JPH04358046A - High speed steel base sintered alloy - Google Patents

High speed steel base sintered alloy

Info

Publication number
JPH04358046A
JPH04358046A JP14700991A JP14700991A JPH04358046A JP H04358046 A JPH04358046 A JP H04358046A JP 14700991 A JP14700991 A JP 14700991A JP 14700991 A JP14700991 A JP 14700991A JP H04358046 A JPH04358046 A JP H04358046A
Authority
JP
Japan
Prior art keywords
sintered alloy
speed steel
toughness
less
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14700991A
Other languages
Japanese (ja)
Other versions
JP2857724B2 (en
Inventor
Akira Hamada
晃 浜田
Hideo Fujita
秀雄 藤田
Atsushi Funakoshi
淳 船越
Yoshio Katayama
善雄 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14700991A priority Critical patent/JP2857724B2/en
Publication of JPH04358046A publication Critical patent/JPH04358046A/en
Application granted granted Critical
Publication of JP2857724B2 publication Critical patent/JP2857724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the toughness of a high speed steel base sintered alloy by specifying the content of allay elements and uniformly dispersing carbide grains. CONSTITUTION:This sintered alloy is constituted of 1.7 to 3.5% C, <=0.4% Si, <=0.4% Mn, 3 to 20% Cr, <=12% of one or >=two kinds among V, Ti and Nb, one or two kinds among 5 to 14% W, 3 to 9% Mo, 7 to 14% Co and <=3% Ni and the balance Fe, and its matrix is provided with a metallic structure in which carbide grains with 10 to 50mum grain size are uniformly dispersed by 10 to 50% areal rate. In this way, the toughness of the high speed steel base sintered alloy can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高耐摩耗性と高靭性が
要求される用途、例えば鋼材圧延用ロール等の構成材料
として有用な高速度鋼系焼結合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed steel-based sintered alloy useful for applications requiring high wear resistance and high toughness, for example, as a constituent material of steel rolling rolls and the like.

【0002】0002

【従来の技術】高速度鋼は、焼入れ・焼もどしの調質熱
処理により、マルテンサイトまたはベイナイトの硬質の
基地に、MC型、M2C型、M6C型等の炭化物が微細
に分散混在した組織が与えられ、その硬質の基地と、炭
化物の分散強化作用とによる極めて硬質で高度の摩耗抵
抗性を備えた合金である。
[Prior Art] High-speed steel is given a microstructure in which carbides of MC type, M2C type, M6C type, etc. are finely dispersed in a hard base of martensite or bainite through heat treatment such as quenching and tempering. It is an extremely hard alloy with a high degree of wear resistance due to its hard matrix and the dispersion strengthening effect of carbides.

【0003】高速度鋼の製造法については、従来の溶解
法のほかに、近時は粉末冶金の手法を用い焼結合金とし
て製造することも行われている。粉末冶金法によれば、
溶解法では製造できないような成分構成を有する合金の
製造も可能となり、成分設計の自由度が大きく、また焼
結手段として熱間等方圧加圧焼結(HIP)法を適用し
、高加圧力の均一な作用下に焼結を行わせることにより
、高緻密質で均質性にすぐれた焼結合金を得ることがで
きる。
Regarding the manufacturing method of high-speed steel, in addition to the conventional melting method, recently, powder metallurgy techniques have been used to manufacture the steel as a sintered alloy. According to the powder metallurgy method,
It is now possible to manufacture alloys with compositions that cannot be manufactured using the melting method, allowing a greater degree of freedom in composition design, and by applying the hot isostatic pressing (HIP) method as a sintering method, it is possible to By performing sintering under the uniform effect of pressure, a highly dense sintered alloy with excellent homogeneity can be obtained.

【0004】高速度鋼系合金の用途は広く、例えば鋼材
圧延用ロールについて、その耐用寿命の向上および被圧
延材の表面品質改善等を目的とし、ロール胴部表面に高
速度鋼系焼結合金層を形成して耐摩耗性を高めること等
も提案されている(特開昭63−297510号,特開
平3−47609号等)。
[0004] High-speed steel alloys have a wide range of uses. For example, high-speed steel-based sintered alloys are used on the surface of the roll body for the purpose of increasing the service life of rolls for rolling steel materials and improving the surface quality of the rolled material. It has also been proposed to improve wear resistance by forming a layer (JP-A-63-297510, JP-A-3-47609, etc.).

