JPH0435880B2 - - Google Patents

Info

Publication number
JPH0435880B2
JPH0435880B2 JP58200299A JP20029983A JPH0435880B2 JP H0435880 B2 JPH0435880 B2 JP H0435880B2 JP 58200299 A JP58200299 A JP 58200299A JP 20029983 A JP20029983 A JP 20029983A JP H0435880 B2 JPH0435880 B2 JP H0435880B2
Authority
JP
Japan
Prior art keywords
far
infrared
heat
heater
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58200299A
Other languages
Japanese (ja)
Other versions
JPS6093793A (en
Inventor
Hidesato Kawanishi
Noboru Naruo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20029983A priority Critical patent/JPS6093793A/en
Publication of JPS6093793A publication Critical patent/JPS6093793A/en
Publication of JPH0435880B2 publication Critical patent/JPH0435880B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、乾燥、加熱、調理、暖房等の熱源と
して使用されるもので、遠赤外線を効率的に放射
する遠赤外線ヒータに関するものである。 従来例の構成とその問題点 従来より遠赤外線ヒータとしては、 (i) 赤外線ランプ (ii) セラミツク中に発熱体を埋め込み焼成したも
の (iii) シーズヒータの表面に遠赤外線放射層を形成
したもの などがあるが、放射特性、機械的強度、寿命など
の観点から、シーズヒータの表面に遠赤外線放射
層を形成したものが多く使用されている。 また、遠赤外線放射材料として、ZrO2
ZrO2・SiO2(ジルコン)、Al2O3,TiO2,Fe2O3
どの各種酸化物が用いられ、主に溶射法により、
シーズヒータの表面に遠赤外線放射層が形成され
ている。 発明者らは、すでに、酸化ニツケルを用い、上
記と同様の溶射法で、シーズヒータ表面に遠赤外
線放射層を設けることにより、放射特性に優れた
遠赤外線ヒータを製造することができることを見
い出した。 しかし、溶射法では、ランニングコストを含め
製造コストが非常に高くつき、実用化にあたり、
大きな問題があつた。 一方、酸化物とガラス質との混合物を用いてシ
ーズヒータ表面を、梨地状にほうろう仕上げする
ことにより遠赤外線放射装置を製造することがす
でに発明されている(特公昭58−36821号公報)
が、この方法は、シーズヒータ表面をブラスト処
理する必要があり、コストアツプの要因となる。
また、添加した酸化物は、主にMnO2,ZrO2
ZrO2・SiO2(ジルコン)Fe2O3などであるため、
放射特性はあまり高くない。 このように、製造コストや、放射特性問題があ
るのが実情であつた。 発明の目的 本発明は、かかる従来の欠点を解決し、放射特
性に優れた製造コストの安い遠赤外線ヒータを提
供するものである。 発明の構成 本発明は、耐熱鋼からなる金属表面にあらかじ
め、酸化スケールを設け、前記酸化スケールの上
に、酸化ニツケルを5〜30重量%の範囲で含有す
る耐熱ほうろう剤からなる遠赤外線放射層を設け
ることにより、ブラスト処理をなくすことができ
るとともに、放射率の大きい酸化ニツケルを耐熱
ほうろう剤に含有させることができるため、放射
特性に優れた製造コストの安い遠赤外線ヒータが
可能となる。 実施例の説明 以下、本発明の実施例について、図を参照して
説明する。 金属パイプ3として、NCF800(商品名インコ
ロイ800)を用いた。 一方、両端に端子棒1を備えたコイル状のニク
ロム線(直径0.55mm)からなる電熱線2を準備
し、金属パイプ3の中央に挿入し、電融マグネシ
ア粉末からなる電気絶縁粉末4を充填し、圧延減
径した。 こののち、金属パイプ3に酸化スケールを形成
させるために、1050℃の温度で10分間熱処理(従
来の焼鈍処理)し、第1表に示すように、市販の
耐熱ほうろうスリツプに、酸化ニツケルを添加
し、準備した混合物をスプレーにより塗布し、
980℃で10分間焼成し、酸化ニツケルを含有する
耐熱ほうろう剤からなる遠赤外線放射層7を金属
パイプ3の表面に形成させた。 最後に、金属パイプ3の両端を低融点ガラス5
および耐熱性樹脂6で封口し、値径11mm、長さ
500mmの第1表に示すそれぞれの遠赤外線ヒータ
を完成し、試料番号1〜7とした。 完成したそれぞれの遠赤外線ヒータを500℃の
温度になるように電圧調整し、20分ON−10分
OFFを1サイクルとする断続通電試験を行ない、
1000サイクル後の遠赤外線放射層の剥離度合を調
べ、第1表に示した。 第1表において、○印は、剥離がないことを、
×印は剥離が生じたことをそれぞれ示す。 一方、全放射率を放射測定機にて測定した結果
を同様に第1表に示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a far-infrared heater that is used as a heat source for drying, heating, cooking, heating, etc., and that efficiently emits far-infrared rays. Conventional configurations and their problems Conventional far-infrared heaters include (i) infrared lamps, (ii) those in which a heating element is embedded in ceramic and fired, and (iii) those in which a far-infrared radiation layer is formed on the surface of a sheathed heater. However, from the viewpoint of radiation characteristics, mechanical strength, lifespan, etc., sheathed heaters with a far-infrared radiation layer formed on the surface are often used. In addition, ZrO 2 ,
Various oxides such as ZrO 2 / SiO 2 (zircon), Al 2 O 3 , TiO 2 , Fe 2 O 3 are used, and mainly by thermal spraying,
