JPH04361815A - Abnormality diagnosing device for rolling-down device in rolling stages - Google Patents

Abnormality diagnosing device for rolling-down device in rolling stages

Info

Publication number
JPH04361815A
JPH04361815A JP3134649A JP13464991A JPH04361815A JP H04361815 A JPH04361815 A JP H04361815A JP 3134649 A JP3134649 A JP 3134649A JP 13464991 A JP13464991 A JP 13464991A JP H04361815 A JPH04361815 A JP H04361815A
Authority
JP
Japan
Prior art keywords
rolling
normal
abnormal
transfer function
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3134649A
Other languages
Japanese (ja)
Other versions
JP2564710B2 (en
Inventor
Toru Akashi
明 石  透
Tatsuro Hirata
平 田  達 朗
Takayori Naganuma
永 沼  孝 順
Hiroshi Takada
高 田  寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3134649A priority Critical patent/JP2564710B2/en
Publication of JPH04361815A publication Critical patent/JPH04361815A/en
Application granted granted Critical
Publication of JP2564710B2 publication Critical patent/JP2564710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To automatically precisely diagnose faults of a rolling-down controller without attaching a device to the rolling down controller. CONSTITUTION:A transfer function having time series terms in input signals and output signals of the rolling-down controller is identified by a neural net, the identified transfer function is compared by the pattern with a transfer function stored in advance, intensities of normality and abnormality are operated by the neural net from similarity degree between the patterns and the controller is decided by the operation value whether it is normal or abnormal. Since the input and output signals are sampled and the normality and abnormality are diagnosed based on this sampling, a special detecting device need not be added. Even when a rolling-down condition is changed by time series, an exact diagnosis is realized by identifying a time series transfer function through a neural net.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、圧延工程等で用いられ
る圧下制御装置の各部位ごとの一連の制御信号により伝
達関数の同定を行い、その伝達関数から該圧下制御装置
の異常を診断するシステムに関するものである。
[Industrial Application Field] The present invention identifies a transfer function using a series of control signals for each part of a reduction control device used in a rolling process, etc., and diagnoses an abnormality in the reduction control device from the transfer function. It's about systems.

【0002】0002

【従来の技術】圧延機の圧下制御装置の異常を早期に正
確に検出して、その異常部位を交換する事で圧延機を安
定的に稼働させる事が圧延製品の板厚精度向上に必要な
ことである。このため、従来は、圧下制御装置の各部位
の制御信号をペンレコ−ダやオシロスコ−プに出力し、
オペレ−タがそれを見ながら経験に基づいて圧下制御装
置の異常診断を行っていた。しかし、この様な手法では
、診断するオペレ−タにより個人差があり、圧延製品の
板厚精度を高位に安定して維持することが出来ない。
[Prior Art] It is necessary to quickly and accurately detect abnormalities in the reduction control device of a rolling mill and replace the abnormal parts to ensure stable operation of the rolling mill in order to improve the thickness accuracy of rolled products. That's true. For this reason, conventionally, control signals for each part of the reduction control device were output to a pen recorder or oscilloscope.
The operator was looking at this and diagnosing an abnormality in the reduction control device based on his experience. However, with this method, there are individual differences depending on the operator making the diagnosis, and it is not possible to stably maintain a high level of accuracy in the thickness of the rolled product.

【0003】この対策として、自動的に圧下制御装置の
異常を検出する方法として、例えば、特開昭61−27
110号公報に提示のように、圧下装置の各部位の入力
信号と出力信号から伝達関数を同定し、設定値に対する
同定した伝達関数の偏差(変化量)を求め、この変化量
が基準値を越えた場合には、その部位に異常があると診
断する手法がある。
[0003] As a countermeasure to this problem, a method for automatically detecting an abnormality in the reduction control device is disclosed in, for example, Japanese Patent Laid-Open No. 61-27.
As disclosed in Publication No. 110, the transfer function is identified from the input signal and output signal of each part of the screw down device, the deviation (amount of change) of the identified transfer function with respect to the set value is determined, and this amount of change is determined from the reference value. If it exceeds the limit, there is a method to diagnose that there is an abnormality in that area.

【0004】0004

【発明が解決しようとする課題】しかし、圧延機で圧延
する鋼板の圧下量,温度等々の圧延条件により、圧延ロ
−ルに働く圧延反力が異なる結果、圧下制御装置が正常
な状態にあるにも係わらず、同定した伝達関数の値が変
動することから、同定した伝達関数の値と設定値との差
(変化量)が大きくなって基準値を越え、圧下制御装置
が異常であると診断する場合がある。この為、基準値の
設定にあたっては、圧下制御装置における種々の異常状
態の際の伝達関数の値、及び圧下制御装置における種々
の圧延条件下での伝達関数の値を求めておき、これを基
にして前記設定値及び基準値を決定しなければならず、
非常に煩雑である。
[Problem to be Solved by the Invention] However, the rolling reaction force acting on the rolling rolls varies depending on the rolling conditions such as the amount of reduction and temperature of the steel plate rolled by the rolling mill, and as a result, the reduction control device is not in a normal state. Nevertheless, since the value of the identified transfer function fluctuates, the difference (amount of change) between the identified transfer function value and the set value becomes large and exceeds the reference value, indicating that the reduction control device is abnormal. May be diagnosed. Therefore, in setting the reference value, the values of the transfer function under various abnormal conditions in the reduction control device and the values of the transfer function under various rolling conditions in the reduction control device are determined, and these are used as a basis. The set value and reference value shall be determined by
It's very complicated.

