JPH04359133A - Densimeter - Google Patents

Densimeter

Info

Publication number
JPH04359133A
JPH04359133A JP15994691A JP15994691A JPH04359133A JP H04359133 A JPH04359133 A JP H04359133A JP 15994691 A JP15994691 A JP 15994691A JP 15994691 A JP15994691 A JP 15994691A JP H04359133 A JPH04359133 A JP H04359133A
Authority
JP
Japan
Prior art keywords
density
fluid
correction
pressure loss
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15994691A
Other languages
Japanese (ja)
Other versions
JPH0810186B2 (en
Inventor
Tatsuya Ichihara
達也 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP15994691A priority Critical patent/JPH0810186B2/en
Publication of JPH04359133A publication Critical patent/JPH04359133A/en
Publication of JPH0810186B2 publication Critical patent/JPH0810186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To measure the density of fluid with high precision. CONSTITUTION:The differential pressure of fluid is detected by a diaphragm seal differential pressure meter 7, and the density is measured, and the pressure is temporarily lowered by forming a throttle in the conduit of an in law side branched pipe and is made equal to the pressure loss which is generated by the flow of fluid between both the branched pipes in which diaphragms 3 and 5 are installed, and the measurement precision of a density meter equipped with pressure loss correction is improved furthermore. Accordingly, a correction calculator 8 is installed, and the correction corresponding to the viscosity and shear stress of the fluid and the correction corresponding to the aperture, shape, etc., of the densimeter are carried out by the correction calculator 8. Accordingly, the density of the fluid can be measured with high precision, and only the density signal detected by the pressure difference meter 7 is used as the input signal necessary for correction, and the need of the input signal showing other measurement data such as temperature and viscosity is obviated, and the correction calculator 8 can be constituted in simple form at a low cost.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、流体が流れる垂直管の
上下位置からその差圧を検出しこの差圧に基づいて流体
の密度を測定する密度計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a density meter that detects the pressure difference between the upper and lower positions of a vertical pipe through which a fluid flows and measures the density of the fluid based on this pressure difference.

【0002】0002

【従来の技術】従来、この種の密度計に関しては、特公
昭52−30867号公報,特公昭53−19219号
公報及び特公昭61−29658号公報に記載されてい
るようなものがある。これらの密度計の原理は、図7に
示すように、垂直管1の上下の部分4,6にダイアフラ
ムシール差圧計のダイアフラム3,5を取付け、差圧γ
Lを検出して、垂直管1内を流れる流体の密度γを検出
するものである。
2. Description of the Related Art Hitherto, this type of density meter has been described in Japanese Patent Publication No. 52-30867, Japanese Patent Publication No. 53-19219, and Japanese Patent Publication No. 61-29658. The principle of these density meters is that, as shown in Figure 7, the diaphragms 3 and 5 of the diaphragm seal differential pressure gauge are attached to the upper and lower parts 4 and 6 of the vertical pipe 1, and the differential pressure γ is
By detecting L, the density γ of the fluid flowing inside the vertical pipe 1 is detected.

