JPH04358009A - Production of metal powder - Google Patents

Production of metal powder

Info

Publication number
JPH04358009A
JPH04358009A JP13434891A JP13434891A JPH04358009A JP H04358009 A JPH04358009 A JP H04358009A JP 13434891 A JP13434891 A JP 13434891A JP 13434891 A JP13434891 A JP 13434891A JP H04358009 A JPH04358009 A JP H04358009A
Authority
JP
Japan
Prior art keywords
cooling liquid
molten metal
inert gas
cylinder
liquid layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13434891A
Other languages
Japanese (ja)
Other versions
JP2672044B2 (en
Inventor
Masanori Yoshino
正規 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3134348A priority Critical patent/JP2672044B2/en
Publication of JPH04358009A publication Critical patent/JPH04358009A/en
Application granted granted Critical
Publication of JP2672044B2 publication Critical patent/JP2672044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To continuously produce a metal or alloy fine powder free of an oxide film by injecting the molten metal into a liq. coolant layer on the inner peripheral wall of a cylinder contg. an inert gas atmosphere with an inert gas, quenching and solidifying the molten metal. CONSTITUTION:An inert gas such as Ar and N is injected into a space 15 in a cooling cylinder 1 from a conduit 14 and an inert gas pipe 4 to replace the air in the space 15 by the inert gas. The oxygen-free cooling water in a tank 18 is sucked up by a pump 3, spiraled along the inner periphery of the cylinder 1 and allowed to flow down to form a cooling water layer 31. A molten metal 32 of Al, etc., in a crucible 2 is allowed to flow down from a bottom nozzle 21 as a molten metal current 33 by an inert gas 24. An inert gas such as Ar is simultaneously injected from the tip 25 of an inert gas injection pipe 4 and blown against the current 33 to form a fine metal particle which is injected into the cooling water layer 33, quenched and solidified. The particles without the surface oxidized are supplied as a powder to the mesh 16 of a separator 17 along with water, separated from cooling water and recovered.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、溶融金属を旋回移動す
る冷却液層中に供給して金属粉末を製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing metal powder by supplying molten metal into a rotating cooling liquid layer.

【0002】0002

【従来の技術】急冷凝固金属粉末は、結晶粒が微細で合
金元素も過飽和に含有させることができるので、例えば
アルミニウムやその合金の急冷凝固粉末によって形成さ
れた押出材は、溶製材では具備することのない優れた材
質特性を有し、機械部品等の素材として注目されている
[Prior Art] Rapidly solidified metal powder has fine crystal grains and can contain supersaturated alloying elements. For example, an extruded material formed from rapidly solidified powder of aluminum or its alloy has It has exceptional material properties and is attracting attention as a material for mechanical parts.

【0003】前記急冷凝固金属粉末の好適な製造方法と
して、回転ドラム法がある。この方法は、図2に示すよ
うに、回転する冷却ドラム61の内周面に冷却液層62
を遠心力の作用で形成し、該冷却液層62に溶融金属を
噴射し、微細に分断して急冷凝固した金属粉末を得る方
法である。同図において、63は溶融金属供給手段とし
ての噴射るつぼであり、その外周面には加熱用の高周波
コイル64が装着され、その下部側壁には噴射ノズル6
5が開設されている。前記るつぼ63内の溶融金属66
は、該るつぼ63に不活性ガス67を加圧注入すること
によって前記ノズル65から噴射される。そして、冷却
ドラム61内の金属粉末は、一定量溜まると、冷却ドラ
ム61の回転を止め、冷却液と共に回収され、脱液後、
乾燥される。かかる金属粉末の製造方法は特公平1−4
9769 号公報に開示されている。
[0003] A preferred method for producing the rapidly solidified metal powder is a rotating drum method. In this method, as shown in FIG. 2, a cooling liquid layer 62 is formed on the inner peripheral surface of a rotating cooling drum 61.
In this method, a molten metal is formed by the action of centrifugal force, and molten metal is injected into the cooling liquid layer 62 to obtain finely divided metal powder that is rapidly solidified. In the same figure, 63 is an injection crucible serving as a means for supplying molten metal, a high frequency coil 64 for heating is attached to the outer peripheral surface of the crucible, and an injection nozzle 6 is attached to the lower side wall of the crucible.
5 have been established. Molten metal 66 in the crucible 63
is injected from the nozzle 65 by injecting an inert gas 67 into the crucible 63 under pressure. When a certain amount of metal powder accumulates in the cooling drum 61, the rotation of the cooling drum 61 is stopped and the metal powder is collected together with the cooling liquid.
dried. The method for producing such metal powder is described in Japanese Patent Publication No. 1-4.
It is disclosed in Publication No. 9769.