A far-infrared radiation layer is formed on the surface of the sheathed heater. The inventors have already discovered that it is possible to manufacture a far-infrared heater with excellent radiation characteristics by using nickel oxide and providing a far-infrared radiation layer on the surface of the sheathed heater using the same thermal spraying method as above. . However, with the thermal spraying method, manufacturing costs including running costs are extremely high, and it is difficult to put it into practical use.
There was a big problem. On the other hand, it has already been invented to manufacture a far-infrared radiation device by enameling the surface of a sheathed heater using a mixture of oxide and glass (Japanese Patent Publication No. 58-36821).
However, this method requires blasting the surface of the sheathed heater, which increases costs.
In addition, the added oxides are mainly MnO 2 , ZrO 2 ,
ZrO 2・SiO 2 (zircon) Fe 2 O 3 , etc.
The radiation characteristics are not very high. As described above, the reality is that there are problems with manufacturing costs and radiation characteristics. OBJECTS OF THE INVENTION The present invention solves the conventional drawbacks and provides a far-infrared heater with excellent radiation characteristics and low manufacturing cost. Structure of the Invention The present invention provides an oxide scale in advance on the surface of a metal made of heat-resistant steel, and a far-infrared emitting layer made of a heat-resistant enamel containing 5 to 30% by weight of nickel oxide on the oxide scale. By providing this, the blasting process can be eliminated, and nickel oxide, which has a high emissivity, can be contained in the heat-resistant enamel, making it possible to produce a far-infrared heater with excellent radiation characteristics and low manufacturing cost. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. As the metal pipe 3, NCF800 (trade name Incoloy 800) was used. On the other hand, a heating wire 2 made of a coiled nichrome wire (diameter 0.55 mm) with terminal rods 1 at both ends is prepared, inserted into the center of a metal pipe 3, and filled with electrical insulating powder 4 made of fused magnesia powder. Then, the diameter was reduced by rolling. After this, in order to form oxide scale on the metal pipe 3, it was heat treated at a temperature of 1050℃ for 10 minutes (conventional annealing treatment), and as shown in Table 1, nickel oxide was added to a commercially available heat-resistant enamel slip. and apply the prepared mixture by spraying,
By firing at 980° C. for 10 minutes, a far-infrared emitting layer 7 made of a heat-resistant enamel containing nickel oxide was formed on the surface of the metal pipe 3. Finally, attach both ends of the metal pipe 3 to the low melting point glass 5.
and sealed with heat-resistant resin 6, diameter 11mm, length
Each far infrared heater of 500 mm shown in Table 1 was completed and designated as sample numbers 1 to 7. Adjust the voltage of each completed far infrared heater so that it reaches a temperature of 500℃, and turn it on for 20 minutes - 10 minutes.
Conducted an intermittent energization test with one cycle of OFF,
The degree of peeling of the far-infrared emitting layer after 1000 cycles was investigated and shown in Table 1. In Table 1, a circle mark indicates that there is no peeling.
The x mark indicates that peeling occurred. On the other hand, the results of measuring the total emissivity using a radiation measuring device are also shown in Table 1.