【0003】したがって、上下2箇所のダイアフラム3
,4間で検出される差圧γLには、流体の圧力損失aも
含まれる。しかし、流入側の流路に絞り1aを設け、流
速を一時的に速めると、流体の静圧降下bが一時的に生
じる。ここで、圧力損失aと静圧降下bとが等しくなる
ように絞り1aを選ぶと、差圧γLには圧力損失aが含
まれないので、流体の密度測定が可能となる。なお、ダ
イアフラム3,4間で検出される検出値は、キャピラリ
6a,4aを介し差圧として取り出される。このように
、この密度計は構造が単純であり、使い易いことから一
相流体をはじめ、スラリ流体等の二相流体の密度測定な
ど、各種流体の密度測定に広く用いられている。
[0003] Therefore, the diaphragm 3 at two locations, upper and lower,
, 4 also includes the pressure loss a of the fluid. However, if a throttle 1a is provided in the flow path on the inflow side to temporarily increase the flow velocity, a static pressure drop b of the fluid temporarily occurs. Here, if the aperture 1a is selected so that the pressure loss a and the static pressure drop b are equal, the pressure loss a is not included in the differential pressure γL, so that the density of the fluid can be measured. Note that the detected value detected between the diaphragms 3 and 4 is taken out as a differential pressure via the capillaries 6a and 4a. As described above, this density meter has a simple structure and is easy to use, so it is widely used to measure the density of various fluids, including one-phase fluids and two-phase fluids such as slurry fluids.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記し
た一相流体及び二相流体は、流体の種類によってその粘
性やズリ応力が異なり、これに伴って圧力損失も変化す
る。このため、従来の密度計は流体が異なった場合には
、その密度が正確に測定できないという問題があった。 したがって、本発明は、流体によって異なる粘性やズリ
応力にも対応可能とし、それぞれの流体の密度を高精度
で測定できることを目的とする。
However, the above-mentioned one-phase fluid and two-phase fluid have different viscosity and shear stress depending on the type of fluid, and the pressure loss also changes accordingly. For this reason, conventional density meters have had the problem of not being able to accurately measure the density of different fluids. Therefore, it is an object of the present invention to be able to cope with viscosity and shear stress that differ depending on the fluid, and to be able to measure the density of each fluid with high precision.

【0005】[0005]

【課題を解決するための手段】上述の問題を解決するた
め、本発明は、補正された密度測定値を少なくとも流体
の粘度及びズリ応力に応じて補正する流体補正項,及び
該密度計の口径及び形状に応じて補正する構造補正項に
基づいて補正する演算器を備えたものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a fluid correction term for correcting a corrected density measurement value according to at least the viscosity and shear stress of the fluid, and the diameter of the density meter. and an arithmetic unit that performs correction based on a structural correction term that is corrected according to the shape.

【0006】[0006]

【作用】したがって、従来の密度計による流体の密度測
定値を、流体の粘度やズリ応力、及び密度計の口径や形
状に応じて補正することができるため、正確な密度が測
定できる。
[Operation] Therefore, the density value measured by a conventional densitometer can be corrected according to the viscosity and shear stress of the fluid, as well as the diameter and shape of the densitometer, so that accurate density can be measured.

【0007】[0007]

【実施例】次に、本発明について図面を参照して説明す
る。図1は、本発明の密度計の一実施例を示す構成図で
ある。同図において、垂直管1、オリフィス2、ダイア
フラム3,5は従来構成と同等であるが、本発明の密度
計はこの従来構成に加えて、演算器8、V/I変換器(
電圧・電流変換器)9を備え、ダイアフラムシール差圧
計7から出力され流体の密度を示す電流信号を入力する
とともに、この入力した電流信号に流体のズリ応力及び
密度計の構造等に応じた補正を行い出力するようにした
ものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of a density meter of the present invention. In the same figure, the vertical tube 1, orifice 2, and diaphragms 3 and 5 are the same as the conventional configuration, but the density meter of the present invention has an arithmetic unit 8, a V/I converter (
It inputs the current signal output from the diaphragm seal differential pressure gauge 7 and indicates the density of the fluid, and also makes corrections to this input current signal according to the shear stress of the fluid and the structure of the density meter. It is designed to perform and output.