【0005】[0005]

【発明が解決しようとする課題】高速度鋼系合金を耐摩
耗用途、就中鋼材圧延用ロール等のように高荷重の負担
による曲げ応力や熱的・機械的衝撃が繰返し加わる部材
の耐久性・安定性の改善を目的として適用する場合、そ
の高速度鋼系合金は、耐摩耗性だけでなく、部材に加わ
る高荷重や衝撃によるクラック発生とその伝播を抑制し
得る高度の靭性を具備したものであることが要求される
。しかるに、耐摩耗性と靭性とは一般に相反的な材料特
性であり、高耐摩耗性と高靭性とを同時に充足させるこ
とは容易でない。本発明は上記に鑑みてなされたもので
あり、圧延ロール等のように高耐摩耗性と高靭性とが要
求される部材の構成材料として有用な高速度鋼系焼結合
金を提供する。
[Problem to be solved by the invention] High-speed steel alloys are used for wear-resistant applications, especially durability of members that are repeatedly subjected to bending stress and thermal/mechanical shock due to high loads, such as rolls for rolling steel materials.・When applied for the purpose of improving stability, the high-speed steel alloy has not only wear resistance but also a high degree of toughness that can suppress the occurrence and propagation of cracks due to high loads and impacts applied to the member. It is required that it be a thing. However, wear resistance and toughness are generally contradictory material properties, and it is not easy to simultaneously satisfy high wear resistance and high toughness. The present invention has been made in view of the above, and provides a high-speed steel-based sintered alloy useful as a constituent material of members such as rolling rolls that require high wear resistance and high toughness.

【0006】[0006]

【課題を解決するための手段および作用】本発明の高速
度鋼系焼結合金は、C:1.7〜3.5%,Si:0.
4%以下(または、0.6〜3.5%),Mn:0.4
%以下,Cr:3〜20%,V,Ti,Nbのいずれか
1種ないし2種以上の元素:12%以下,W:5〜14
%,Mo:3〜9%,Co:7〜14%,残部実質的に
Fe(所望によりB:2%以下,Ni:3%以下の1種
もしくは2種を含有)からなり、基地中に、粒径10〜
50μmの炭化物粒が均一に分散し、その面積率は10
〜50%であることを特徴としている。以下、本発明に
ついて詳しく説明する。
[Means and effects for solving the problems] The high speed steel sintered alloy of the present invention has C: 1.7 to 3.5%, Si: 0.
4% or less (or 0.6 to 3.5%), Mn: 0.4
% or less, Cr: 3-20%, any one or more elements of V, Ti, Nb: 12% or less, W: 5-14
%, Mo: 3 to 9%, Co: 7 to 14%, the remainder substantially consisting of Fe (containing one or two of B: 2% or less and Ni: 3% or less, if desired), and the base contains , particle size 10~
Carbide grains of 50 μm are uniformly dispersed, and the area ratio is 10
~50%. The present invention will be explained in detail below.

【0007】本発明の高速度鋼系焼結合金の化学組成限
定理由は次のとおりである。 C:1.7〜3.5% CはV、W、Mo等と結合して、MC型、M6C型、M
2C型等の炭化物を形成し、合金の高度を高める。この
効果を十分ならしめるため、含有量の下限を1.7%と
する。しかし、Cの増量は反面において、炭化物の過剰
析出による合金の靭性劣化および加工性の低下等の原因
となる。このため、3.5%を上限とする。
The reason for limiting the chemical composition of the high-speed steel sintered alloy of the present invention is as follows. C: 1.7-3.5% C combines with V, W, Mo, etc. to form MC type, M6C type, M
Forms carbides such as 2C type, increasing the alloy's sophistication. In order to make this effect sufficient, the lower limit of the content is set to 1.7%. However, on the other hand, increasing the amount of C causes deterioration of the toughness of the alloy and deterioration of workability due to excessive precipitation of carbides. Therefore, the upper limit is set at 3.5%.

【0008】Si:0.4%以下、または0.6〜3.
5% Siは焼入れ性改善に奏効する。また、添加量の増加に
より耐孔食性改善効果が得られる。焼入れ性改善効果は
0.4%までの添加で十分であり、それを越える添加の
必要はない。従って焼入れ性改善のための添加量は0.
4%までとする。耐孔食性改善効果は0.6%以上の添
加により現れる。従って焼入れ性改善と耐孔食性の改善
を望む場合の添加量は0.6%以上とする。添加増量に
より効果を増すが、反面靭性の低下を招き、曲げ荷重や
熱的・機械的衝撃に対する抵抗性の不足をきたすので、
3.5%を上限とする。
[0008]Si: 0.4% or less, or 0.6 to 3.
5% Si is effective in improving hardenability. In addition, the effect of improving pitting corrosion resistance can be obtained by increasing the amount added. Addition of up to 0.4% is sufficient for the hardenability improvement effect, and there is no need to add more than that. Therefore, the amount added to improve hardenability is 0.
Up to 4%. The effect of improving pitting corrosion resistance appears when 0.6% or more is added. Therefore, when it is desired to improve hardenability and pitting corrosion resistance, the amount added should be 0.6% or more. Increasing the amount added increases the effect, but on the other hand, it causes a decrease in toughness, resulting in a lack of resistance to bending loads and thermal/mechanical shock.
The upper limit is 3.5%.