【0004】0004

【発明が解決しようとする課題】しかしながら、回転ド
ラム法では、いわゆるバッチ式操業となり、生産性が劣
る。そのうえ、粉末回収時に溶融金属の噴射を止めなけ
ればならないため、ノズルに孔詰りが生じ易いという問
題がある。また、冷却温度を一定にするためには、冷却
液層の液面より冷却液を供給、排出して温度制御しなけ
ればならないが、この際、液面が乱れ、粉末粒度や品質
にばらつきが生じ易いという問題がある。
However, the rotating drum method involves a so-called batch operation, resulting in poor productivity. Furthermore, since the injection of molten metal must be stopped during powder recovery, there is a problem in that the nozzle is likely to become clogged. In addition, in order to keep the cooling temperature constant, the temperature must be controlled by supplying and discharging the cooling liquid from the liquid level of the cooling liquid layer, but in this case, the liquid level is disturbed and the powder particle size and quality may vary. There is a problem in that it is easy to occur.

【0005】また、溶融金属が噴射された後、冷却液層
に至るまでにその表面が酸化し、酸化膜が形成されるた
め、冷却液層による分断が困難となり、又金属粉末の酸
素や水素含有量が増加し、品質劣化を招来する。また、
冷却液層の旋回速度に限度があり、溶融金属の表面酸化
と相まって微粉を得るのが困難であるという問題がある
In addition, after the molten metal is injected, its surface becomes oxidized and an oxide film is formed before it reaches the cooling liquid layer, making it difficult to separate the metal powder by the cooling liquid layer, and the oxygen and hydrogen of the metal powder. The content increases, leading to quality deterioration. Also,
There is a problem in that there is a limit to the rotational speed of the cooling liquid layer, and combined with surface oxidation of the molten metal, it is difficult to obtain fine powder.

【0006】本発明は、安定した品質の金属微粉末を連
続的に製造することができ、しかも酸化膜の生成を抑制
することができる金属粉末の製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing metal powder that can continuously produce fine metal powder of stable quality and can also suppress the formation of an oxide film.

【0007】[0007]

【課題を解決するための手段】本発明の金属粉末の製造
方法は、上蓋および下蓋を備えた冷却用筒体の内周面に
沿って冷却液を噴出供給して筒体内周面に沿って旋回し
ながら流下する冷却液層を上蓋から下蓋に渡って形成す
ると共に冷却液を筒体下部より排出し、冷却液層の内側
でかつ上蓋および下蓋によって閉塞された空間部に不活
性ガスを充填し、もしくは該空間部の空気を排気し、該
空間部に開孔した溶融金属供給容器の供給孔より溶融金
属を該空間部内に流下し、流下する溶融金属流に不活性
ガスを吹き付けて溶滴に分断すると共に該溶滴を冷却液
層に供給し、冷却液層によって分断し冷却凝固させて金
属粉末を得ることを発明の構成とするものである。溶融
金属の流下に際しては、溶融金属供給容器に不活性ガス
等の圧媒を供給して容器内の溶融金属を供給孔から流出
させてもよく、又容器内の溶融金属の自重により供給孔
から流出させてもよい。
[Means for Solving the Problems] The method for producing metal powder of the present invention includes jetting and supplying a cooling liquid along the inner peripheral surface of a cooling cylinder provided with an upper lid and a lower lid. A cooling liquid layer that flows downward while swirling is formed from the upper cover to the lower cover, and the cooling liquid is discharged from the bottom of the cylinder, and an inert layer is formed inside the cooling liquid layer and in the space closed by the upper cover and the lower cover. Filling the space with gas or evacuating the air in the space, letting the molten metal flow into the space through the supply hole of a molten metal supply container opened in the space, and supplying an inert gas to the flowing molten metal flow. The structure of the invention is to spray the metal powder to break it into droplets, supply the droplets to a cooling liquid layer, cut them into pieces by the cooling liquid layer, cool and solidify them, and obtain a metal powder. When the molten metal flows down, a pressure medium such as an inert gas may be supplied to the molten metal supply container to cause the molten metal in the container to flow out from the supply hole, or the weight of the molten metal in the container may cause the molten metal to flow out from the supply hole. It may be allowed to flow out.

【0008】[0008]

【作用】冷却用筒体の内周面に沿って供給された冷却液
は、筒体内周面に沿って旋回しながら流下し、旋回時の
遠心力の作用でほぼ一定内径の冷却液層を形成する。冷
却液層は常に新たに供給される冷却液によって形成され
るために一定の温度が容易に維持される。このため、温
度制御のために液面より冷却液を排出、供給する必要が
なく、液面に乱れは生じず、安定した状態が維持される
[Operation] The coolant supplied along the inner circumferential surface of the cooling cylinder flows down while swirling along the inner circumferential surface of the cylinder, and due to the action of centrifugal force during swirling, a coolant layer with an approximately constant inner diameter is created. Form. Since the coolant layer is always formed by freshly supplied coolant, a constant temperature can be easily maintained. Therefore, there is no need to drain or supply cooling liquid from the liquid surface for temperature control, and the liquid level is not disturbed and a stable state is maintained.