【0005】本発明は、ニュ−ラルネットワ−クを用い
て精度良く、しかも、簡単な装置で自動的に圧延ロ−ル
の圧下制御装置の異常を診断することを課題とする。
An object of the present invention is to use a neural network to accurately and automatically diagnose abnormalities in a reduction control device for rolling rolls with a simple device.

【0006】[0006]

【課題を解決するための手段】本発明は前記課題を解決
するためになされたものであり、その手段(1)は、圧
延機の圧延ロ−ルの圧下位置調整を行う圧下制御装置の
異常診断装置において、前記圧延ロ−ルの圧下制御装置
の制御信号を所定周期毎に入力して時系列項を有する伝
達関数を同定する伝達関数同定部と、予め伝達関数の時
系列項と圧下制御装置の正常強度値及び異常強度値の関
係を学習記憶し、この学習記憶情報と前記伝達関数同定
部で同定した伝達関数の時系列項をパタ−ン比較して正
常強度値及び異常強度値を演算する正常・異常強度演算
ニュ−ラルネット部と、正常・異常強度演算ニュ−ラル
ネット部で演算した正常強度値と異常強度値により前記
圧下制御装置の正常・異常を判定する正常・異常判定部
と、を有するものである。更に、手段(2)は、圧延機
の圧延ロ−ルの圧下位置調整を行う圧下制御装置の異常
診断装置において、前記圧延ロ−ルのドライブサイドと
ワ−クサイドに各々独立して設けた圧下制御装置の制御
信号を所定周期毎に入力して時系列項を有する伝達関数
を各々同定する伝達関数同定部と、予め前記両伝達関数
の時系列項と両圧下制御装置の正常強度値及び異常強度
値の関係を学習記憶し、この学習記憶情報と前記伝達関
数同定部で同定した両伝達関数の時系列項をパタ−ン比
較して前記両サイドの圧下制御装置の正常強度値及び異
常強度値を各々演算する正常・異常強度演算ニュ−ラル
ネット部と、正常・異常強度演算ニュ−ラルネット部で
演算した前記各正常強度値と異常強度値により前記圧下
制御装置の正常・異常を各々判定する正常・異常判定部
と、を有するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and the means (1) is to solve an abnormality in a rolling control device that adjusts the rolling position of a rolling roll of a rolling mill. In the diagnostic device, a transfer function identification unit inputs a control signal of the roll reduction control device of the rolling roll at predetermined intervals to identify a transfer function having a time series term; The relationship between the normal intensity value and the abnormal intensity value of the device is learned and memorized, and the normal intensity value and the abnormal intensity value are determined by comparing the pattern of this learning memory information and the time series term of the transfer function identified by the transfer function identification section. a normal/abnormal strength calculation neural net section for calculating, and a normal/abnormality determination section for determining whether the reduction control device is normal or abnormal based on the normal strength values and abnormal strength values calculated by the normal/abnormal strength calculation neural net section. . Further, the means (2) is an abnormality diagnosis device for a rolling control device that adjusts the rolling position of a rolling roll of a rolling mill, wherein the rolling mill is provided with rolling rolls independently provided on a drive side and a work side of the rolling roll. a transfer function identification unit that inputs control signals of the control device at predetermined intervals and identifies transfer functions each having a time series term; The relationship between the intensity values is learned and memorized, and this learned and memorized information is compared with the time series terms of both transfer functions identified by the transfer function identification section to determine the normal intensity value and abnormal intensity of the reduction control device on both sides. A normal/abnormal strength calculation neural net unit calculates the values, and a normal/abnormal strength value is calculated by the normal/abnormal strength calculation neural net unit to determine whether the reduction control device is normal or abnormal, respectively. It has a normality/abnormality determination section.

【0007】[0007]

【作用】本発明の作用を図1〜図4を参照して説明する
。本発明者等は、伝達関数から精度良く圧下制御装置の
正常・異常を診断するため種々検討した結果、圧延ロ−
ル(ワ−クロ−ルWRとバックアップロ−ルBR)で鋼
板Sを圧延した際、圧延ロ−ルに働く反力は圧延する鋼
板Sの温度,材質(成分)等により異なるので、圧延ロ
−ルの間隙を調整する圧下制御装置(油圧圧下装置1W
,1D,AGC制御部2W,2D,サ−ボ機構制御部3
W,3D)の動作時、この入,出力信号から同定した伝
達関数の値の大きさが異なることがあるが、図4に示す
ように、次の(1)式の定達関数Gの時系列項g1〜g
10で形成する、図4に示す時系列総和パタ−ンは変化
せず、圧下制御装置に異常がある場合にみに伝達関数の
該パタ−ンが変化することが判明した。
[Operation] The operation of the present invention will be explained with reference to FIGS. 1 to 4. The present inventors conducted various studies to accurately diagnose the normality or abnormality of the rolling reduction control device from the transfer function.
When a steel plate S is rolled by a rolling roll (work roll WR and backup roll BR), the reaction force acting on the rolling roll varies depending on the temperature, material (component), etc. of the steel plate S being rolled. - A lowering control device that adjusts the gap between the wheels (hydraulic lowering device 1W)
, 1D, AGC control section 2W, 2D, servo mechanism control section 3
When the transfer function (W, 3D) is operated, the magnitude of the transfer function identified from the input and output signals may differ, but as shown in Figure 4, when the steady-state function G of the following equation (1) Series terms g1 to g
It has been found that the time-series summation pattern shown in FIG. 4 formed in step 10 does not change, and the pattern of the transfer function changes only when there is an abnormality in the reduction control device.