【0009】Mn:0.4%以下 Mnは脱酸作用を有し、また焼入れ性の改善効果を有す
る。この効果を得るための添加量は0.4%までで十分
であり、多量の添加は高温におけるオーステナイト粒の
粗大化を招き、合金の脆化の原因となる。このため、0
.4%を上限とした。
Mn: 0.4% or less Mn has a deoxidizing effect and also has the effect of improving hardenability. It is sufficient to add up to 0.4% to obtain this effect, and addition of a large amount leads to coarsening of austenite grains at high temperatures, causing embrittlement of the alloy. For this reason, 0
.. The upper limit was set at 4%.

【0010】Cr:3〜20% Crは合金の焼入れ性を改善し、また焼もどし軟化抵抗
性を高める。更に、その添加増量により、耐孔食性向上
効果が得られる。焼入れ性、および焼もどし軟化抵抗性
の改善効果は3%以上の添加により得られ、その効果は
6%までの添加でほぼ飽和する。耐孔食性改善効果は6
.5%以上の添加により現れる。従って、焼入れ性およ
び焼もどし軟化抵抗性の改善と併せて耐孔食性改善効果
を望む場合の添加量は6.5%を下限とする。添加量の
増加によりその効果を増すが、その反面、熱間圧延ロー
ルの用途では、赤熱鋼材に対する焼付抵抗性が減じ、ま
たロール表面の耐肌荒れ性が低下するので、20%を上
限とし、好ましくは15%までとする。
Cr: 3-20% Cr improves the hardenability of the alloy and also increases its resistance to temper softening. Furthermore, by increasing the amount added, the effect of improving pitting corrosion resistance can be obtained. The effect of improving hardenability and temper softening resistance can be obtained by adding 3% or more, and the effect is almost saturated by adding up to 6%. Pitting corrosion resistance improvement effect is 6
.. Appears when 5% or more is added. Therefore, if an improvement in pitting corrosion resistance is desired in addition to improvement in hardenability and temper softening resistance, the lower limit of the amount added should be 6.5%. Increasing the amount added increases the effect, but on the other hand, in applications for hot rolling rolls, the seizing resistance to red-hot steel materials and the roughening resistance of the roll surface decreases, so the upper limit is preferably 20%. shall be up to 15%.

【0011】V,Ti,Nb:12%以下V,Ti,N
bは焼入れ後の焼もどし処理により、微細なMC型炭化
物として析出し顕著な二次硬化をもたらし、また焼もど
し軟化抵抗性を示す。更に、Vは焼結合金組織を微細化
し靭性等の機械的性質を高める。しかし、多量の添加は
靭性の低下を招き、また切削加工性等を悪くするので、
12%を上限とする。2種または3種の元素を複合添加
する場合は、その合計量を12%以下とする。
[0011] V, Ti, Nb: 12% or less V, Ti, N
b is precipitated as fine MC-type carbides by tempering treatment after quenching, resulting in significant secondary hardening and exhibiting resistance to tempering softening. Furthermore, V refines the sintered alloy structure and improves mechanical properties such as toughness. However, adding too much leads to a decrease in toughness and poor machinability, so
The upper limit is 12%. When adding two or three types of elements in combination, the total amount should be 12% or less.

【0012】W:5〜14% Wは強力な炭化物形成元素であり、焼もどし処理により
微細なM6C型炭化物として析出し二次硬化をもたらす
。また焼もどし軟化抵抗性を示す。添加量の下限を5%
としたのは、その炭化物の析出による十分な二次硬化を
得るためである。添加増量により、その効果を増すが、
反面靭性等の機械的性質の低下を招くので、14%を上
限とした。
W: 5 to 14% W is a strong carbide-forming element, and upon tempering, it precipitates as fine M6C type carbides and causes secondary hardening. It also shows resistance to temper softening. Lower limit of addition amount to 5%
The reason for this is to obtain sufficient secondary hardening due to the precipitation of carbides. The effect increases by increasing the amount added, but
On the other hand, it causes a decrease in mechanical properties such as toughness, so the upper limit was set at 14%.

【0013】Mo:3〜9% Moは焼入れ性を高めると共に、焼もどし処理により微
細なM2C型炭化物を形成して二次硬化を生起し、高温
硬さの保持に奏効する。この効果は3%以上の添加によ
り得られる。しかし9%をこえるとその効果はほぼ飽和
するので9%までとする。
Mo: 3-9% Mo not only improves hardenability, but also forms fine M2C type carbides during tempering treatment to cause secondary hardening, and is effective in maintaining high-temperature hardness. This effect can be obtained by adding 3% or more. However, if it exceeds 9%, the effect is almost saturated, so it is limited to 9%.