【0009】冷却液層の内側でかつ上蓋および下蓋によ
って閉塞された空間部は不活性ガスが充填され、あるい
は該空間部内の空気が排気されているので、該空間部に
開孔した供給孔より溶融金属を流下し、不活性ガスの噴
射により溶滴化して冷却液層に供給しても、冷却液層に
至るまでの間において溶融金属の表面酸化が抑制され、
溶滴化したことと相まって冷却液層による分断が速やか
に行われ、酸化膜の薄い高品質の微粉末が得られる。し
かも、溶滴は液面状態が安定した冷却液層に注入、分断
され、一定温度で冷却凝固されるため、金属粉末の品質
が安定する。
The space inside the coolant layer and closed by the upper and lower covers is filled with inert gas, or the air in the space is exhausted, so the supply hole opened in the space is Even if the molten metal flows down, becomes droplets by injecting inert gas, and is supplied to the cooling liquid layer, surface oxidation of the molten metal is suppressed until it reaches the cooling liquid layer.
Coupled with the formation of droplets, separation by the cooling liquid layer occurs quickly, resulting in high-quality fine powder with a thin oxide film. Furthermore, the droplets are injected into a cooling liquid layer with a stable liquid level, separated, and cooled and solidified at a constant temperature, so the quality of the metal powder is stabilized.

【0010】冷却液層中の金属粉末は冷却液と共に旋回
しながら流下し、筒体の下端より排出されるので、金属
粉末の連続生産が可能となる。
Since the metal powder in the cooling liquid layer flows down while swirling together with the cooling liquid and is discharged from the lower end of the cylinder, continuous production of metal powder becomes possible.

【0011】[0011]

【実施例】図1は実施例に係る金属粉末製造装置を示し
ており、内周面に冷却液層31を形成するための冷却用
筒体1 と、冷却液層31の内側の空間部15に溶融金
属32を流下供給するための供給容器である噴射るつぼ
2 と、前記筒体1 に冷却液を供給するための手段で
あるポンプ3 と、流下した溶融金属流33を溶滴に分
断すると共に冷却液層31に供給するための不活性ガス
噴射管4 とを備えている。
[Embodiment] FIG. 1 shows a metal powder manufacturing apparatus according to an embodiment, which includes a cooling cylinder 1 for forming a cooling liquid layer 31 on the inner peripheral surface, and a space 15 inside the cooling liquid layer 31. An injection crucible 2 is a supply container for supplying the molten metal 32 to the cylinder 1, a pump 3 is a means for supplying cooling liquid to the cylinder 1, and the molten metal flow 33 that has flowed down is divided into droplets. It also includes an inert gas injection pipe 4 for supplying the cooling liquid layer 31.

【0012】前記筒体1 は円筒形状であり、筒体軸心
が鉛直方向に設置されており、その上端には上蓋5 が
被着されている。筒体1 の上部には、冷却液噴出管7
 の吐出口8が筒体内周面に接線方向から等間隔で複数
箇所開口しており、該噴出管7 の管軸方向は筒体軸心
に直交する平面に対して0〜20°程度斜め下方に設定
されている。 筒体1 の中間部内周面には冷却液層31の層厚調整用
リング6 がボルトによって着脱、交換自在に取り付け
られている。筒体1 の下端には、一定の隙間を介して
下蓋10が付設されており、筒体下端のフランジ11と
下蓋10との間にスリット形の冷却液排出口12が形成
されている。筒体1 の下部外周には、排出口12の周
りを覆うようにカバー13が設けられている。14は冷
却液層31の内側に形成された空間部15に連通する連
通管14であり、カバー13および下蓋10を貫通して
取付けられており、その上部は冷却液が入らないように
逆U字形に屈曲形成されている。前記下蓋10は冷却液
の排出が容易なように中央部が凸状に形成されており、
筒体1 の下端に冷却液の流れ方向に沿って屈曲形成し
た支持部材を介して支持されている。尚、下蓋10を連
通管14に固着しておき、該連通管14によって支持し
てもよい。
The cylinder 1 has a cylindrical shape, and the axis of the cylinder is disposed in the vertical direction, and a top cover 5 is attached to the upper end of the cylinder. At the top of the cylinder 1, there is a coolant jet pipe 7.
A plurality of discharge ports 8 are opened at equal intervals in the tangential direction on the inner peripheral surface of the cylinder, and the pipe axis direction of the jet pipe 7 is diagonally downward by about 0 to 20 degrees with respect to a plane orthogonal to the cylinder axis. is set to . A ring 6 for adjusting the layer thickness of the cooling liquid layer 31 is attached to the inner circumferential surface of the intermediate portion of the cylinder 1 with bolts so as to be detachable and replaceable. A lower lid 10 is attached to the lower end of the cylindrical body 1 with a certain gap therebetween, and a slit-shaped coolant discharge port 12 is formed between the flange 11 at the lower end of the cylindrical body and the lower lid 10. . A cover 13 is provided on the lower outer periphery of the cylinder 1 so as to cover the discharge port 12. 14 is a communication pipe 14 that communicates with a space 15 formed inside the cooling liquid layer 31, and is installed through the cover 13 and the lower lid 10, and its upper part is turned upside down to prevent the cooling liquid from entering. It is bent into a U shape. The lower lid 10 is formed in a convex shape at the center so that the cooling liquid can be easily discharged.
It is supported at the lower end of the cylindrical body 1 via a support member bent along the flow direction of the cooling liquid. Note that the lower lid 10 may be fixed to the communication tube 14 and supported by the communication tube 14.