【0008】                  G=(g1,g2
,g3,・・・g9,g10)         ・・
・(1) このため、伝達関数のパタ−ン判定が可能なように時系
列項を有する伝達関数を伝達関数同定部である伝達関数
同定用階層型ニュ−ラルネット6で同定し、この伝達関
数の時系列項g1〜g10を基にして正常・異常強度演
算ニュ−ラルネット部8で予め設定記憶している正常,
異常時に於ける時系列項とパタ−ン比較する。  更に
、この正常,異常強度演算ニュ−ラルネット部8に予め
設定記憶する正常又は異常状態における伝達関数の時系
列項が形成する時系列総和パタ−ンは圧下制御装置の全
ての正常,異常ケ−スのパタ−ンについて設定出来るも
のではない(例えば数年に1回程度しか発生しない故障
の場合もある)ことから、正常・異常強度演算ニュ−ラ
ルネット部8において、前記のように学習記憶している
正常又は異常時における伝達関数の時系列項が形成する
時系列総和パタ−ンと比較して、この学習記憶パタ−ン
と伝達関数同定用階層型ニュ−ラルネット6で同定した
伝達関数の時系列項が形成する前記パタ−ンの相似程度
を正常強度,異常強度で表わし、その値を演算する。そ
して、この正常強度値と異常強度値を比較して正常・異
常判定部9により圧下制御装置の正常・異常を判定する
。 これにより、代表的な正常,異常のパタ−ンを数例程度
学習記憶しておけば、数年に一度程度発生する故障でも
精度良く正常,異常の診断が可能となる。
G=(g1, g2
,g3,...g9,g10)...
・(1) Therefore, in order to make it possible to determine the pattern of the transfer function, a transfer function having a time series term is identified by the transfer function identification hierarchical neural net 6, which is the transfer function identification unit, and this transfer function normality/abnormality intensity calculation neural network section 8 presets and stores the normality and abnormality intensity based on the time series terms g1 to g10 of
Compare the time series terms and patterns during abnormal times. Furthermore, the time-series summation pattern formed by the time-series terms of the transfer function in the normal or abnormal state, which is preset and stored in the normal/abnormal intensity calculation neural network unit 8, can be used for all normal and abnormal cases of the reduction control device. Since it is not possible to set the pattern of the fault (for example, there are cases where a failure occurs only once every few years), the normal/abnormal strength calculation neural network section 8 learns and memorizes it as described above. The learning memory pattern and the transfer function identified by the hierarchical neural network for transfer function identification 6 are compared with the time series summation pattern formed by the time series terms of the transfer function during normal or abnormal times. The degree of similarity of the pattern formed by the time series terms is expressed as normal intensity and abnormal intensity, and the values are calculated. Then, by comparing the normal strength value and the abnormal strength value, the normality/abnormality determining section 9 determines whether the reduction control device is normal or abnormal. As a result, by learning and memorizing several typical normal and abnormal patterns, it is possible to accurately diagnose whether a failure occurs once every few years or not.

【0009】また、通常の圧延機の圧延ロ−ルはその両
側(ワ−クサイド,ドライブサイド)から圧下制御装置
により、間隙調整を行っている。このような、圧延ロ−
ルにおいては、圧延ロ−ルのワ−クサイド,ドライブサ
イドの圧下制御装置は各々独立して制御されているが、
圧延ロ−ルを介して微妙な相互影響を及ぼしており、例
えばワ−クサイドの圧下制御装置に異常がある場合、ド
ライブサイドの圧下制御装置に影響が現われて、該ドラ
イブサイドも異常であるとの誤診断を行う等の原因とな
る。前記手段(2)は、この誤診断を防止し、精度良い
診断を可能とするためのものであり、圧延ロ−ルのドラ
イブサイドとワ−クサイドの相互の影響を加味して圧下
制御装置の正常・異常を診断することにより、上述の誤
診断を防止し診断精度を高くする。つまり、ドライブサ
イドの圧下制御装置とワ−クサイドの圧下制御装置の伝
達関数の時系列項を同一の正常・異常強度演算ニュ−ラ
ルネット部8で処理する。そして、この両者の影響を加
味して圧下制御装置別に正常強度値と異常強度値を求め
ることにより、正確な正常強度値と異常強度値を算定し
、これにより前記手段(1)と同様に圧下制御装置の正
常,異常の診断を行う。
[0009] Further, the gap between the rolling rolls of an ordinary rolling mill is adjusted from both sides (work side, drive side) by a rolling control device. Such a rolling roll
In the mill, the work side and drive side reduction control devices of the rolling roll are each controlled independently.
There is a subtle mutual influence through the rolling rolls. For example, if there is an abnormality in the work side reduction control device, the effect will appear on the drive side reduction control device, and it will be determined that the drive side is also abnormal. This may lead to misdiagnosis, etc. The means (2) is to prevent this misdiagnosis and enable highly accurate diagnosis, and is to adjust the reduction control device by taking into account the mutual influence of the drive side and work side of the rolling roll. By diagnosing normality and abnormality, the above-mentioned erroneous diagnosis is prevented and diagnostic accuracy is increased. In other words, the time series terms of the transfer functions of the drive-side roll-down control device and the work-side roll-down control device are processed by the same normal/abnormal strength calculation neural net section 8. Then, by calculating the normal strength value and the abnormal strength value for each reduction control device by taking into account the effects of both, accurate normal strength values and abnormal strength values are calculated. Diagnose whether the control device is normal or abnormal.