【0008】この密度計は、流速変化で生じる圧力損失
の変動を絞りによる静圧の変化を作ってこの釣合で損失
変動を消去するようにしているものであるが、従来の図
7を用いてこれらの関係を数式で表現すると、絞りによ
る圧力降下bは、
[0008] This density meter is designed to compensate for fluctuations in pressure loss caused by changes in flow velocity by creating a change in static pressure by restricting the flow rate, and eliminate fluctuations in loss through this balance. Expressing these relationships mathematically, the pressure drop b due to the restriction is:

【0009】[0009]

【数1】[Math 1]

【0010】0010

【数2】[Math 2]

【0011】ここで、γは流体の密度,vは流速,gは
重力加速度,αは流量係数,βは絞り直径比である。ま
た、距離L間に流体が流れることにより生じる圧力降下
aは、次の式により示される。
[0011] Here, γ is the density of the fluid, v is the flow velocity, g is the gravitational acceleration, α is the flow coefficient, and β is the orifice diameter ratio. Further, the pressure drop a caused by the fluid flowing between the distance L is expressed by the following equation.

【0012】0012

【数3】[Math 3]

【0013】[0013]

【数4】[Math 4]

【0014】ここで、kは損失係数,λは管内壁の粗さ
による損失係数である。そして、a=bとなるように定
めてあるので、(1)〜(4)式から次式が成り立つ。
Here, k is a loss coefficient, and λ is a loss coefficient due to the roughness of the inner wall of the pipe. Since it is determined that a=b, the following equation holds true from equations (1) to (4).

【0015】[0015]

【数5】[Math 5]

【0016】ここで、(5)式は、両辺にγv2項が掛
かっているので、流体の速度vと密度γとに無関係に成
立する。すなわち、密度計の絞りが適正で、圧力損失が
除去されるように構成されると、流速や密度変動に無関
係に常に(5)式は成立し、この結果、差圧は密度信号
のみに依存することを示している。
Here, since equation (5) is multiplied by the γv2 term on both sides, it holds true regardless of the velocity v and density γ of the fluid. In other words, if the density meter is properly apertured and configured to eliminate pressure loss, equation (5) will always hold regardless of flow velocity or density fluctuations, and as a result, the differential pressure will depend only on the density signal. It shows that.

【0017】以上述べたことは、実際に液体の密度の測
定結果でも、流速および密度変動に影響を受けずに実用
上支障の無い程度で密度測定が行えることで実証できる
。このような測定例を図8に示す。
[0017] The above-mentioned fact can be verified by actually measuring the density of a liquid by not being affected by flow rate and density fluctuations and being able to measure the density without causing any practical problems. An example of such measurement is shown in FIG.

【0018】このように、(5)式は、流体の流速とそ
の密度とが変化しても正確な密度を測定できることを示
している。しかしながら、流体の種類,配管の口径及び
密度計の形状変化が生じた場合には、正確な密度の測定
が行えず測定した密度の値に多少の誤差が生じる。そこ
で、本発明は流体の種類の変化に対応する補正項,配管
の口径や密度計の形状変化に対応する補正項を加味する
ことで高精度の密度測定ができるようにしようとするも
のである。ここで、流体の種類の変化に対応する補正項
とは、流体は密度の増加に比例してその粘度やズリ応力
が増加することから、その変化を勾配係数として数値化
したものであり、これを一相流体及び二相流体に適用す
るものである。この1例が図2のグラフであり、この場
合流体は二相流体を示している。この図2のグラフに示
す傾向を一般式で表現すると、(6)式のようになる。 すなわち、
As described above, equation (5) shows that even if the flow velocity of the fluid and its density change, accurate density measurement can be performed. However, if the type of fluid, the diameter of the pipe, or the shape of the densitometer changes, accurate density measurements cannot be made and some errors occur in the measured density values. Therefore, the present invention attempts to enable highly accurate density measurement by adding correction terms that correspond to changes in the type of fluid, and correction terms that correspond to changes in the diameter of the pipe and the shape of the density meter. . Here, the correction term that corresponds to changes in the type of fluid is the one that quantifies this change as a slope coefficient, since the viscosity and shear stress of fluids increase in proportion to the increase in density. This applies to one-phase fluids and two-phase fluids. An example of this is the graph of FIG. 2, where the fluid is shown as a two-phase fluid. If the tendency shown in the graph of FIG. 2 is expressed in a general formula, it will be as shown in formula (6). That is,