【0014】Co:7〜14% Coは、焼もどし処理による炭化物の析出と、マトリッ
クスの二次マルテンサイト化による焼結合金の強化を助
長すると共に、高温硬さの向上に奏効する。この効果は
7%以上の添加により得られる。しかし、14%をこえ
るとその効果はほぼ飽和するので14%を上限とする。
Co: 7 to 14% Co promotes the precipitation of carbides during tempering and strengthens the sintered alloy through secondary martensite formation of the matrix, and is effective in improving high-temperature hardness. This effect can be obtained by adding 7% or more. However, if it exceeds 14%, the effect is almost saturated, so 14% is set as the upper limit.

【0015】B:2%以下 Bは、C代替元素であり、ほう化物を形成して耐摩耗性
の向上に寄与する。2%のBは1%のCに等価である。 また基地中に固溶して基地を強化する。しかしし、多量
の添加は、合金の融点を下げ、強度の低下の原因となる
ので、2%を上限とする。
B: 2% or less B is an element replacing C, forms a boride, and contributes to improving wear resistance. 2% B is equivalent to 1% C. It also strengthens the base by dissolving it into the base. However, addition of a large amount lowers the melting point of the alloy and causes a decrease in strength, so the upper limit is set at 2%.

【0016】Ni:3%以下 Niは、オーステナイト相安定化元素であり、残留オー
ステナイト量の増加による靭性の改善に奏効する。しか
し、オーステナイト量の増加は、反面において機械加工
の困難化を招くので、3%を越えてはならない。
Ni: 3% or less Ni is an austenite phase stabilizing element and is effective in improving toughness by increasing the amount of retained austenite. However, since an increase in the amount of austenite makes machining difficult, it should not exceed 3%.

【0017】本発明の高速度鋼系焼結合金は、粒径10
〜50μmの比較的粗粒の炭化物が基地中に分散した組
織を有する。その粗粒炭化物は後記のように焼結処理工
程において液相からの晶出炭化物として形成することが
できる。
The high speed steel sintered alloy of the present invention has a grain size of 10
It has a structure in which relatively coarse grained carbides of ~50 μm are dispersed throughout the matrix. The coarse carbide can be formed as carbide crystallized from the liquid phase during the sintering process as described below.

【0018】基地中に分散する上記の粗粒炭化物粒の存
在により、焼結合金のクラック伝播に対する抵抗性が高
められる。すなわち、焼結合金の実使用においてクラッ
クが生じた場合、クラックの伝播は基地中に分散した粗
粒の炭化物との衝突により、前方への伝播が阻まれ、ま
たそのクラックが炭化物粒を越えて前方に伝播するには
炭化物粒を裂割させねばならないので、それに伴ってク
ラックの伝播エネルギが効果的に減殺される。このよう
に、基地中に分散する粗粒の炭化物粒はクラックの伝播
を抑制・阻止する障壁として機能する。
The presence of the coarse carbide grains dispersed in the matrix increases the resistance of the sintered alloy to crack propagation. In other words, when a crack occurs in the actual use of a sintered alloy, the propagation of the crack is blocked by collision with the coarse carbide grains dispersed in the matrix, and the crack also crosses the carbide grains. Since the carbide grains must be split in order to propagate forward, the propagation energy of the crack is effectively reduced accordingly. In this way, the coarse carbide grains dispersed in the matrix function as a barrier that suppresses and prevents the propagation of cracks.

【0019】上記炭化物の粒径を10μm以上としたの
は、クラックの伝播に対する障壁効果を確保するためで
あり、またその粗粒炭化物粒の基地中に占める割合を面
積率で10%以上としたのは、それに満たないと、炭化
物粒の障壁効果によるクラック伝播抵抗性の改善効果が
不足するからである。より好ましくは20%以上である
The grain size of the carbide is set to 10 μm or more in order to ensure a barrier effect against the propagation of cracks, and the proportion of the coarse carbide grains in the matrix is set to 10% or more in terms of area ratio. This is because if it is less than this, the effect of improving crack propagation resistance due to the barrier effect of carbide grains will be insufficient. More preferably, it is 20% or more.

【0020】なお、粗粒炭化物粒の粒径の上限を50μ
mとし、面積率を50%までとしたのは、クラック伝播
の抵抗性改善効果の点から、それ以上とする利益がない
だけでなく、却って焼結合金の脆化傾向を招くからであ
る。
[0020] The upper limit of the grain size of the coarse carbide grains is 50 μm.
The reason why the area ratio is set to m and the area ratio is set to 50% is that not only is there no benefit in increasing the crack propagation resistance from the viewpoint of improving the crack propagation resistance, but it also causes a tendency for the sintered alloy to become brittle.