【0010】0010

【実施例】本発明の一実施例を、図1〜図3を参照して
説明する。図1は製鉄所の圧延工程における板厚変動補
償用の制御装置の異常診断装置の全体図である。図中、
WRは鋼板Sを圧下する作業ロ−ルである。1Wおよび
1Dは、それぞれバックアップロ−ルBRのワ−クサイ
ドWSおよびドライブサイドDSの間隔を調整する油圧
圧下装置である。2Wおよび2Dは、ロ−ドセルRで測
定したバックアップロ−ルBRの反力と、マグネスケ−
ル4W,4Dで測定した油圧圧下装置1Wおよび1Dの
スプ−ル位置及び、上位計算機(図示せず)からの作業
ロ−ルWRの目標ロ−ルギャップ量から圧下量を演算し
、これにもとづいてサ−ボ弁(図示せず)の開度を演算
するAGC(Automatic Gauge Con
trol) 制御部である。3Wおよび3Dは、AGC
制御部2Wおよび2Dで演算したサ−ボ弁の開度制御信
号によりサ−ボ弁の開度を調整するサ−ボ機構制御部で
ある。4はデ−タ入力部でありサ−ボ機構制御部3Wお
よび3Dに入力する各制御信号(制御デ−タ)aを10
msec周期で取り込む。5はデ−タ入力部4から入力
したデ−タの正規化を行うデ−タ処理部、6は正規化し
た鋼板Sの一本分の時系列制御デ−タから伝達関数のオ
フセット項g0,時系列項g1〜g10を同定し下記(
2)式に示す出力値Yを出力する伝達関数同定用階層型
ニュ−ラルネットである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is an overall diagram of an abnormality diagnosis device for a control device for compensating plate thickness variations in a rolling process in a steelworks. In the figure,
WR is a work roll that rolls down the steel plate S. 1W and 1D are hydraulic pressure lowering devices that respectively adjust the distance between the work side WS and the drive side DS of the backup roll BR. 2W and 2D are the reaction force of the backup roll BR measured with the load cell R and the magnetic scale.
The reduction amount is calculated from the spool positions of the hydraulic reduction devices 1W and 1D measured by rolls 4W and 4D, and the target roll gap amount of the work roll WR from a host computer (not shown), and based on this. AGC (Automatic Gauge Control) calculates the opening degree of a servo valve (not shown).
trol) is a control unit. 3W and 3D are AGC
This is a servo mechanism control section that adjusts the opening degree of the servo valve based on the servo valve opening control signal calculated by the control sections 2W and 2D. 4 is a data input section, and each control signal (control data) a input to the servo mechanism control section 3W and 3D is input to 10.
Capture at msec intervals. 5 is a data processing unit that normalizes the data input from the data input unit 4; 6 is an offset term g0 of the transfer function from the normalized time series control data for one steel plate S; , identify the time series terms g1 to g10 and use the following (
2) This is a hierarchical neural net for transfer function identification that outputs the output value Y shown in equation 2.