【0019】[0019]

【数6】[Math 6]

【0020】なお、ここで、b/aは勾配係数,γは密
度測定値,τは流体のズリ応力である。ここで、(6)
式中のb/aは、一相流体や二相流体等の各種流体にお
いてそれぞれ異なる勾配係数である。すなわち、(6)
式は各種流体の物性に対応するものである。
[0020] Here, b/a is the gradient coefficient, γ is the density measurement value, and τ is the shear stress of the fluid. Here, (6)
b/a in the formula is a gradient coefficient that is different for various fluids such as one-phase fluid and two-phase fluid. That is, (6)
The formulas correspond to the physical properties of various fluids.

【0021】次に、ズリ応力が小さい場合には、密度測
定値に誤差が無く、したがって精度の良い密度測定が可
能となるが、ズリ応力が大きい場合は、密度測定値に一
定の傾向を生じる。これは管の口径や形状で多少異なる
。その1例を実測して示したものが図3のグラフである
。したがってこれを一般式で表現すると、(7)式のよ
うになる。すなわち、
[0021] Next, when the shear stress is small, there is no error in the density measurement value, and therefore highly accurate density measurement is possible, but when the shear stress is large, a certain tendency occurs in the density measurement value. . This varies somewhat depending on the diameter and shape of the pipe. The graph in FIG. 3 shows one example of this. Therefore, if this is expressed as a general formula, it will be as shown in formula (7). That is,

【0022】[0022]

【数7】[Math 7]

【0023】ここで、d/cは勾配係数,γ0は基準密
度である。(7)式は種々の口径や形状の密度計に対応
する式である。上記の(6)式,(7)式により、ズリ
応力τを消去すると(8)式,(9)式が得られる。す
なわち、
[0023] Here, d/c is the gradient coefficient, and γ0 is the reference density. Equation (7) is an equation that corresponds to densitometers of various diameters and shapes. By eliminating the shear stress τ from the above equations (6) and (7), equations (8) and (9) are obtained. That is,

【0024】[0024]

【数8】[Math. 8]

【0025】[0025]

【数9】[Math. 9]

【0026】(8),(9)式の意味するところは、測
定流体固有のズリ応力及び密度計の構造の対応を勾配係
数xで代表させ、密度計の測定値を補正してズリ応力及
び構造の影響を取り除き、補正後の密度γ0とするもの
である。次に、(8),(9)式を演算器に入力して密
度計の測定値を演算器により補正する。すなわち、補正
係数をFとすると、F=γ0/γであるから、上式を変
形して補正係数Fで表現すると、
What is meant by equations (8) and (9) is that the correspondence between the shear stress specific to the fluid to be measured and the structure of the density meter is represented by the slope coefficient x, and the measured value of the density meter is corrected to calculate the shear stress and The influence of the structure is removed to obtain the corrected density γ0. Next, equations (8) and (9) are input to a computing unit, and the measured value of the density meter is corrected by the computing unit. That is, if the correction coefficient is F, then F=γ0/γ, so if we transform the above equation and express it by the correction coefficient F, we get

【0027】[0027]

【数10】[Math. 10]