【0021】本発明の焼結合金を製造するための焼結手
法は任意であるが、好ましくは熱間等方圧加圧焼結法(
HIP焼結法)が適用される。HIP焼結法によれば、
高加圧力(例えば800kgf  /cm2以上)の均
一な作用下に高緻密質の焼結合金を得ることができる。 なお、合金粉末が比較的多量の酸化皮膜を付随するもの
である場合は、水素含有ガス等の還元ガスを使用し加熱
下に酸化皮膜を還元除去したうえで焼結を行うようにす
ればよい。本発明ではその焼結処理を、液相が共存する
温度域において行う。その焼結処理過程において、液相
から前述の粗粒サイズの炭化物を晶出形成することがで
きる。このための焼結処理温度は、絶対温度(°K)で
表示した融点の約90〜95%の温度域〔例えば、融点
が1320℃(=1593°K)の場合は、1432°
K(=1593°K×0.9)〜1513°K(=15
93°K×0.95)の温度域〕が好適である。その処
理時間は、粗粒炭化物粒の不足または過剰生成をきたす
ことなく所定の焼結が達成されるように、処理温度や加
圧力等に応じて設定されるが、概ね2〜4Hrの処理と
してよい。
Although any sintering method can be used to produce the sintered alloy of the present invention, the hot isostatic pressure sintering method (
HIP sintering method) is applied. According to the HIP sintering method,
A highly dense sintered alloy can be obtained under the uniform action of a high pressure (for example, 800 kgf/cm2 or more). If the alloy powder is accompanied by a relatively large amount of oxide film, the oxide film may be reduced and removed under heating using a reducing gas such as a hydrogen-containing gas before sintering. . In the present invention, the sintering process is performed in a temperature range where a liquid phase coexists. During the sintering process, the aforementioned coarse-grained carbides can be crystallized from the liquid phase. The sintering temperature for this purpose is approximately 90 to 95% of the melting point expressed in absolute temperature (°K) [for example, if the melting point is 1320°C (=1593°K), 1432°C
K (=1593°K×0.9) ~ 1513°K (=15
A temperature range of 93°K×0.95) is suitable. The treatment time is set according to the treatment temperature, pressing force, etc. so that the desired sintering is achieved without causing a shortage or excessive production of coarse carbide grains, but the treatment time is generally 2 to 4 hours. good.

【0022】焼結処理後、調質のための熱処理(焼入れ
・焼もどし処理)を行う。その熱処理は高速度鋼系合金
製造の常法に従って行えばよい。すなわち、焼入れ処理
は、例えば温度約1050〜1250℃に加熱保持した
のち、油浴または塩浴を使用し、あるいはガス(N2ガ
ス等)を冷媒として行えばよく、また焼もどし処理は、
例えば温度約500〜600℃に適当時間(例えば5〜
10Hr)保持したのち、徐冷(空冷等)する操作を1
回ないしは複数回(例えば2〜4回)実施することによ
り達成することができる。
After the sintering process, heat treatment (quenching/tempering process) for refining is performed. The heat treatment may be carried out in accordance with conventional methods for producing high-speed steel alloys. That is, the quenching treatment may be performed by heating and maintaining the temperature at about 1050 to 1250°C, for example, using an oil bath or salt bath, or using a gas (N2 gas, etc.) as a refrigerant, and the tempering treatment can be performed by
For example, at a temperature of about 500 to 600℃ for an appropriate time (for example, 5 to 600℃)
After holding for 10 hours, perform gradual cooling (air cooling, etc.)
This can be achieved by carrying out the procedure once or multiple times (for example, 2 to 4 times).

【0023】本発明の高速度鋼系焼結合金は、上記調質
熱処理が施されて、マルテンサイトまたはベイナイトの
基地に、前記晶出炭化物として成形された粒径10〜5
0μmの粗粒炭化物、焼もどしでの二次炭化物として析
出した微細炭化物粒が混在分散した組織となり、その微
細炭化物の分散硬化作用による高硬度・高耐摩耗性と、
粗粒炭化物のクラック伝播抵抗性による高靭性とがもた
らされる。なお、基地中の炭化物粒の総量は面積率約1
5〜55%程度である。
The high-speed steel-based sintered alloy of the present invention is subjected to the above-mentioned refining heat treatment, and has a grain size of 10 to 5 formed as the crystallized carbide on the martensite or bainite base.
The structure is a mixture of 0μm coarse carbide and fine carbide grains precipitated as secondary carbide during tempering, resulting in high hardness and high wear resistance due to the dispersion hardening effect of the fine carbide.
High toughness is provided by the crack propagation resistance of coarse carbides. In addition, the total amount of carbide grains in the base has an area ratio of approximately 1
It is about 5 to 55%.