【0011】       Y=g0+U1g1+U2g2+U3g3
+・・・+U9g9+U10g10 ・・・(2)但し
、U1〜U10:制御デ−タ7は、伝達関数同定用階層
型ニュ−ラルネット6で同定した上記伝達関数の各項g
0,g1〜g10を前記出力値Yから抽出する伝達関数
抽出部、8は伝達関数抽出部7で抽出した伝達関数のオ
フセット項g0を含む時系列項g1〜g10から正常強
度値及び異常強度値を演算する正常・異常強度演算用階
層型ニュ−ラルネットである。この正常・異常強度演算
用階層型ニュ−ラルネット8には、予め、サ−ボ機構制
御部3W,3Dの正常時に於ける伝達関数のオフセット
項と時系列項で形成するパタ−ンと正常強度値(例えば
1)の関係及び異常時に於ける伝達関数のオフセット項
と時系列項で形成するパタ−ンと異常強度値(例えば0
)の関係を記憶し、この両記憶伝達関数の前記パタ−ン
と、ニュ−ラルネット6で同定し伝達関数抽出部7で抽
出した伝達関数のオフセット項g0,時系列項g1〜g
10で形成したパタ−ンとを比較し相似度合いを判断し
、相似度合いが高い程、その強度値1又は0に近い値を
出力するように学習アルゴリスムバックプロパゲ−ショ
ン法によって学習記憶する。又、オンラインで学習させ
る学習アルゴリズムを持たせることも出来る。9は、正
常・異常強度演算用階層型ニュ−ラルネット8から出力
した正常強度と異常強度からAGC制御部2W,2Dの
正常・異常を判定する正常・異常判定部、10は正常・
異常判定結果を表示する表示部である。次に診断につい
て説明する。図1のサ−ボ機構制御部3W,3Dのサ−
ボ機構制御入力信号aおよび油量出力信号bを10ms
ec周期で、デ−タ入力部4を介してデ−タ処理部に取
り込む。デ−タ処理部5は、デ−タの取り込み毎に、各
入,出力信号(a,b)を正の実数に正規化する。伝達
関数同定用階層型ニュ−ラルネット6は、ワ−クサイド
WS,ドライブサイドDSの各々のサ−ボ機構制御部3
W,3D別に入力信号aと出力信号bを組合せ、この入
・出力信号の関係から上記(2)式に示される各1個の
オフセット項g0と各10個の時系列項g1〜g10を
有する伝達関数Gを同定する。この伝達関数同定用階層
型ニュ−ラルネット6で、この制御系の伝達関数を同定
する場合について図2を参照してより詳しく説明する。 伝達関数同定用階層型ニュ−ラルネット6は、11個の
ユニットからなる入力層6a,1個のユニットからなる
出力層6bおよび1個の教師ユニット6cで構成した2
層形のニュ−ラルネットである。この入力層6aの各ユ
ニットには、サ−ボ機構制御部3Wの入,出力側の信号
a,bが、ワ−クロ−ルWRの鋼板S噛み込み開始時点
より、10msec周期で取り込まれ正規化されて記憶
される。そして、この圧延が完了すると正規化入力信号
(a)を古い順番に読出して伝達関数同定用階層型ニュ
−ラルネット6の入力層6aの各ユニットの左側端から
入力し、順次右側にシフトする。そして、入力層6aの
左側端に入力した正規化信号(a)に対応する正規化出
力信号(b)を教師ユニット6cに入力し、これを教師
信号として出力層6bにおいて入力層6aの各ユニット
から入力した正規化信号(a)と比較し両信号が同一と
なる結び付き強度を入力層6aと出力層6bの間でδル
−ルに基づいて求める。 これが終わると、前記のようにデ−タ処理部5に記憶し
た正規化信号の時間的に古い(サンプル採取時が左側端
ユニットの入力値より1サンプルタイム新しい)ものを
1個づつ順次入力層6aの左端ユニットに入力し、該左
端ユニットに入力していた正規化信号は押出されて破棄
される。かくして、最後の最も新しい正規化した入力信
号(鋼板Sの後端が圧延ロ−ルを通過完了する直前に採
取した制御信号)が左端ユニットに入力し、前記出力信
号が教師ユニット6cに入力し、前記結び付き強度の同
定が完了するまで同様にして順次行う。そして、入力す
る正規化信号がなくなると、その結び付き強度値をオフ
セット項g0Wおよび時系列項g1W〜g10Wを含む
前記(2)式で示される出力値YWとして入力層6aか
ら出力する。又、ドライブサイドDSのサ−ボ機構制御
部3Dについてもこれと同様にして別途設けた伝達関数
同定用階層型ニュ−ラルネットでオフセット項g0Dを
含む時系列項g1D〜g10Dを有する伝達関数GDを
同定する。このようにして同定した2つの伝達関数GW
,GDのオフセット項g0W,g0Dと時系列項g1W
〜g10W,g1D〜g10Dを含む出力値Yとして前
記ニュ−ラルネット6より出力し、次段の伝達関数抽出
部7に入力して、ここでオフセット項g0W,g0Dと
時系列項g1W〜g10W,g1D〜g10Dを抽出し
、これらを正常,異常強度演算用階層型ニュ−ラルネッ
ト8に入力する。
Y=g0+U1g1+U2g2+U3g3
+...+U9g9+U10g10...(2) However, U1 to U10: Control data 7 is each term g of the above transfer function identified by the hierarchical neural net 6 for transfer function identification.
0, g1 to g10 are extracted from the output value Y, and 8 is the normal intensity value and abnormal intensity value from the time series terms g1 to g10 including the offset term g0 of the transfer function extracted by the transfer function extraction unit 7. This is a hierarchical neural network for calculating normal and abnormal strength. This hierarchical neural network 8 for normal/abnormal strength calculation includes a pattern formed by offset terms and time series terms of the transfer functions in the normal state of the servo mechanism control units 3W and 3D, and a normal strength. The relationship between the values (for example, 1) and the pattern formed by the offset term and time series term of the transfer function during an abnormality and the abnormal intensity value (for example, 0
), and the pattern of both memory transfer functions, the offset term g0, and time series terms g1 to g of the transfer function identified by the neural net 6 and extracted by the transfer function extraction unit 7.
The pattern is compared with the pattern formed in step 10 to determine the degree of similarity, and the higher the degree of similarity, the more the intensity value is learned and stored by the backpropagation method so as to output a value closer to 1 or 0. It is also possible to provide a learning algorithm for online learning. Reference numeral 9 denotes a normality/abnormality determination unit that determines whether the AGC control units 2W, 2D are normal or abnormal based on the normal intensity and abnormality output from the hierarchical neural network 8 for normal/abnormal intensity calculation;
This is a display unit that displays abnormality determination results. Next, the diagnosis will be explained. Servo mechanism control parts 3W and 3D in Fig. 1
Bo mechanism control input signal a and oil amount output signal b for 10ms
The data is taken into the data processing section via the data input section 4 at the ec cycle. The data processing section 5 normalizes each input and output signal (a, b) to a positive real number every time data is taken in. The hierarchical neural network 6 for transfer function identification is connected to the servo mechanism control unit 3 of each of the work side WS and drive side DS.
Input signal a and output signal b are combined separately for W and 3D, and from the relationship between the input and output signals, each has one offset term g0 and ten time series terms g1 to g10 as shown in equation (2) above. Identify the transfer function G. A case in which the transfer function of the control system is identified using the transfer function identification hierarchical neural network 6 will be described in more detail with reference to FIG. The hierarchical neural net 6 for identifying a transfer function has an input layer 6a consisting of 11 units, an output layer 6b consisting of 1 unit, and 2 layers consisting of 1 teacher unit 6c.
It is a layered neural net. The input and output side signals a and b of the servo mechanism control section 3W are input into each unit of this input layer 6a at a 10 msec period from the time when the work roll WR starts biting the steel plate S. digitized and memorized. When this rolling is completed, the normalized input signals (a) are read out in chronological order, inputted from the left end of each unit of the input layer 6a of the hierarchical neural net 6 for transfer function identification, and sequentially shifted to the right. Then, the normalized output signal (b) corresponding to the normalized signal (a) input to the left end of the input layer 6a is input to the teacher unit 6c, and this is used as a teacher signal in the output layer 6b for each unit of the input layer 6a. The connection strength at which both signals are the same is determined based on the δ rule between the input layer 6a and the output layer 6b. When this is completed, the older normalized signals stored in the data processing unit 5 as described above (the time of sample collection is one sample time later than the input value of the leftmost unit) are sequentially transferred to the input layer one by one. The normalized signal input to the left end unit of 6a is pushed out and discarded. Thus, the last and newest normalized input signal (the control signal taken just before the rear end of the steel sheet S completed passing through the rolling rolls) is input to the left end unit, and the output signal is input to the teacher unit 6c. , are sequentially performed in the same manner until the identification of the connection strength is completed. Then, when there are no more normalized signals to be input, the connection strength value is output from the input layer 6a as the output value YW shown by the above equation (2) including the offset term g0W and the time series terms g1W to g10W. Similarly, for the servo mechanism control unit 3D of the drive side DS, a transfer function GD having time series terms g1D to g10D including an offset term g0D is determined using a separately provided hierarchical neural network for identifying transfer functions. identify The two transfer functions GW identified in this way
, GD offset terms g0W, g0D and time series term g1W
~ g10W, g1D ~ g10D is outputted from the neural net 6 as an output value Y including g10D, and inputted to the next stage transfer function extraction unit 7, where offset terms g0W, g0D and time series terms g1W ~ g10W, g1D ~g10D are extracted and inputted into the hierarchical neural net 8 for normal/abnormal strength calculation.