【0028】となる。この式は簡単な式であるから、高
度な演算器は必要とせず、上記した簡単な演算器8によ
り補正係数Fが演算できる。図5は、その演算器8によ
り演算される1例を説明する図であり、ダイアフラムシ
ール差圧計7で測定された密度γが、電流出力Iとして
得られると、演算器8はこれを入力して図5のような補
正後の電流出力I’に変換する。この結果、これが補正
後の密度γ0として読みとられる。次に、演算器8の詳
細な構造の1例を図6に示す。この演算器8は、密度計
からの出力電流が順次増加すると、動作するトランジス
タQ1,Q2,Q3の数も順次増加し、動作を開始した
トランジスタにその電流が分流される。この結果、出力
電圧は入力電流の増加に比例せずに所定のカーブに近似
するように変化する。このカーブを(10)式の結果に
近似させると、密度計からの出力信号が補正されるよう
になる。
[0028] Since this formula is a simple formula, the correction coefficient F can be calculated using the above-mentioned simple calculator 8 without requiring a sophisticated calculator. FIG. 5 is a diagram illustrating an example of the calculation performed by the calculation unit 8. When the density γ measured by the diaphragm seal differential pressure gauge 7 is obtained as the current output I, the calculation unit 8 inputs this. It is converted into a corrected current output I' as shown in FIG. As a result, this is read as the corrected density γ0. Next, an example of a detailed structure of the arithmetic unit 8 is shown in FIG. In this arithmetic unit 8, when the output current from the density meter increases sequentially, the number of operating transistors Q1, Q2, Q3 also increases sequentially, and the current is shunted to the transistor that has started operating. As a result, the output voltage changes so as to approximate a predetermined curve without being proportional to the increase in input current. By approximating this curve to the result of equation (10), the output signal from the densitometer can be corrected.

【0029】上記したように、従来の密度計による測定
結果を図8に示したが、これにさらに(10)式に示す
ような補正演算を行った結果のグラフを図4に示す。こ
の図4のグラフによれば、ズリ応力と構造の影響が従来
例の図8に比して改善されていることがわかる。このよ
うに、従来の密度計に密度補正演算器8を加えた図1に
示す装置は、まず、密度計が検出する密度γを、ダイア
フラムシール差圧計7で電流信号として出力する。そし
て、この電流信号Iは、演算器8に送出されこの演算器
8で上記したような補正演算が行われる。この補正演算
が行われた後、電圧信号としてV/I変換器9へ出力さ
れ、V/I変換器9で再び電流に変換され電流信号I’
となる。この結果、この電流信号I’が補正後の流体の
密度γ0として読みとられることになる。
As mentioned above, the measurement results using the conventional density meter are shown in FIG. 8, and FIG. 4 shows a graph of the results obtained by further performing a correction calculation as shown in equation (10). According to the graph of FIG. 4, it can be seen that the effects of shear stress and structure are improved compared to the conventional example shown in FIG. 8. In this way, the device shown in FIG. 1, which includes the density correction calculator 8 added to the conventional density meter, first outputs the density γ detected by the density meter as a current signal by the diaphragm seal differential pressure gauge 7. This current signal I is then sent to the arithmetic unit 8, where the above-mentioned correction calculation is performed. After this correction calculation is performed, it is output as a voltage signal to the V/I converter 9, and is converted into a current again by the V/I converter 9, and the current signal I'
becomes. As a result, this current signal I' is read as the corrected fluid density γ0.