【表】 第1表から明らかなように、酸化ニツケルを5
重量%以下含有する耐熱ほうろう剤からなる遠赤
外線放射層を設けた試料番号1,2,3の遠赤外
線ヒータでは、遠赤外線放射層の剥離はないが、
全放射率が0.75〜0.82であり、低い。 一方、酸化ニツケルを30重量%以上含有する試
料番号7の遠赤外線ヒータは、全放射率が0・90
と高いにもかかわらず、遠赤外線放射層の剥離が
生じ、実使用に耐えない。 しかし、酸化ニツケルの含有量が5重量%〜30
重量%の範囲にある耐熱ほうろう剤からなる遠赤
外線放射層を設けた試料番号4,5,6の遠赤外
線ヒータは、全放射率が0.89〜0.90と非常に高
く、かつ遠赤外線放射層の剥離は生じず、理想的
な遠赤外線ヒータを得ることができた。 このように、本実施例によれば、酸化ニツケル
を5重量%〜30重量%の範囲で耐熱ほうろう剤に
添加することにより、放射率を高めることができ
る。 また、ほうろう処理するにあたり、従来では、
ブラスト処理や、ニツケルメツキ処理などの下地
処理をする必要があつたが、本発明では、金属パ
イプを単に熱処理することにより簡易的な方法で
酸化スケールを形成し、この形成される酸化皮膜
の成分がほうろうと密着性がよいことから極めて
密着性に優れたほうろう層が得られ、シーズヒー
タの製造工程の一つである焼鈍工程(1050℃での
熱処理)で可能であり、大幅なコストダウンにな
り、著しいコストメリツトが得られる。 尚、本発明の実施例において、金属パイプ3と
してNCF800を用いたが、SUS321などの耐熱鋼
を用いてもよい。 発明の効果 以上の説明から明らかなように、本発明の遠赤
外線ヒータによれば耐熱鋼からなる金属表面に、
あらかじめ酸化スケールを設け、前記酸化スケー
ルの上に、酸化ニツケルを5〜30重量%の範囲で
含有する耐熱ほうろう剤からなる遠赤外線放射層
を設けることにより、放射特性に優れた製造コス
トの安い遠赤外線ヒータを提供することができ、
その工業的価値は大なるものである。
[Table] As is clear from Table 1, nickel oxide is
In the far-infrared heaters of sample numbers 1, 2, and 3, which were provided with far-infrared radiation layers made of heat-resistant enamel containing less than % by weight, there was no peeling of the far-infrared radiation layers;
The total emissivity is 0.75-0.82, which is low. On the other hand, the far infrared heater of sample number 7 containing 30% by weight or more of nickel oxide has a total emissivity of 0.90.
Despite this high value, the far-infrared emitting layer peels off, making it unsuitable for practical use. However, the content of nickel oxide is 5% to 30% by weight.
The far-infrared heaters of sample numbers 4, 5, and 6, which were provided with far-infrared radiation layers made of heat-resistant enamel in the range of 0.89 to 0.90, had very high total emissivities of 0.89 to 0.90, and the far-infrared radiation layers did not peel off. This did not occur, and an ideal far-infrared heater could be obtained. As described above, according to this example, the emissivity can be increased by adding nickel oxide to the heat-resistant enamel in a range of 5% to 30% by weight. In addition, in the enameling process, conventionally,
It used to be necessary to perform surface treatment such as blasting or nickel plating, but in the present invention, oxide scale is formed in a simple manner by simply heat-treating the metal pipe, and the components of the oxide film formed are Because it has good adhesion to enamel, it is possible to obtain an enamel layer with extremely good adhesion, and it can be done in the annealing process (heat treatment at 1050℃), which is one of the manufacturing processes for sheathed heaters, resulting in significant cost reductions. , significant cost benefits can be obtained. In the embodiment of the present invention, NCF800 is used as the metal pipe 3, but heat-resistant steel such as SUS321 may also be used. Effects of the Invention As is clear from the above explanation, according to the far-infrared heater of the present invention, on the metal surface made of heat-resistant steel,
By providing an oxide scale in advance and providing a far-infrared emitting layer made of a heat-resistant enamel containing nickel oxide in the range of 5 to 30% by weight on the oxide scale, a far-infrared radiation layer with excellent radiation characteristics and low manufacturing cost is produced. Can provide infrared heater,
Its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の実施例による遠赤外線ヒータで
ある。 3……金属パイプ、7……遠赤外線放射層。
The figure shows a far-infrared heater according to an embodiment of the present invention. 3...Metal pipe, 7...Far-infrared radiation layer.