【0012】このニュ−ラルネット8は、図3に示すよ
うに、22個のユニットを有する入力層8aと10個の
ユニットを有する中間層8b、及び4個のユニットを有
する出力層8cから構成している。先ず、入力層8aの
上から1番目のユニットにはワ−クサイドWSのサ−ボ
機構制御部3Wの伝達関数GWのオフセット項g0Wを
入力し、次の(上から2番目)ユニットから11番目の
ユニットまでに時系列項g1W〜g10Wを順次入力す
る。更に、正規化したドライブサイドDSのサ−ボ機構
制御部3Dの伝達関数GDのオフセット項g0Dを12
番目のユニットに入力し、13番目のユニットから22
番目のユニットまでに時系列項g1D〜g10Dの各々
を入力する。
As shown in FIG. 3, this neural net 8 is composed of an input layer 8a having 22 units, an intermediate layer 8b having 10 units, and an output layer 8c having 4 units. ing. First, the offset term g0W of the transfer function GW of the servo mechanism control section 3W of the work side WS is input to the first unit from the top of the input layer 8a, and The time series terms g1W to g10W are sequentially input up to the unit . Furthermore, the offset term g0D of the normalized transfer function GD of the servo mechanism control section 3D of the drive side DS is set to 12
22 from the 13th unit.
Each of the time series terms g1D to g10D is input up to the th unit.

【0013】このようにして、入力層8aのユニットに
入力したサ−ボ機構制御部3W,3Dにおける各伝達関
数GW,GDのオフセット項g0W,g0Dの2個、時
系列項g1W〜g10W,g1D〜g10Dの20個を
中間層8b及び出力層8cにより予め学習させたδル−
ルに従って処理することによって図4に示す時系列総和
パタ−ンによりその相似度合いを比較し、出力層8cか
らサ−ボ機構制御部3W,3D各々の正常強度値,異常
強度値をそれぞれ0〜1までの実数で出力する。
In this way, the two offset terms g0W and g0D of the transfer functions GW and GD in the servo mechanism control units 3W and 3D input to the unit of the input layer 8a, and the time series terms g1W to g10W and g1D ~g10D are learned in advance by the intermediate layer 8b and the output layer 8c.
By processing according to the rules, the degree of similarity is compared using the time series summation pattern shown in FIG. Output as a real number up to 1.

【0014】このワ−クサイドWSとドライブサイドD
Sの正常強度値,異常強度値を正常・異常判定部9で比
較し、正常強度値と異常強度値の差、つまり、(正常強
度値)−(異常強度値)が所定値(0.6)より大きい
時、サ−ボ機構制御部3W,3Dは正常と判断し、それ
以外の時は異常と判断する。そして、この判断結果を表
示部10で表示する。
[0014] This work side WS and drive side D
The normal intensity value and abnormal intensity value of S are compared in the normal/abnormality determining section 9, and the difference between the normal intensity value and the abnormal intensity value, that is, (normal intensity value) - (abnormal intensity value), is determined to be a predetermined value (0.6 ), the servo mechanism control units 3W and 3D determine it to be normal, and otherwise determine it to be abnormal. This determination result is then displayed on the display section 10.