【0030】以上説明したように、流体の差圧の測定を
ダイアフラムシール差圧計7により測定し、ダイアフラ
ム3,5を取り付ける両枝管の間を流体が流れることに
より生じる圧力損失は、流入側枝管の管路に絞りを設け
てこの圧力を一時的に下げ、これが圧力損失と等しくな
るようにした圧力損失補正付き密度計の測定精度をさら
に改善するようにしたものである。すなわち、補正演算
器8を設けてこれによる密度の補正を流体の粘度やズリ
応力に応じて補正する流体補正項、及び、密度計の口径
や形状等の構造に応じて補正する構造補正項の2つの補
正項に基づいて補正するようにしたものである。そして
、補正に必要な入力信号は差圧計7が検出した密度信号
のみを用い、この他の温度や粘度等の測定データを示す
入力信号は不要となるものである。したがって、複数の
入力信号を必要としないから、高価なコンピュータを必
要とせずに、単純なアナログ演算器により処理できる。
As explained above, the differential pressure of the fluid is measured by the diaphragm seal differential pressure gauge 7, and the pressure loss caused by the fluid flowing between the two branch pipes to which the diaphragms 3 and 5 are attached is calculated from the inlet branch pipe. The measurement accuracy of the density meter with pressure loss correction is further improved by providing a restriction in the conduit to temporarily lower this pressure so that it is equal to the pressure loss. In other words, the correction calculator 8 is provided and the density is corrected by a fluid correction term that is corrected according to the viscosity of the fluid and shear stress, and a structural correction term that is corrected according to the structure such as the diameter and shape of the density meter. Correction is performed based on two correction terms. As the input signal necessary for correction, only the density signal detected by the differential pressure gauge 7 is used, and input signals indicating other measurement data such as temperature and viscosity are not required. Therefore, since multiple input signals are not required, processing can be performed by a simple analog arithmetic unit without the need for an expensive computer.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
従来の密度計による流体の密度測定値を、流体の粘度や
ズリ応力、及び密度計の口径や形状に応じて補正できる
ことになり、この結果、流体の密度を精度良く測定でき
るという効果がある。
[Effects of the Invention] As explained above, according to the present invention,
The density measurement value of a fluid using a conventional densitometer can be corrected according to the viscosity and shear stress of the fluid, as well as the diameter and shape of the densitometer, and as a result, there is an effect that the density of the fluid can be measured with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の密度計の一実施例を示す構成図である
FIG. 1 is a configuration diagram showing an embodiment of a density meter of the present invention.

【図2】流体密度とズリ応力との関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between fluid density and shear stress.

【図3】ズリ応力と密度測定誤差との関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between shear stress and density measurement error.

【図4】本発明の密度計における流体の流速と密度測定
誤差との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between fluid flow rate and density measurement error in the density meter of the present invention.

【図5】本発明の密度計を構成する演算器に対する入力
信号と出力信号との関係を説明する説明図である。
FIG. 5 is an explanatory diagram illustrating the relationship between input signals and output signals to the arithmetic unit constituting the density meter of the present invention.

【図6】上記演算器の特性及びその構成図であり、(a
)は出力特性図、(b)は演算器を構成する各トランジ
スタの動作領域を説明する図、(c)は演算器のブロッ
ク図である。
FIG. 6 is a diagram showing the characteristics of the arithmetic unit and its configuration, (a
) is an output characteristic diagram, (b) is a diagram explaining the operating range of each transistor constituting the arithmetic unit, and (c) is a block diagram of the arithmetic unit.

【図7】従来の密度計の構成図である。FIG. 7 is a configuration diagram of a conventional density meter.

【図8】従来の密度計における流速と測定密度誤差との
関係を示すグラフである。
FIG. 8 is a graph showing the relationship between flow velocity and measurement density error in a conventional density meter.

【符号の説明】[Explanation of symbols]