Claims (1)

【特許請求の範囲】[Claims] 1 耐熱鋼からなる金属の表面にあらかじめ酸化
スケールを設け、その酸化スケール上に酸化ニツ
ケルを5〜30重量%の範囲で含有する耐熱ほうろ
う剤からなる遠赤外線放射層を設けた遠赤外線ヒ
ータ。
1. A far-infrared heater in which an oxide scale is previously provided on the surface of a metal made of heat-resistant steel, and a far-infrared radiation layer made of a heat-resistant enamel containing 5 to 30% by weight of nickel oxide is provided on the oxide scale.
JP20029983A 1983-10-26 1983-10-26 Far infrared ray heater Granted JPS6093793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20029983A JPS6093793A (en) 1983-10-26 1983-10-26 Far infrared ray heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20029983A JPS6093793A (en) 1983-10-26 1983-10-26 Far infrared ray heater

Publications (2)

Publication Number Publication Date
JPS6093793A JPS6093793A (en) 1985-05-25
JPH0435880B2 true JPH0435880B2 (en) 1992-06-12

Family

ID=16422003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20029983A Granted JPS6093793A (en) 1983-10-26 1983-10-26 Far infrared ray heater

Country Status (1)

Country Link
JP (1) JPS6093793A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527578A (en) * 1975-07-02 1977-01-20 Hitachi Plant Eng & Constr Co Ltd Automatic vertical tube extension and contraction apparatus of pneumat ic unloader
JPS5836821A (en) * 1981-08-27 1983-03-03 Yoshino Shuppan Kikai Kk Pushing out device of load on belt conveyer
JPS58190839A (en) * 1982-04-30 1983-11-07 Takara Standard Kk Production of enamel for irradiation of far ultraviolet light

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527578A (en) * 1975-07-02 1977-01-20 Hitachi Plant Eng & Constr Co Ltd Automatic vertical tube extension and contraction apparatus of pneumat ic unloader
JPS5836821A (en) * 1981-08-27 1983-03-03 Yoshino Shuppan Kikai Kk Pushing out device of load on belt conveyer
JPS58190839A (en) * 1982-04-30 1983-11-07 Takara Standard Kk Production of enamel for irradiation of far ultraviolet light

Also Published As

Publication number Publication date
JPS6093793A (en) 1985-05-25

Similar Documents

Publication Publication Date Title
JPH0435880B2 (en)
JPS58190839A (en) Production of enamel for irradiation of far ultraviolet light
JPH0311072B2 (en)
JPH0148625B2 (en)
JPS635339B2 (en)
JPS6086A (en) Method of producing far infrared ray heater
JPH048907B2 (en)
JPS6093797A (en) Far infrared ray heater
JPH0311071B2 (en)
JPH0535558B2 (en)
JPH0534797B2 (en)
JPS6185792A (en) Manufacture of sheathed heater
JPS59207585A (en) Far infrared ray heater
JPH0147870B2 (en)
JPH0435879B2 (en)
JPS60218785A (en) Method of producing sheathed heater
JPS6119089A (en) Method of producing sheathed heater
JPH09213457A (en) Manufacture of far infrared radiation heater
JPH01144586A (en) Far infrared ray heater
JPS6185789A (en) Sheathed heater
JPS6093796A (en) Far infrared ray heater
JPH0438113B2 (en)
JPS6325466B2 (en)
JPH03127482A (en) Extreme infrared radiation heater and manufacture thereof
JPS60130088A (en) Far infrared ray heater