【0015】尚、本実施例においては、伝達関数同定用
階層型ニュ−ラルネット6で伝達関数を同定したが、本
発明はこれに限るものではなく、普通の計算機により最
小2乗法を利用して算定してもよい。また、本実施例に
おいてはサ−ボ機構制御部3W,3Dについて説明した
が、油圧圧下装置1W,1Dの正常・異常診断を行う際
には図1のサ−ボ機構制御部3W,3Dの出力信号bと
スプ−ル位置信号cを採取し、又、AGC制御部2W,
2Dの正常と異常を診断を診断する際にはスプ−ル位置
信号cと目標値信号dから前記同様に処理する。更に、
本実施例では水平ロ−ルについて説明したが、本発明は
これに限るものではなく、縦ロ−ルであっても同様に適
用できる。
In this embodiment, the transfer function was identified using the hierarchical neural network 6 for transfer function identification, but the present invention is not limited to this. It may be calculated. Furthermore, although the servo mechanism control units 3W and 3D have been described in this embodiment, when diagnosing the normality and abnormality of the hydraulic lowering devices 1W and 1D, the servo mechanism control units 3W and 3D shown in FIG. The output signal b and the spool position signal c are collected, and the AGC control unit 2W,
When diagnosing whether the 2D is normal or abnormal, the spool position signal c and target value signal d are processed in the same manner as described above. Furthermore,
Although the present embodiment has been described with respect to horizontal rolls, the present invention is not limited thereto, and can be similarly applied to vertical rolls.

【0016】[0016]

【発明の効果】以上説明したように本発明は伝達関数の
時系列項が描くパタ−ン(形状)により圧延制御装置の
異常を診断するので、圧延中の鋼板の圧下率,温度等の
操業条件に実質上関係なく、しかも煩雑な作業を伴うこ
となく精度良く確実な診断が可能となる。
Effects of the Invention As explained above, the present invention diagnoses an abnormality in the rolling control device based on the pattern (shape) drawn by the time series term of the transfer function, so Accurate and reliable diagnosis is possible virtually regardless of conditions and without any complicated work.

【0017】更に、圧延機のワ−クサイドとドライブサ
イドの相互の影響力を加味しつつ、各ニュ−ラルネット
で両サイドにおける正常・異常を診断することにより、
簡単に、しかも、精度良く両者の正常・異常を診断する
ことが可能となる。
Furthermore, by taking into account the mutual influence of the work side and drive side of the rolling mill, and diagnosing normality and abnormality on both sides using each neural net,
It becomes possible to easily and accurately diagnose whether the two are normal or abnormal.

【0018】このようにして診断した圧延制御装置の異
常部位を早期に取替えることにより、圧延機を安定的に
稼働して圧延製品の板厚精度の低下を防止し、高位に安
定出来る等の多大な効果を奏する。
[0018] By quickly replacing the abnormal parts of the rolling control device diagnosed in this way, the rolling mill can be operated stably, the thickness accuracy of the rolled products can be prevented from deteriorating, and a high level of stability can be achieved. It has a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の一実施例の構成概要を示すブロッ
ク図である。
FIG. 1 is a block diagram showing an overview of the configuration of an embodiment of the present invention.

【図2】  図1に示す伝達関数同定用階層型ニュ−ラ
ルネット6の機能の一部を示すブロック図である。
2 is a block diagram showing part of the functions of the transfer function identification hierarchical neural network 6 shown in FIG. 1. FIG.

【図3】  図1に示す正常・異常強度演算部8の機能
の一部を示すブロック図である。
FIG. 3 is a block diagram showing part of the functions of the normal/abnormal strength calculating section 8 shown in FIG. 1.

【図4】  伝達関数の時系列総和パタ−ンを示すグラ
フである。
FIG. 4 is a graph showing a time series summation pattern of a transfer function.

【符号の説明】[Explanation of symbols]

WR:作業ロ−ル                 
 BR:バックアップロ−ル4W,4D:マグネスケ−
WR: Work roll
BR: Backup roll 4W, 4D: Magnesque
le