1        垂直管 2        オリフィス 3,5    ダイアフラム 7        ダイアフラムシール差圧計8   
     演算器 9        電圧・電流変換器
1 Vertical pipe 2 Orifice 3, 5 Diaphragm 7 Diaphragm seal differential pressure gauge 8
Arithmetic unit 9 Voltage/current converter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  垂直管の中を流れる流体の差圧をダイ
アフラムにより検出して該流体の密度を測定するとき、
前記ダイアフラムを取り付ける前記垂直管の両枝管間を
前記流体が流れることにより生じる圧力損失は前記枝管
の流入側管路に絞りを設けて圧力を降下させこの降下圧
力値と前記圧力損失の値とを等しくさせて前記密度の測
定値に該圧力損失が含まれないように補正する圧力損失
補正付き密度計において、測定された密度測定値に,流
体の粘度及びズリ応力に応じて補正する流体補正項,及
び該密度計の口径及び形状に応じて補正する構造補正項
を加えて補正する演算器を備え、粘度計及び温度計等を
必要とすることなく前記圧力損失補正付き密度計の密度
測定値のみを用いて自己補正し該圧力損失補正付き密度
計の密度測定値の精度を向上させるようにしたことを特
徴とする密度計。
Claim 1: When measuring the density of a fluid flowing through a vertical pipe by detecting the differential pressure of the fluid using a diaphragm,
The pressure loss caused by the fluid flowing between both branch pipes of the vertical pipe to which the diaphragm is attached is reduced by providing a restriction in the inflow side pipe line of the branch pipe, and the value of this drop pressure and the value of the pressure loss are reduced. In the density meter with pressure loss correction, which corrects the measured density value so that the pressure loss is not included in the measured value of the density, the measured density value is corrected according to the viscosity and shear stress of the fluid. It is equipped with an arithmetic unit that performs correction by adding a correction term and a structural correction term that corrects according to the aperture and shape of the density meter, and the density of the density meter with pressure loss correction can be calculated without requiring a viscometer, a thermometer, etc. A densitometer, characterized in that the accuracy of the density measurement value of the densitometer with pressure loss correction is improved by self-correcting using only the measured value.
JP15994691A 1991-06-05 1991-06-05 Density meter Expired - Fee Related JPH0810186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15994691A JPH0810186B2 (en) 1991-06-05 1991-06-05 Density meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15994691A JPH0810186B2 (en) 1991-06-05 1991-06-05 Density meter

Publications (2)

Publication Number Publication Date
JPH04359133A true JPH04359133A (en) 1992-12-11
JPH0810186B2 JPH0810186B2 (en) 1996-01-31

Family

ID=15704612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15994691A Expired - Fee Related JPH0810186B2 (en) 1991-06-05 1991-06-05 Density meter

Country Status (1)

Country Link
JP (1) JPH0810186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206166A1 (en) * 2020-04-10 2021-10-14 三菱パワー株式会社 Apparatus for acquiring slurry concentration, method for acquiring slurry concentration and method for remodeling flue gas desulfurization facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206166A1 (en) * 2020-04-10 2021-10-14 三菱パワー株式会社 Apparatus for acquiring slurry concentration, method for acquiring slurry concentration and method for remodeling flue gas desulfurization facility
JP2021166955A (en) * 2020-04-10 2021-10-21 三菱パワー株式会社 Slurry concentration obtaining device, slurry concentration obtaining method and flue-gas desulfurization facility remodeling method

Also Published As

Publication number Publication date
JPH0810186B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
CN107407590A (en) With the MEMS thermal flow rate sensors compensated for fluid composition
CN107631773B (en) Method for operating a flow measuring device and flow measuring device
JP7313516B2 (en) How to compensate for mass flow using known density
CA3042881A1 (en) Improvements in or relating to the monitoring of fluid flow
JP7514938B2 (en) Flowmeter variable correction method
US10539442B2 (en) Fluid momentum detection method and related apparatus
US6196058B1 (en) On-line viscosity measurement system
US5965800A (en) Method of calibrating an ultrasonic flow meter
JPH04359133A (en) Densimeter
US3662599A (en) Mass flowmeter
JP3834534B2 (en) Flowmeter
JP3252187B2 (en) Flowmeter
JP3237366B2 (en) Vibration type flow meter
RU2800929C1 (en) Method for correcting the flowmeter variable
US20240255340A1 (en) Detecting a measurement bias of a reference zero-flow value
US20240247961A1 (en) Selecting a zero-verification criteria for a zero verification of a vibratory meter
JP2005147682A (en) Flowmeter and flow measuring method
JPS6326735Y2 (en)
JP3800691B2 (en) Source mass flow meter
RU2641505C1 (en) Information and measuring system for measurement of flow and quantity of gas
RU1795287C (en) Method of measuring gas mass flow rate
JPH0319492B2 (en)
SU283746A1 (en) METHOD FOR DETERMINING COSTS AND HYDRAULIC
JP2020118491A (en) Method and device for obtaining rheology characteristic value of non-newtonian fluid
JPH10111156A (en) Shunting flowmeter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees