10 to 50% by weight, the second layer (B) from the outermost layer (A) is selected from the monomer group so that the glass transition temperature of the polymer constituting layer (B) is 60°C or higher. 95-100% by weight of at least one monomer
and 0 to 5% by weight of a multifunctional crosslinking agent, and the proportion in the multilayer graft copolymer is
20 to 60% by weight, the third layer (C) from the outermost layer (A) is selected from the monomer group so that the glass transition temperature of the polymer constituting layer (C) is 0°C or less. 95-100% by weight of at least one monomer
and 0 to 5% by weight of a multifunctional crosslinking agent, and the proportion in the multilayer graft copolymer is
The impact resistance modifier according to claim 1, characterized in that the impact resistance modifier has a structure of 10 to 60% by weight.
JP58159350A 1983-08-31 1983-08-31 Impact resistance modifier and thermoplastic resin composition containing same Granted JPS6051737A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP58159350A JPS6051737A (en) 1983-08-31 1983-08-31 Impact resistance modifier and thermoplastic resin composition containing same
IE2188/84A IE57758B1 (en) 1983-08-31 1984-08-27 Impact modifier and thermoplastic resin compositions using the same
CA000461984A CA1235544A (en) 1983-08-31 1984-08-28 Impact modifier and thermoplastic resin compositions using the same
US06/645,358 US4564653A (en) 1983-08-31 1984-08-29 Impact modifier and thermoplastic resin composition using the same
EP84110350A EP0136552B1 (en) 1983-08-31 1984-08-30 Impact modifier and thermoplastic resin compositions using the same
DE8484110350T DE3480347D1 (en) 1983-08-31 1984-08-30 Impact modifier and thermoplastic resin compositions using the same
ES535521A ES8607346A1 (en) 1983-08-31 1984-08-30 Impact modifier and thermoplastic resin compositions using the same.
PT79160A PT79160B (en) 1983-08-31 1984-08-30 Impact modifier and thermoplastic resin compositions using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58159350A JPS6051737A (en) 1983-08-31 1983-08-31 Impact resistance modifier and thermoplastic resin composition containing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3338734A Division JPH0745609B2 (en) 1991-12-20 1991-12-20 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS6051737A JPS6051737A (en) 1985-03-23
JPH0436183B2 true JPH0436183B2 (en) 1992-06-15

Family

ID=15691922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58159350A Granted JPS6051737A (en) 1983-08-31 1983-08-31 Impact resistance modifier and thermoplastic resin composition containing same

Country Status (1)

Country Link
JP (1) JPS6051737A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997854A4 (en) * 2006-03-16 2010-04-14 Kaneka Corp Thermoplastic resin composition

Also Published As

Publication number Publication date
JPS6051737A (en) 1985-03-23

Similar Documents

Publication Publication Date Title
EP0136552B1 (en) Impact modifier and thermoplastic resin compositions using the same
US5296546A (en) Weather resistant impact modifiers for thermoplastic resins
JPH0576500B2 (en)
JPS61141746A (en) Vinyl chloride resin composition having excellent resistance to weather and impact
IE842149L (en) Thermoplastic resin composition
JPH02269755A (en) Vinyl chloride resin composition
JPH0535173B2 (en)
JPH0370747B2 (en)
JPS61133257A (en) Vinyl chloride resin composition
JPH0442420B2 (en)
JPH0436183B2 (en)
JPH06122827A (en) Thermoplastic resin composition
JPS6032849A (en) Agent for improving impact resistance of thermoplastic resin, and thermoplastic resin containing the same
JPH0745609B2 (en) Thermoplastic resin composition
JPH0742341B2 (en) Thermoplastic resin composition
JPS60240751A (en) Polymer alloy of vinyl chloride resin
JPH0436184B2 (en)
JPH06192534A (en) Thermoplastic resin composition
JPH0361697B2 (en)
JP3154893B2 (en) Thermoplastic acrylic resin composition
JPH06240086A (en) Production of vinyl chloride resin composition
JPH06192536A (en) Thermoplastic resin composition
JP2000319516A (en) Auxiliary for processing resin and thermoplastic resin composition using the same
JPS6114246A (en) Polymer alloy of vinyl chloride resin
JPH0340741B2 (en)