【0024】本発明の高速度鋼系焼結合金の用途は多岐
に亘るが、耐摩耗性等は部材の表面の問題であるので、
例えば圧延用ロールの胴部に本発明の焼結合金を適用す
る場合には、適当な金属材料(例えは、JIS  G 
 4105  のCr−Mo系合金鋼、同4103のC
r−Ni−Mo系合金鋼等)からなる中空もしくは中実
形状の円柱体を基材とし、その外周を本発明の焼結合金
で被覆した積層構造とすることができる。
[0024] The high-speed steel sintered alloy of the present invention has a wide variety of uses, but since wear resistance etc. are a matter of the surface of the member,
For example, when applying the sintered alloy of the present invention to the body of a rolling roll, an appropriate metal material (for example, JIS G
4105 Cr-Mo alloy steel, 4103 C
The laminated structure can be formed by using a hollow or solid cylindrical body made of (r-Ni-Mo alloy steel, etc.) as a base material and covering the outer periphery with the sintered alloy of the present invention.

【0025】[0025]

【実施例】所定の化学組成に調整された高速度鋼系合金
粉末(平均粒径:200μm)をカプセル材(軟鋼製)
に充填し、これに還元ガス(H2ガス)を導入して粉末
表面の酸化皮膜を還元除去処理(800℃×2Hr)し
、脱気・密封したうえ、HIP処理を行った。処理後、
カプセル材を機械加工により除去し、焼入れ・焼もどし
処理を行って供試焼結合金ブロックを得た。なお、焼入
れ処理は、真空チャバン内で、1150〜1200℃に
、2Hr保持後、N2ガス(常温・常圧)を導入するガ
ス冷却により行い、焼もどし処理は、540〜560℃
に5〜10Hr加熱保持して放冷するヒートパターンを
3回反復することにより行った。表1に供試焼結合金の
化学組成、表2に合金の融点と焼結処理条件を示す。N
o.1〜8は、粗粒炭化物(粒径10〜50μm)を晶
出形成させた発明例であり、No.101〜104は、
粗粒炭化物の晶出形成の殆どない通常の焼結条件により
焼結された比較例である。図1は発明例No.2、図2
は比較例No.103のそれぞれの焼結合金の組織(走
査型電子顕微鏡写真、倍率1500)を示している。比
較例No.103の炭化物の平均粒径は約2μmである
[Example] High-speed steel alloy powder (average particle size: 200 μm) adjusted to a predetermined chemical composition is used as a capsule material (made of mild steel)
A reducing gas (H2 gas) was introduced into the powder to remove the oxide film on the surface of the powder (800° C. x 2 hours), and the powder was degassed and sealed, followed by HIP treatment. After treatment,
The capsule material was removed by machining, and a test sintered alloy block was obtained by quenching and tempering. The quenching process is performed in a vacuum chamber at 1150 to 1200°C for 2 hours, followed by gas cooling by introducing N2 gas (normal temperature, normal pressure), and the tempering process is performed at 540 to 560°C.
This was done by repeating a heat pattern of heating and holding for 5 to 10 hours and allowing to cool three times. Table 1 shows the chemical composition of the test sintered alloy, and Table 2 shows the melting point and sintering conditions of the alloy. N
o. Nos. 1 to 8 are invention examples in which coarse grained carbide (particle size: 10 to 50 μm) was crystallized; 101 to 104 are
This is a comparative example sintered under normal sintering conditions with almost no crystallization of coarse carbides. FIG. 1 shows invention example No. 2.Figure 2
is comparative example No. 103 shows the structure of each sintered alloy (scanning electron micrograph, magnification: 1500). Comparative example no. The average grain size of the carbide of No. 103 is about 2 μm.

【0026】表3は各供試焼結合金について、基地中の
粗粒炭化物(10〜50μm)の面積率、および諸特性
試験結果を示している。
Table 3 shows the area ratio of coarse carbides (10 to 50 μm) in the matrix and the results of various characteristic tests for each of the sintered alloys tested.

【0027】(1)摩耗試験 大越式迅速摩耗試験により比摩耗量(mm2/kgf)
を測定 (i)  回転輪:SUJ2:硬度(HRC)60、回
転輪幅3.0mm (ii)  摩耗速度:3.4m/sec  (iii
)摩耗距離:200m (IV)  最終荷重:16.8Kg・f(2)曲げ試
験 3点曲げ法により曲げ強さ(kgf/mm2)を測定。 試験片サイズ:3×4×50,mm、スパン距離:30
mm。 (3)靭性試験 ヌープ圧子圧痕法により破壊靭性値KIC(MNm3/
2)を測定。
(1) Wear test The specific wear amount (mm2/kgf) was determined by the Okoshi type rapid wear test.
Measure (i) Rotating wheel: SUJ2: hardness (HRC) 60, rotating wheel width 3.0 mm (ii) Wear rate: 3.4 m/sec (iii
) Wear distance: 200 m (IV) Final load: 16.8 Kg・f (2) Bending test Measure bending strength (kgf/mm2) using the 3-point bending method. Test piece size: 3 x 4 x 50, mm, span distance: 30
mm. (3) Toughness test Fracture toughness value KIC (MNm3/
Measure 2).