【0013】前記カバー13の下方には、冷却液を下方
に通過可能とすると共に金属粉末を分離するためのメッ
シュ部材16が傾斜状に配設された分離容器17が備え
られている。前記冷却液噴出管7 は、ポンプ3 を介
してタンク18に配管接続されている。また、前記分離
容器17の底部はタンク18に配管されており、カバー
13によって回収され、分離容器17によって分離され
た冷却液はタンク18に戻され、循環使用される。タン
ク18には、図示省略の補給用の冷却液供給管が設けら
れ、またタンク内や循環流路の途中に冷却器を適宜介在
させてもよい。冷却液としては一般に水が使用されるが
、油が使用される場合もある。尚、水を用いる場合、水
中の酸素を除去したものを使用するのが望ましい。酸素
の除去処理装置は市販されており、入手容易である。
[0013] A separation container 17 is provided below the cover 13, in which a mesh member 16 is disposed in an inclined manner to allow the coolant to pass downward and to separate the metal powder. The coolant jet pipe 7 is connected to a tank 18 via a pump 3. The bottom of the separation container 17 is connected to a tank 18, and the coolant collected by the cover 13 and separated by the separation container 17 is returned to the tank 18 and used for circulation. The tank 18 is provided with a cooling liquid supply pipe for replenishment (not shown), and a cooler may be appropriately interposed within the tank or in the middle of the circulation flow path. Water is generally used as the coolant, but oil may also be used. In addition, when using water, it is desirable to use water from which oxygen has been removed. Oxygen removal processing equipment is commercially available and easily available.

【0014】前記上蓋5 には、噴射るつぼ2 が断熱
部材20を介して気密に載置されており、その底部に穿
設されたノズル孔21が前記断熱部材20および上蓋5
 に開設された貫通穴を介して、冷却液層31内側の空
間部15に開孔している。噴射るつぼ2 の外周には加
熱用誘導コイル22が巻回形成され、その上蓋23には
ArやN2 等の不活性ガスの圧媒や圧送された溶融金
属を注入するための注入孔24が設けられている。尚、
噴射るつぼ2 は黒鉛や窒化珪素等の耐火物で形成され
ている。
The injection crucible 2 is airtightly placed on the upper lid 5 through a heat insulating member 20, and a nozzle hole 21 bored at the bottom of the crucible 2 is connected to the heat insulating member 20 and the upper lid 5.
The space 15 inside the cooling liquid layer 31 is opened through a through hole formed in the cooling liquid layer 31 . A heating induction coil 22 is wound around the outer periphery of the injection crucible 2, and an injection hole 24 is provided in the upper lid 23 for injecting a pressure medium of an inert gas such as Ar or N2 or a molten metal that is pumped. It is being still,
The injection crucible 2 is made of a refractory material such as graphite or silicon nitride.

【0015】また、上蓋5 には不活性ガス噴射管4 
が空間部15内に貫通して付設されており、その先端部
に設けられた噴射ノズル25はその噴射方向が噴射るつ
ぼ2 のノズル孔21から流下する溶融金属流33に交
差するように空間部15の中心側より冷却液層31側に
指向している。不活性ガス噴射管4 は、図示省略の高
圧ガスボンベ等のガス源に圧力調整弁や流量調整弁を介
して配管接続されている。
[0015] Also, an inert gas injection pipe 4 is installed in the upper lid 5.
is attached to pass through the space 15, and the injection nozzle 25 provided at the tip thereof is inserted into the space so that its injection direction intersects the molten metal flow 33 flowing down from the nozzle hole 21 of the injection crucible 2. 15 toward the cooling liquid layer 31 side. The inert gas injection pipe 4 is connected to a gas source such as a high-pressure gas cylinder (not shown) via a pressure regulating valve or a flow rate regulating valve.