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  圧延機の圧延ロ−ルの圧下位置調整を
行う圧下制御装置の異常診断装置において、前記圧延ロ
−ルの圧下制御装置の制御信号を所定周期毎に入力して
時系列項を有する伝達関数を同定する伝達関数同定部と
、予め伝達関数の時系列項と圧下制御装置の正常強度値
及び異常強度値の関係を学習記憶し、この学習記憶情報
と前記伝達関数同定部で同定した伝達関数の時系列項を
パタ−ン比較して正常強度値及び異常強度値を演算する
正常・異常強度演算ニュ−ラルネット部と、正常・異常
強度演算ニュ−ラルネット部で演算した正常強度値と異
常強度値により前記圧下制御装置の正常・異常を判定す
る正常・異常判定部と、を有することを特徴とする、圧
延工程における圧下制御装置の異常診断装置。
1. An abnormality diagnosis device for a rolling control device that adjusts the rolling position of a rolling roll of a rolling mill, wherein a control signal of the rolling rolling control device is inputted at predetermined intervals to calculate a time series parameter. a transfer function identification unit that identifies a transfer function having A normal/abnormal intensity calculation neural net section that compares patterns of time series terms of identified transfer functions to calculate normal intensity values and abnormal intensity values, and a normal intensity calculated by the normal/abnormal intensity calculation neural net section. 1. An abnormality diagnosis device for a rolling control device in a rolling process, comprising: a normality/abnormality determining section that determines whether the rolling control device is normal or abnormal based on the value and the abnormal strength value.
【請求項2】  圧延機の圧延ロ−ルの圧下位置調整を
行う圧下制御装置の異常診断装置において、前記圧延ロ
−ルのドライブサイドとワ−クサイドに各々独立して設
けた圧下制御装置の制御信号を所定周期毎に入力して時
系列項を有する伝達関数を各々同定する伝達関数同定部
と、予め前記両伝達関数の時系列項と両圧下制御装置の
正常強度値及び異常強度値の関係を学習記憶し、この学
習記憶情報と前記伝達関数同定部で同定した両伝達関数
の時系列項をパタ−ン比較して前記両サイドの圧下制御
装置の正常強度値及び異常強度値を各々演算する正常・
異常強度演算ニュ−ラルネット部と、正常・異常強度演
算ニュ−ラルネット部で演算した前記各正常強度値と異
常強度値により前記圧下制御装置の正常・異常を各々判
定する正常・異常判定部と、を有することを特徴とする
、圧延工程における圧下制御装置の異常診断装置。
2. An abnormality diagnosis device for a roll-down control device that adjusts the roll-down position of a rolling roll of a rolling mill, wherein the roll-down control device is provided independently on a drive side and a work side of the roll. a transfer function identification unit that inputs a control signal every predetermined period and identifies each transfer function having a time series term; The relationship is learned and memorized, and this learned and memorized information is compared in pattern with the time series terms of both transfer functions identified by the transfer function identification section to determine the normal strength value and the abnormal strength value of the reduction control devices on both sides, respectively. Normal to calculate
a normality/abnormality determining section that determines whether the reduction control device is normal or abnormal based on the normal strength values and abnormal strength values calculated by the abnormal strength calculation neural net section and the normal/abnormal strength calculation neural net section; An abnormality diagnosis device for a rolling reduction control device in a rolling process, comprising:
JP3134649A 1991-06-06 1991-06-06 Abnormality diagnosing device for rolling down control device in rolling process Expired - Lifetime JP2564710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3134649A JP2564710B2 (en) 1991-06-06 1991-06-06 Abnormality diagnosing device for rolling down control device in rolling process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3134649A JP2564710B2 (en) 1991-06-06 1991-06-06 Abnormality diagnosing device for rolling down control device in rolling process

Publications (2)

Publication Number Publication Date
JPH04361815A true JPH04361815A (en) 1992-12-15
JP2564710B2 JP2564710B2 (en) 1996-12-18

Family

ID=15133313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3134649A Expired - Lifetime JP2564710B2 (en) 1991-06-06 1991-06-06 Abnormality diagnosing device for rolling down control device in rolling process

Country Status (1)

Country Link
JP (1) JP2564710B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495826B1 (en) * 2003-08-21 2005-06-16 학교법인 건국대학교 Method for diagnosing fault of roll
CN112665408A (en) * 2020-12-29 2021-04-16 张家港宏昌钢板有限公司 Automatic acquisition system and method for abnormal furnace signals of heating furnace
CN117019889A (en) * 2023-07-18 2023-11-10 常州润来科技有限公司 Method and system for intelligently detecting faults of three-roller rotary rolling equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495826B1 (en) * 2003-08-21 2005-06-16 학교법인 건국대학교 Method for diagnosing fault of roll
CN112665408A (en) * 2020-12-29 2021-04-16 张家港宏昌钢板有限公司 Automatic acquisition system and method for abnormal furnace signals of heating furnace
CN112665408B (en) * 2020-12-29 2024-05-14 张家港宏昌钢板有限公司 Automatic acquisition system and method for abnormal furnace signals of heating furnace
CN117019889A (en) * 2023-07-18 2023-11-10 常州润来科技有限公司 Method and system for intelligently detecting faults of three-roller rotary rolling equipment

Also Published As

Publication number Publication date
JP2564710B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
DE102017009471B4 (en) A human collaborative robot system with improved accuracy of detecting an external force through machine learning
TW201732475A (en) Apparatus and method for supporting diagnosis of manufacturing facility
CN113468479B (en) Cold continuous rolling industrial process monitoring and abnormality detection method based on data driving
JPH04361815A (en) Abnormality diagnosing device for rolling-down device in rolling stages
US6807449B1 (en) Method for controlling and pre-setting a steelworks or parts of a steelworks
DE69207325T2 (en) Method and device for monitoring sensors and for fault location in an industrial process
JPH0728502A (en) Plant controller
CN116203903A (en) Space-time root diagnosis method for quality abnormality in hot continuous rolling process
KR19990052675A (en) Online roll eccentricity diagnosis method and device
CN112862284B (en) Precision evaluation method and system for rigidity of hot-rolled strip mill
KR20200000783A (en) Monitoring assistance system for steel plant
CN106515745B (en) A kind of control system of automatic Pilot train and platform
JPH05253797A (en) Judging system for abnormality on line
WO2020204043A1 (en) Blast furnace abnormality assessment device, blast furnace abnormality assessment method, and blast furnace operation method
US3892112A (en) Rolling mill gauge control
CN112783935A (en) Analysis device
JPS642203B2 (en)
WO2022085350A1 (en) Method for building abnormality diagnosis model, abnormality diagnosis method, device for building abnormality diagnosis model, and abnormality diagnosis device
JP3331191B2 (en) Rolling equipment shape control device and method
KR0173508B1 (en) Cobol data analysis device for hot rolling
JP3171212B2 (en) Tandem rolling mill and method for estimating cause of abnormal thickness in tandem rolling mill
JPH0249166B2 (en)
JP2009291809A (en) Diagnostic method of disturbance of dynamic process
JP4258424B2 (en) Operating load measuring device
CN116702030B (en) Blast furnace state monitoring method and device based on sensor reliability analysis

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960709