【0028】[0028]

【表1】[Table 1]

【0029】[0029]

【表2】[Table 2]

【0030】[0030]

【表3】[Table 3]

【0031】表3に示したように、発明例No.1〜8
の焼結合金は高硬度・高耐摩耗性を有していると同時に
、曲げ強度が高く、かつ破壊靭性値もすぐれている。 この改良された曲げ強度や破壊靭性値は、粗粒炭化物に
よるクラック伝播の抵抗性改善効果によるものであり、
粗粒炭化物を殆ど含まない比較例No.101〜104
との差異は歴然である。
As shown in Table 3, invention example No. 1-8
The sintered alloy has high hardness and high wear resistance, as well as high bending strength and excellent fracture toughness. This improved bending strength and fracture toughness is due to the improved crack propagation resistance effect of coarse carbides.
Comparative example No. containing almost no coarse carbide. 101-104
The difference is obvious.

【0032】[0032]

【発明の効果】本発明の高速度鋼系焼結合金は、硬質・
高耐摩耗性と併せて、クラック伝播の抵抗性にすぐれ、
高靭性を備えている。従って、圧延用ロール等、曲げ荷
重や、熱的・機械的衝撃等が作用する摩耗用途の部材料
として有用である。
[Effect of the invention] The high-speed steel sintered alloy of the present invention is hard and
In addition to high wear resistance, it also has excellent crack propagation resistance.
It has high toughness. Therefore, it is useful as a part material for wear applications such as rolling rolls, which are subjected to bending loads, thermal and mechanical shocks, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の焼結合金の金属組織を示す図面代用顕
微鏡写真
[Fig. 1] Microscopic photograph used as a drawing showing the metal structure of the sintered alloy of the present invention

【図2】焼結合金(比較材)の金属組織を示す図面代用
顕微鏡写真
[Figure 2] Microscopic photograph used as a drawing showing the metal structure of a sintered alloy (comparative material)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  C:1.7〜3.5%,Si:0.4
%以下、Mn:0.4%以下,Cr:3〜20%,V,
Ti,Nbのいずれか1種ないし2種以上の元素:12
%以下,W:5〜14%,Mo:3〜9%,Co:7〜
14%,残部実質的にFeからなり、基地中に、粒径1
0〜50μmの炭化物粒が均一に分散し、その面積率は
10〜50%であることを特徴とする耐摩耗性・靭性等
にすぐれた高速度鋼系焼結合金。
[Claim 1] C: 1.7-3.5%, Si: 0.4
% or less, Mn: 0.4% or less, Cr: 3 to 20%, V,
One or more elements of Ti and Nb: 12
% or less, W: 5-14%, Mo: 3-9%, Co: 7-
14%, the remainder essentially consists of Fe, with grain size 1
A high-speed steel-based sintered alloy with excellent wear resistance, toughness, etc., characterized by uniformly dispersed carbide grains of 0 to 50 μm and an area ratio of 10 to 50%.
【請求項2】  C:1.7〜3.5%,Si:0.6
〜3.5%、Mn:0.4%以下,Cr:3〜20%,
V,Ti,Nbのいずれか1種ないし2種以上の元素:
12%以下,W:5〜14%,Mo:3〜9%,Co:
7〜14%,残部実質的にFeからなり、基地中に、粒
径10〜50μmの炭化物粒が均一に分散し、その面積
率は10〜50%であることを特徴とする耐摩耗性・靭
性等にすぐれた高速度鋼系焼結合金。
[Claim 2] C: 1.7 to 3.5%, Si: 0.6
~3.5%, Mn: 0.4% or less, Cr: 3-20%,
One or more elements of V, Ti, and Nb:
12% or less, W: 5-14%, Mo: 3-9%, Co:
7 to 14%, the remainder substantially consisting of Fe, and carbide grains with a grain size of 10 to 50 μm are uniformly dispersed in the matrix, and the area ratio is 10 to 50%. A high-speed steel-based sintered alloy with excellent toughness.
【請求項3】  B:2%以下、Ni:3%以下の1種
または2種を含有する請求項1または請求項2に記載の
耐摩耗性・靭性等にすぐれた高速度鋼系焼結合金。
3. The high-speed steel sintered bond with excellent wear resistance, toughness, etc. according to claim 1 or 2, which contains one or both of B: 2% or less and Ni: 3% or less. Money.
JP14700991A 1991-04-01 1991-04-01 High speed steel based sintered alloy Expired - Lifetime JP2857724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14700991A JP2857724B2 (en) 1991-04-01 1991-04-01 High speed steel based sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14700991A JP2857724B2 (en) 1991-04-01 1991-04-01 High speed steel based sintered alloy

Publications (2)

Publication Number Publication Date
JPH04358046A true JPH04358046A (en) 1992-12-11
JP2857724B2 JP2857724B2 (en) 1999-02-17

Family

ID=15420494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14700991A Expired - Lifetime JP2857724B2 (en) 1991-04-01 1991-04-01 High speed steel based sintered alloy

Country Status (1)

Country Link
JP (1) JP2857724B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148510A (en) * 1991-04-22 1993-06-15 Hitachi Metals Ltd Wear resistant composite roll and manufacture thereof
FR2722211A1 (en) * 1994-07-06 1996-01-12 Thyssen Aciers Speciaux Sa Wear-resistant tool steel
US20150284829A1 (en) * 2014-04-07 2015-10-08 Scoperta, Inc. Fine-grained high carbide cast iron alloys
US20160289803A1 (en) * 2015-04-06 2016-10-06 Scoperta, Inc. Fine-grained high carbide cast iron alloys
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
US10329647B2 (en) 2014-12-16 2019-06-25 Scoperta, Inc. Tough and wear resistant ferrous alloys containing multiple hardphases
US11085102B2 (en) 2011-12-30 2021-08-10 Oerlikon Metco (Us) Inc. Coating compositions
US11253957B2 (en) 2015-09-04 2022-02-22 Oerlikon Metco (Us) Inc. Chromium free and low-chromium wear resistant alloys
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148510A (en) * 1991-04-22 1993-06-15 Hitachi Metals Ltd Wear resistant composite roll and manufacture thereof
FR2722211A1 (en) * 1994-07-06 1996-01-12 Thyssen Aciers Speciaux Sa Wear-resistant tool steel
US11085102B2 (en) 2011-12-30 2021-08-10 Oerlikon Metco (Us) Inc. Coating compositions
US20150284829A1 (en) * 2014-04-07 2015-10-08 Scoperta, Inc. Fine-grained high carbide cast iron alloys
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
US11111912B2 (en) 2014-06-09 2021-09-07 Oerlikon Metco (Us) Inc. Crack resistant hardfacing alloys
US11130205B2 (en) 2014-06-09 2021-09-28 Oerlikon Metco (Us) Inc. Crack resistant hardfacing alloys
US10329647B2 (en) 2014-12-16 2019-06-25 Scoperta, Inc. Tough and wear resistant ferrous alloys containing multiple hardphases
US20160289803A1 (en) * 2015-04-06 2016-10-06 Scoperta, Inc. Fine-grained high carbide cast iron alloys
US11253957B2 (en) 2015-09-04 2022-02-22 Oerlikon Metco (Us) Inc. Chromium free and low-chromium wear resistant alloys
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Also Published As

Publication number Publication date
JP2857724B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
EP3926065A1 (en) Hot work die steel, heat treatment method thereof and hot work die
EP2662460A1 (en) Tough bainitic heat treatments on steels for tooling
JP2857724B2 (en) High speed steel based sintered alloy
JPH07179997A (en) High speed steel type powder alloy
JP2791445B2 (en) High speed steel based sintered alloy
JPH07166300A (en) High speed steel type powder alloy
JP2796893B2 (en) High speed steel based sintered alloy
JP3032995B2 (en) High-speed steel-based sintered alloy for steel roll, roll body and manufacturing method
JP2972032B2 (en) High speed steel based sintered alloy
JP2972033B2 (en) High speed steel based sintered alloy
JP3032997B2 (en) High speed steel based sintered alloy
JP2796894B2 (en) High speed steel based sintered alloy
JPH07268569A (en) Wear resistant sintered alloy and rolling roll constituted thereof
JP2775614B2 (en) High speed steel based sintered alloy
JP2796896B2 (en) High speed steel based sintered alloy
JP2775615B2 (en) High speed steel based sintered alloy
JP3032996B2 (en) High-speed steel-based sintered alloy for steel roll, roll body and manufacturing method
JP2796897B2 (en) High speed steel based sintered alloy
JP2972031B2 (en) High-speed steel-based sintered alloy for steel roll, roll body and manufacturing method
JP2964197B2 (en) High-speed steel-based sintered alloy for steel roll, roll body and manufacturing method
JP3746610B2 (en) High-speed cast iron material with excellent wear resistance at high temperatures
JPH0881734A (en) Steel for nitriding treatment and production therof
JP2963579B2 (en) High speed steel based sintered alloy
JPH05148510A (en) Wear resistant composite roll and manufacture thereof
JP2796895B2 (en) High speed steel based sintered alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111204

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111204

Year of fee payment: 13