【0016】本発明を実施するには、まずポンプ3 を
作動させて、筒体1 の内周面に高速旋回しながら流下
する冷却液層31を上蓋5 から下蓋10に渡って形成
する。すなわち、筒体1 の内周面に沿って冷却液噴出
管7 より噴出された冷却液は、筒体1 の内周面に沿
って旋回しながら流下し、層厚調整用リング6 をオー
バーフローして下方へ流出する。この際、冷却液は流下
速度が押えられると共に旋回時の遠心力の作用で前記リ
ング6 の上方においてほぼ一定内径の冷却液層31が
容易に形成される。該冷却液層31は、常に新たに供給
される冷却液によって形成されるため、一定の温度が容
易に維持される。従って、温度制御のために液面より冷
却液を供給、排出する必要がなく、液面に乱れが生じに
くく、安定性に優れる。
To carry out the present invention, first, the pump 3 is operated to form a cooling liquid layer 31 flowing down the inner peripheral surface of the cylinder 1 from the upper cover 5 to the lower cover 10 while swirling at high speed. That is, the coolant jetted from the coolant jet pipe 7 along the inner peripheral surface of the cylinder 1 flows down while swirling along the inner peripheral surface of the cylinder 1, and overflows the layer thickness adjustment ring 6. and flows downward. At this time, the flow rate of the coolant is suppressed, and a coolant layer 31 having a substantially constant inner diameter is easily formed above the ring 6 due to the action of centrifugal force during the rotation. Since the cooling liquid layer 31 is formed by constantly newly supplied cooling liquid, a constant temperature can be easily maintained. Therefore, there is no need to supply or discharge cooling liquid from the liquid level for temperature control, and the liquid level is less likely to be disturbed, resulting in excellent stability.

【0017】次に、冷却液層31の内側でかつ上蓋およ
び下蓋によって閉塞された空間部15に不活性ガス噴射
管4 や連通管14よりArガスやN2 ガス等の不活
性ガスを圧送することにより、空間部15内の空気を冷
却液と共に外部へ排出し、不活性ガスを空間部15に充
填する。不活性ガスが空間部15に充填された後は、連
通管14からのガスの多量の送給を常時行う必要はなく
、微量にして送りつづけてやればよい。尚、不活性ガス
による置換を容易に行うには、空気排出用の他の連通管
を併設しておけばよい。また、空間部15内の空気を不
活性ガスと置換することなく連通管14から真空ポンプ
等により排気するだけでもよい。
Next, an inert gas such as Ar gas or N2 gas is fed under pressure from the inert gas injection pipe 4 or the communication pipe 14 to the space 15 inside the cooling liquid layer 31 and closed by the upper and lower lids. As a result, the air in the space 15 is discharged to the outside together with the cooling liquid, and the space 15 is filled with inert gas. After the space 15 is filled with inert gas, it is not necessary to constantly feed a large amount of gas from the communication pipe 14, and it is sufficient to continue feeding the gas in a small amount. Incidentally, in order to easily perform the replacement with inert gas, it is sufficient to provide another communication pipe for air exhaust. Alternatively, the air in the space 15 may be simply evacuated from the communication pipe 14 using a vacuum pump or the like without replacing it with an inert gas.

【0018】次に、筒体1 の上部に設けられた噴射る
つぼ2 に不活性ガス等を圧送して、るつぼ2 内の溶
融金属32をノズル孔21より空間部15内に流下する
。流下した溶融金属流33は不活性ガス噴射管4 の噴
射ノズル25から噴射された不活性ガス流の衝突により
多数の溶滴に分断されて冷却液層31に供給される。こ
の間、溶融金属流33および溶滴は空間部15内の不活
性ガスにより表面酸化が抑制される。該溶滴は冷却液層
31の旋回流により更に微粒に分断され、急冷凝固して
金属微粉末となる。この粉末は、不活性ガス雰囲気下で
不活性ガス流により分断され、更に温度や液面状態の安
定した冷却液層により再度分断され、凝固したものであ
るため、微粉であるにも拘らず表面酸化が抑制されたも
のであり、品質の安定性に優れる。
Next, an inert gas or the like is fed under pressure to the injection crucible 2 provided at the upper part of the cylinder 1 , and the molten metal 32 in the crucible 2 flows down into the space 15 through the nozzle hole 21 . The molten metal stream 33 that has flown down is divided into a large number of droplets by collision with the inert gas stream injected from the injection nozzle 25 of the inert gas injection pipe 4 and is supplied to the cooling liquid layer 31. During this time, surface oxidation of the molten metal flow 33 and the droplets is suppressed by the inert gas in the space 15. The droplets are further divided into fine particles by the swirling flow of the cooling liquid layer 31, and rapidly solidified to become fine metal powder. This powder is divided by an inert gas flow in an inert gas atmosphere, divided again by a cooling liquid layer with stable temperature and liquid level, and solidified, so even though it is a fine powder, the surface It has suppressed oxidation and has excellent quality stability.

【0019】冷却液層31中の金属粉末は、冷却液と共
に旋回しながら層厚調整用リング6 を越えて流下し、
筒体1 の下端の排出口12から排出され、カバー13
を介して分離容器17に流下し、メッシュ部材16によ
って冷却液と分離される。メッシュ部材16によって一
次脱液された金属粉末は同部材16に沿って分離容器1
7の側壁開口から回収される。一方、メッシュ部材16
を通過した冷却液は、タンク18に回収される。前記金
属粉末は、順次、遠心分離機等の適宜の脱液装置により
脱液された後、乾燥されて製品粉末となる。
The metal powder in the cooling liquid layer 31 flows down over the layer thickness adjustment ring 6 while swirling together with the cooling liquid.
It is discharged from the discharge port 12 at the lower end of the cylinder 1, and the cover 13
The coolant flows down into the separation container 17 through the mesh member 16 and is separated from the cooling liquid. The metal powder that has been primarily deliquified by the mesh member 16 is transferred to the separation container 1 along the mesh member 16.
7 is collected through the side wall opening. On the other hand, the mesh member 16
The coolant that has passed is collected in the tank 18. The metal powder is sequentially dehydrated using an appropriate dehydrating device such as a centrifuge, and then dried to become a product powder.

【0020】上記実施例では、冷却用筒体として円筒状
のものを示したが、これに限らず、例えば内周面が上拡
き回転放物面で形成された漏斗形状や切頭逆円錐形状と
してもよい。この場合、層厚調整用フランジを取付けな
くても、一定内径の冷却液層を形成することができる。 また、冷却液の排出口12として、筒体1 と下蓋10
との間にスリットを形成したが、スリットを設けること
なく、筒体下部内周面に接線方向から開口した排出管を
一個又は複数個設けてもよい。尚、図例では、層厚調整
用リング6 は断面方形状であるが、これに限らず、例
えばリング上面の外周縁から下面の内周縁にかけて漸次
縮径する曲面で形成してもよい。
In the above embodiments, a cylindrical cooling cylinder is shown, but the cooling cylinder is not limited to this, and may be, for example, a funnel shape whose inner peripheral surface is an upwardly expanding paraboloid of revolution, or a truncated inverted circular cone. It may also be a shape. In this case, a cooling liquid layer with a constant inner diameter can be formed without attaching a layer thickness adjustment flange. In addition, the cylinder body 1 and the lower cover 10 serve as the coolant discharge port 12.
Although a slit is formed between the cylinder body and the cylinder body, one or more discharge pipes that open from the tangential direction may be provided on the inner circumferential surface of the lower part of the cylinder without providing a slit. In the illustrated example, the layer thickness adjustment ring 6 has a rectangular cross section, but it is not limited to this, and may be formed with a curved surface whose diameter gradually decreases from the outer circumferential edge of the upper surface to the inner circumferential edge of the lower surface, for example.

【0021】また、上記実施例においては、噴射るつぼ
2 内の溶融金属32は、圧媒を作用させて加圧するこ
とによりノズル孔21から噴射したが、圧媒を作用させ
ることなく、溶融金属32自体に作用する重力(自重)
 によりノズル孔21より流出させてもよい。尚、本発
明は、Al合金やMg合金等の軽量金属粉末の製造に限
らず、鉄やその合金等の金属粉末の製造に適用できるこ
とは勿論である。
Furthermore, in the above embodiment, the molten metal 32 in the injection crucible 2 was injected from the nozzle hole 21 by applying pressure to the molten metal 32 without applying a pressure medium. Gravity acting on itself (self-weight)
Alternatively, the liquid may be allowed to flow out from the nozzle hole 21. Note that the present invention is of course applicable not only to the production of lightweight metal powders such as Al alloys and Mg alloys, but also to the production of metal powders such as iron and its alloys.

【0022】[0022]

【発明の効果】以上説明した通り、本発明の金属粉末の
製造方法によると、筒体の内周面に沿って冷却液を噴出
供給して、筒体内周面に沿って旋回しながら流下する冷
却液層を形成するので、溶融金属が供給される冷却液層
の内周面は安定し、温度も均一に保持される。そして、
該冷却液層中に溶融金属を溶滴化して供給するので、品
質の安定した急冷凝固微粉末が連続的に生産され、噴射
ノズルに孔詰りも生じない。
[Effects of the Invention] As explained above, according to the method for producing metal powder of the present invention, the cooling liquid is jetted and supplied along the inner peripheral surface of the cylinder, and flows down while swirling along the inner peripheral surface of the cylinder. Since a cooling liquid layer is formed, the inner peripheral surface of the cooling liquid layer to which molten metal is supplied is stabilized and the temperature is maintained uniformly. and,
Since the molten metal is supplied in the form of droplets into the cooling liquid layer, rapidly solidified fine powder of stable quality is continuously produced, and the injection nozzle is not clogged.

【0023】また、溶融金属は、不活性ガスが充填され
、あるいは空気が排気された冷却液層の内側の空間部に
流下され、不活性ガスの噴射により溶滴化されるため、
冷却液層に至るまでの間における溶融金属の表面酸化が
抑制され、微粉化が速やかに行われ、又酸素や水素含有
量の少ない高品質の金属粉末が得られる。
Furthermore, the molten metal flows down into the space inside the cooling liquid layer filled with inert gas or evacuated, and is turned into droplets by the injection of inert gas.
Surface oxidation of the molten metal before reaching the cooling liquid layer is suppressed, pulverization is quickly performed, and high-quality metal powder with low oxygen and hydrogen contents can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明を実施するための金属粉末製造装置の要
部断面全体配置図である。
FIG. 1 is a cross-sectional overall layout diagram of main parts of a metal powder manufacturing apparatus for carrying out the present invention.

【図2】従来の金属粉末製造装置の要部断面図である。FIG. 2 is a sectional view of a main part of a conventional metal powder manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1  冷却用筒体 2  噴射るつぼ(溶融金属供給容器)3  ポンプ(
冷却液供給手段) 4  不活性ガス噴射管 5  上蓋 7  冷却液噴出管 10  下蓋 12  冷却液排出口 14  連通管 15  空間部 21  ノズル孔(供給孔) 31  冷却液層 32  溶融金属 33  溶融金属流
1 Cooling cylinder 2 Injection crucible (molten metal supply container) 3 Pump (
Coolant supply means) 4 Inert gas injection pipe 5 Upper lid 7 Coolant jet pipe 10 Lower lid 12 Coolant discharge port 14 Communication pipe 15 Space 21 Nozzle hole (supply hole) 31 Coolant layer 32 Molten metal 33 Molten metal flow

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  上蓋および下蓋を備えた冷却用筒体の
内周面に沿って冷却液を噴出供給して筒体内周面に沿っ
て旋回しながら流下する冷却液層を上蓋から下蓋に渡っ
て形成すると共に冷却液を筒体下部より排出し、冷却液
層の内側でかつ上蓋および下蓋によって閉塞された空間
部に不活性ガスを充填し、該空間部に開孔した溶融金属
供給容器の供給孔より溶融金属を該空間部内に流下し、
流下する溶融金属流に不活性ガスを吹き付けて溶滴に分
断すると共に該溶滴を冷却液層に供給し、冷却液層によ
って分断し冷却凝固させて金属粉末を得ることを特徴と
する金属粉末の製造方法。
Claim 1: Cooling liquid is jetted and supplied along the inner circumferential surface of a cooling cylinder having an upper cover and a lower cover, and the cooling liquid layer flowing down while swirling along the inner circumferential surface of the cylinder is transferred from the upper cover to the lower cover. The cooling liquid is discharged from the bottom of the cylinder, the space inside the cooling liquid layer and closed by the upper and lower lids is filled with inert gas, and the molten metal is formed with holes opened in the space. Flowing the molten metal into the space from the supply hole of the supply container,
A metal powder characterized by blowing an inert gas onto a flowing molten metal stream to break it into droplets, and supplying the droplets to a cooling liquid layer, where they are separated by the cooling liquid layer and cooled and solidified to obtain metal powder. manufacturing method.
【請求項2】  上蓋および下蓋を備えた冷却用筒体の
内周面に沿って冷却液を噴出供給して筒体内周面に沿っ
て旋回しながら流下する冷却液層を上蓋から下蓋に渡っ
て形成すると共に冷却液を筒体下部より排出し、冷却液
層の内側でかつ上蓋および下蓋によって閉塞された空間
部の空気を排気し、該空間部に開孔した溶融金属供給容
器の供給孔より溶融金属を該空間部内に流下し、流下す
る溶融金属流に不活性ガスを吹き付けて溶滴に分断する
と共に該溶滴を冷却液層に供給し、冷却液層によって分
断し冷却凝固させて金属粉末を得ることを特徴とする金
属粉末の製造方法。
2. Cooling liquid is jetted and supplied along the inner circumferential surface of a cooling cylinder having an upper cover and a lower cover, and the cooling liquid layer flowing down while swirling along the inner circumferential surface of the cylinder is transferred from the upper cover to the lower cover. A molten metal supply container is formed in which the cooling liquid is discharged from the lower part of the cylinder, the air in the space inside the cooling liquid layer and closed by the upper cover and the lower cover is exhausted, and a hole is opened in the space. The molten metal flows down into the space from the supply hole, and an inert gas is blown onto the flowing molten metal flow to break it into droplets, and the droplets are supplied to the cooling liquid layer, where they are separated and cooled. A method for producing metal powder, which comprises obtaining metal powder by solidifying it.
【請求項3】  溶融金属供給容器内に収容された溶融
金属の自重により供給孔から溶融金属を流出させる請求
項1又は2に記載の金属粉末の製造方法。
3. The method for producing metal powder according to claim 1, wherein the molten metal is caused to flow out from the supply hole by the weight of the molten metal contained in the molten metal supply container.
JP3134348A 1991-06-05 1991-06-05 Method for producing metal powder Expired - Fee Related JP2672044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3134348A JP2672044B2 (en) 1991-06-05 1991-06-05 Method for producing metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3134348A JP2672044B2 (en) 1991-06-05 1991-06-05 Method for producing metal powder

Publications (2)

Publication Number Publication Date
JPH04358009A true JPH04358009A (en) 1992-12-11
JP2672044B2 JP2672044B2 (en) 1997-11-05

Family

ID=15126261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3134348A Expired - Fee Related JP2672044B2 (en) 1991-06-05 1991-06-05 Method for producing metal powder

Country Status (1)

Country Link
JP (1) JP2672044B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346117A (en) * 1993-05-14 1994-12-20 Norsk Hydro As Process and apparatus for preparing reactive metal grain

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164456A (en) * 1974-12-02 1976-06-03 Nisshin Steel Co Ltd KYUJOKINZOKU FUNMATSUNO SEIZOHO OYOBI SOCHI
JPS6139368A (en) * 1984-06-29 1986-02-25 Daikin Ind Ltd Battery
JPS6139364A (en) * 1984-07-28 1986-02-25 Kajio Minato Storage battery with lower terminals
JPS6141707A (en) * 1984-08-06 1986-02-28 Kawasaki Steel Corp Apparatus for producing powder metal
JPS62167807A (en) * 1985-11-14 1987-07-24 ドレツサ−・インダストリ−ズ・インコ−ポレ−テツド Apparatus for producing quenched metal particle
JPS6449769A (en) * 1987-08-05 1989-02-27 Dana Corp Composite gasket

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164456A (en) * 1974-12-02 1976-06-03 Nisshin Steel Co Ltd KYUJOKINZOKU FUNMATSUNO SEIZOHO OYOBI SOCHI
JPS6139368A (en) * 1984-06-29 1986-02-25 Daikin Ind Ltd Battery
JPS6139364A (en) * 1984-07-28 1986-02-25 Kajio Minato Storage battery with lower terminals
JPS6141707A (en) * 1984-08-06 1986-02-28 Kawasaki Steel Corp Apparatus for producing powder metal
JPS62167807A (en) * 1985-11-14 1987-07-24 ドレツサ−・インダストリ−ズ・インコ−ポレ−テツド Apparatus for producing quenched metal particle
JPS6449769A (en) * 1987-08-05 1989-02-27 Dana Corp Composite gasket

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346117A (en) * 1993-05-14 1994-12-20 Norsk Hydro As Process and apparatus for preparing reactive metal grain

Also Published As

Publication number Publication date
JP2672044B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
JP2719074B2 (en) Method and apparatus for producing metal powder
US5352267A (en) Method of producing metal powder
KR0174749B1 (en) Method and device for making metallic powder
JPH04358009A (en) Production of metal powder
JP2672042B2 (en) Metal powder manufacturing equipment
JP2672041B2 (en) Metal powder manufacturing equipment
JPH04337015A (en) Production of metallic powder
JP2672038B2 (en) Metal powder manufacturing equipment
JP2655950B2 (en) Manufacturing method of metal wire
JP2672035B2 (en) Method and apparatus for producing metal powder
JP2672056B2 (en) Method and apparatus for producing metal powder
JPH06246425A (en) Method for casting large sealed steel ingot
JP2672039B2 (en) Metal powder manufacturing method
JP2672043B2 (en) Metal powder manufacturing equipment
JP2719053B2 (en) Metal powder manufacturing method
JP2672036B2 (en) Method and apparatus for producing metal powder
JPH10121115A (en) Production of metal powder and device therefor
JP3403608B2 (en) Production method of metal powder
JPH04228507A (en) Device for producing metal powder
JPH0488134A (en) Manufacture of semisolidified metal and apparatus therefor
JPH04193902A (en) Device for manufacturing metal powder
JP2618108B2 (en) Metal powder production equipment
JP2618109B2 (en) Method for producing metal powder and apparatus for producing the same
JPH04210410A (en) Device for producing metal powder
JPH04329805A (en) Production of metallic powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees