JPH04358003A - Powder magnetic core material and its production - Google Patents

Powder magnetic core material and its production

Info

Publication number
JPH04358003A
JPH04358003A JP2412309A JP41230990A JPH04358003A JP H04358003 A JPH04358003 A JP H04358003A JP 2412309 A JP2412309 A JP 2412309A JP 41230990 A JP41230990 A JP 41230990A JP H04358003 A JPH04358003 A JP H04358003A
Authority
JP
Japan
Prior art keywords
powder
magnetic core
core material
temperature
imide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2412309A
Other languages
Japanese (ja)
Inventor
Mutsumi Abe
安   倍    睦
Takashi Motoda
元  田  高  司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2412309A priority Critical patent/JPH04358003A/en
Publication of JPH04358003A publication Critical patent/JPH04358003A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce a powder magnetic core material excellent in magnetic characteristics by kneading a ferromagnetic metal powder and imide resin, press-forming the kneaded material and then annealing the formed body at a specified temp. CONSTITUTION:A ferromagnetic metal powder such as a high-purity iron powder is mixed with 5-30wt.% of the imide resin or a soln. of the resin in a solvent such as acetone, methyl ethyl ketone and chloroform as a binder. The mixture is press-formed into a desired shape, and the formed body is cured and then annealed at <=600 deg.C. A powder magnetic core material excellent in such magnetic characteristics as low iron loss is stably produced as the electromagnetic parts such as the noise filter and choke coil.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は圧粉磁心材およびその製
造方法に関し、さらに詳しくは、ノイズフィルターやチ
ョークコイル等の電磁気部品として使用することができ
る低鉄損等磁気特性の優れた圧粉磁心材およびその製造
方法に関するものである。
[Industrial Application Field] The present invention relates to a powder magnetic core material and a method for manufacturing the same, and more specifically to a powder having excellent magnetic properties such as low iron loss that can be used as electromagnetic parts such as noise filters and choke coils. The present invention relates to a magnetic core material and a method for manufacturing the same.

【0002】0002

【従来技術】一般的に、磁心材はヒステリシス損および
渦電流損を生じ、この二つを合わせて鉄損となるもので
ある。
2. Description of the Related Art Generally, magnetic core materials produce hysteresis loss and eddy current loss, and the sum of these two results in core loss.

【0003】このヒステリシス損は、残留磁気を打ち消
すために消費するエネルギであり、保磁力(Hc)が低
いいほど小さいのであり、また、渦電流損は交番する磁
界において誘起される電流により生じるため、電気抵抗
が高いほど小さいのである。
[0003] This hysteresis loss is energy consumed to cancel residual magnetism, and the lower the coercive force (Hc), the smaller it is, and the eddy current loss is caused by current induced in an alternating magnetic field. , the higher the electrical resistance, the smaller it is.

【0004】従って、磁心材は鉄損の小さいものが要求
され、通常、絶縁皮膜処理を行った薄い鉄板を重ねた積
層構造のものが使用されているが、複雑な形状部品を製
作することは困難であった。
[0004] Therefore, the magnetic core material is required to have a low iron loss, and a laminated structure consisting of thin iron plates treated with an insulating coating is usually used, but it is difficult to manufacture parts with complex shapes. It was difficult.

【0005】一方、軟磁性粉末をエポキシ樹脂により被
覆して固化成形を行った圧粉磁心材は、通常の粉末成形
法を使用することにより、複雑な形状の部品を製作する
ことが可能であるが、粉末成形時に加圧されるので磁性
粉末に歪が導入され、そのため、磁心材としての磁気性
能が劣化するという問題がある。
On the other hand, powder magnetic core materials made by covering soft magnetic powder with epoxy resin and solidifying it can be manufactured into parts with complex shapes by using ordinary powder molding methods. However, since it is pressurized during powder compaction, strain is introduced into the magnetic powder, which causes a problem in that the magnetic performance as a magnetic core material deteriorates.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記に説明し
たように従来における磁心材およびその製法の問題点に
鑑み、本発明者が鋭意研究を行った結果、磁気性能にも
優れており、プレス成形を行うことによって導入された
歪を解消した圧粉磁心材およびその製造方法を開発した
のである。
[Problems to be Solved by the Invention] As explained above, in view of the problems of conventional magnetic core materials and their manufacturing methods, the present inventor has conducted extensive research, and as a result, the present invention has excellent magnetic performance. We have developed a powder magnetic core material that eliminates the strain introduced by press forming, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明に係る圧粉磁心材
およびその製造方法は、600℃以下の温度において焼
鈍回復可能な強磁性粉末を体積率5〜30%のイミド樹
脂をバインダとして固化成形したことを特徴とする圧粉
磁心材を第1の発明とし、強磁性粉末とイミド樹脂、或
いは、溶剤により溶解したイミド樹脂を混合した後、プ
レス成形を行い、硬化後、600℃以下の温度において
焼鈍を行うことを特徴とする磁気特性の優れた圧粉磁心
材の製造方法を第2の発明とする2つの発明よりなるも
のである。
[Means for Solving the Problems] A powder magnetic core material and a method for manufacturing the same according to the present invention are characterized in that ferromagnetic powder that can be recovered by annealing at a temperature of 600°C or lower is solidified using an imide resin with a volume ratio of 5 to 30% as a binder. The first invention is a powder magnetic core material characterized in that it is molded, and after mixing ferromagnetic powder and imide resin or imide resin dissolved in a solvent, press molding is performed, and after curing, it is This invention consists of two inventions, the second invention being a method for manufacturing a powder magnetic core material with excellent magnetic properties, characterized by performing annealing at a high temperature.

【0008】本発明に係る圧粉磁心材およびその製造方
法において使用される、強磁性粉末は保磁力(Hc)が
小さく、最大透磁率(μm)の大きいことが要求され、
従って、焼鈍回復温度の低い方が、例えば、回復温度の
低い強磁性粉末としては、電解鉄粉が挙げられるが、O
2を0.2〜0.3wt%含有するため還元焼鈍を行わ
なければ使用することができず、作業が繁雑となるばか
りか、高価になる。
The ferromagnetic powder used in the powder magnetic core material and the manufacturing method thereof according to the present invention is required to have a small coercive force (Hc) and a large maximum magnetic permeability (μm).
Therefore, if the annealing recovery temperature is lower, for example, electrolytic iron powder can be mentioned as a ferromagnetic powder with a lower recovery temperature, but O
Since it contains 0.2 to 0.3 wt% of 2, it cannot be used unless reduction annealing is performed, which not only makes the work complicated but also makes it expensive.

【0009】そのため、量産性がある水アトマイズ法に
よる鉄粉は、焼結用鉄粉として多量に製造されているが
、電解鉄粉に比較して不純物量が多い。しかし、溶製用
原料を厳格に選択することによって、還元焼鈍電解鉄粉
と同等の粉末を製造することができる。
[0009] Therefore, iron powder produced by the water atomization method, which can be mass-produced, is produced in large quantities as iron powder for sintering, but it has a higher amount of impurities than electrolytic iron powder. However, by strictly selecting raw materials for melting, it is possible to produce powder equivalent to reduction annealed electrolytic iron powder.

【0010】従って、本発明に係る圧粉磁心材およびそ
の製造方法においては、強磁性粉末として高純度鉄粉、
、300NH、パーマロイを示したが、他に、軟磁性用
アモルファス、ニッケルを使用しても同じ効果を得るこ
とが可能である。
Therefore, in the powder magnetic core material and the manufacturing method thereof according to the present invention, high-purity iron powder,
, 300NH, and permalloy are shown, but the same effect can be obtained by using other materials such as amorphous for soft magnetism and nickel.

【0011】また、バインダーとしては、耐熱性および
成形性を有しており、量産化の行い易い材料が要求され
るのであり、耐熱性は無機質系が優れているが、成形性
の観点からは、強磁性粉末の表面皮膜が硬質化して密度
が上昇しにくくなるのに対して、樹脂系は無機質系に比
較して柔らかく、密度が上昇して磁気特性が優れている
と推定できる。そのため、樹脂としては耐熱性を有する
ものとしてはイミド樹脂が挙げられ、耐熱温度は400
〜600℃と優れている。そして、このイミド樹脂とし
て、商品名MP2000X(三菱油化製)、MPI−2
0(三井東圧製)、UIP−S(宇部興産製)等のもの
が挙げられる。
[0011] Furthermore, as a binder, a material is required that has heat resistance and moldability and is easy to mass produce.Inorganic materials are excellent in heat resistance, but from the viewpoint of moldability. It can be assumed that the surface coating of ferromagnetic powder becomes hard and the density is difficult to increase, whereas the resin-based powder is softer than the inorganic powder, and the density increases, resulting in excellent magnetic properties. Therefore, examples of resins that have heat resistance include imide resins, which have a heat resistance temperature of 400
-600℃, which is excellent. As this imide resin, the product name MP2000X (manufactured by Mitsubishi Yuka Co., Ltd.), MPI-2
0 (manufactured by Mitsui Toatsu) and UIP-S (manufactured by Ube Industries).

【0012】そして、MP2000Xは耐熱度が480
℃であり、容易に溶剤(アセトン、メチルエチルケトン
、クロロホルム等)に溶解する。また、MPI−20も
略同じ性質を有している。UIP−Sは耐熱度640℃
と最高のものであるが、溶剤の適当なものがない。
[0012]The heat resistance of MP2000X is 480
°C and easily dissolves in solvents (acetone, methyl ethyl ketone, chloroform, etc.). Moreover, MPI-20 also has substantially the same properties. UIP-S has a heat resistance of 640℃
Although it is the best, there is no suitable solvent.

【0013】高純度鉄粉と樹脂粉末の混合法は、乾式混
合法と湿式混合法があり、乾式混合法はMP2000X
、MPI−20、UIP−S等に適用が可能であり、湿
式混合法は溶剤に溶解するMP2000X、MPI−2
0に適用することができる。
[0013] There are two methods of mixing high-purity iron powder and resin powder: a dry mixing method and a wet mixing method, and the dry mixing method is MP2000X.
, MPI-20, UIP-S, etc., and the wet mixing method can be applied to MP2000X, MPI-2, etc. that are dissolved in a solvent.
0 can be applied.

【0014】乾式混合法ではV型ミキサーを使用して混
合粉を製作し、湿式混合法ではMP2000Xをアセト
ンにより溶解し、ダクト内で高純度鉄粉に添加して流動
させながら混合乾燥した。その後、乾燥粉末は流動性向
上させるため#60篩を通過させた。
[0014] In the dry mixing method, a mixed powder was prepared using a V-type mixer, and in the wet mixing method, MP2000X was dissolved in acetone, added to high-purity iron powder in a duct, mixed and dried while being fluidized. The dry powder was then passed through a #60 sieve to improve fluidity.

【0015】成形体は100トン粉末プレスを使用して
4.5トン/cm2の面圧により作成し、MP2000
Xを使用した場合には、100℃の温度において1時間
、続いて、180℃の温度に1時間、さらに、250℃
の温度に1時間で硬化後焼鈍を行い、また、UIP−S
を使用した場合には、500℃の温度に1時間で硬化後
焼鈍を行った。
[0015] The compact was made using a 100 ton powder press with a surface pressure of 4.5 ton/cm2.
When using
After hardening, annealing is performed at a temperature of 1 hour, and UIP-S
In the case of using C., post-hardening annealing was performed at a temperature of 500.degree. C. for 1 hour.

【0016】この場合、硬化、焼鈍温度が250℃を越
える時には、高純度鉄粉とバインダーの酸化を防止する
ためにアルゴン気流中において行った。そして、磁気特
性と比抵抗を測定することにより評価した。
In this case, when the hardening and annealing temperature exceeded 250° C., the hardening and annealing were carried out in an argon stream to prevent oxidation of the high purity iron powder and the binder. Then, evaluation was made by measuring magnetic properties and specific resistance.

【0016】磁気特性、特に、保磁力(Hc)は高純度
鉄粉ではどの条件においても、450℃の温度において
回復しているが、通常の鉄粉では回復温度は600℃以
上を要した。
Magnetic properties, particularly coercive force (Hc), were recovered at a temperature of 450°C under all conditions for high-purity iron powder, but recovery temperature of 600°C or higher was required for ordinary iron powder.

【0017】比抵抗は乾式混合法によるMP2000X
およびMPI−20では、450℃の温度までは0.0
1Ω・cm以上あるけれども、500℃の温度で0.0
01Ω・cmとなり著しく低下する。また、湿式混合法
による場合は、劣化の傾向は乾式混合法の場合と同じで
あるが、劣化するまでの比抵抗は乾式混合法に比較して
高い。これは、湿式混合法の場合は乾式混合法の場合に
比較して、樹脂が高純度鉄粉に均一に付着しているもの
と考えられる。
[0017] The specific resistance is determined by MP2000X using the dry mixing method.
and MPI-20, 0.0 up to a temperature of 450°C.
Although it is more than 1Ω・cm, it is 0.0 at a temperature of 500℃.
01Ω·cm, which is a significant decrease. Furthermore, in the case of the wet mixing method, the tendency of deterioration is the same as in the case of the dry mixing method, but the specific resistance until deterioration is higher than that in the dry mixing method. This is considered to be because the resin adheres more uniformly to the high-purity iron powder in the wet mixing method than in the dry mixing method.

【0018】また、イミド樹脂では500℃の温度まで
劣化しないが、600℃以上の温度で比抵抗は0.00
02Ω・cmと低下する。従って、圧粉磁心材に必要な
低鉄損の磁心材の製造は高純度強磁性粉末において可能
となるものである。
[0018] Furthermore, although imide resin does not deteriorate up to a temperature of 500°C, its specific resistance decreases to 0.00 at a temperature of 600°C or higher.
The resistance decreases to 0.02 Ω·cm. Therefore, it is possible to manufacture a magnetic core material with low core loss required for powder magnetic core material using high-purity ferromagnetic powder.

【0019】[0019]

【実  施  例】本発明に係る圧粉磁心材およびその
製造方法の実施例を説明する。
[Example] An example of the powder magnetic core material and the manufacturing method thereof according to the present invention will be described.

【0020】[0020]

【実 施 例】表1および表2に高純度強磁性粉末の種
類と体積率(Vf)、バインダーの種類の体積率(Vf
)、混合方法、成形面圧、焼鈍温度、焼鈍後の相対密度
、磁気特性および比抵抗について示してある。
[Example] Tables 1 and 2 show the types and volume fractions (Vf) of high-purity ferromagnetic powders, and the volume fractions (Vf) of binder types.
), mixing method, molding surface pressure, annealing temperature, relative density after annealing, magnetic properties, and specific resistance are shown.

【0023】表1および表2により以下説明する。No
.1、No.2、N0.3はイミド樹脂の体積率(Vf
)を変えた場合を示し、粉末体積率(Vf)95におい
ても従来の鉄粉に比べると、Hcが同等、比抵抗が3桁
高くなっている。
[0023] This will be explained below using Tables 1 and 2. No
.. 1.No. 2, N0.3 is the volume fraction of imide resin (Vf
), and even at a powder volume fraction (Vf) of 95, the Hc is the same and the specific resistance is three orders of magnitude higher than that of conventional iron powder.

【0024】No.2、No.4、No.5、NO.6
は焼鈍温度を変えた場合で、Hcは400℃の温度で充
分低下していないが、この温度以上では一定となってお
り、比抵抗は450℃の温度では高いが、500℃の温
度では0.0001Ωめcmと著しく低下している。
[0024]No. 2.No. 4.No. 5.No. 6
shows the case where the annealing temperature is changed; Hc does not decrease sufficiently at a temperature of 400°C, but remains constant above this temperature, and the resistivity is high at a temperature of 450°C, but decreases to 0 at a temperature of 500°C. It has decreased significantly to .0001Ωcm.

【0025】No.2、No.5、No.7、No.8
は混合方法を変えた場合で、磁気特性には差は認められ
ないが、湿式混合法は乾式混合法に比べて比抵抗が高く
なっている。バインダーにMPI−20を用いたNo.
9では450℃の温度における磁気特性、比抵抗は同等
である。No.10、No.11はバインダーがUIP
−Sであり、650℃の温度における比抵抗が0.00
02と大きく低下している。
[0025]No. 2.No. 5, No. 7.No. 8
shows the case where the mixing method was changed, and although there is no difference in magnetic properties, the wet mixing method has a higher specific resistance than the dry mixing method. No. using MPI-20 as a binder.
No. 9 has the same magnetic properties and specific resistance at a temperature of 450°C. No. 10, No. 11, the binder is UIP
-S, and the specific resistance at a temperature of 650°C is 0.00
02, which is a significant decrease.

【0026】No.12、No.13、No.14は通
常の鉄粉を使用した場合で、Hcが温度600℃までは
充分に低下せず、高い耐熱度を有するイミド樹脂でも比
抵抗が600℃以上の温度で急激に低下しているのに対
して、No.2、No.4、No.5、No.6からみ
て、高純度強磁性体の有利であることがわかる。
[0026]No. 12, No. 13, No. 14 is the case when ordinary iron powder is used, and Hc does not decrease sufficiently at temperatures up to 600℃, and even though imide resin has high heat resistance, the resistivity decreases rapidly at temperatures above 600℃. On the other hand, No. 2.No. 4.No. 5, No. 6, it can be seen that high purity ferromagnetic material is advantageous.

【0027】なお、No.15はスーパーマロイの場合
でNo.10と同じことが言える。従って、No.12
、No.13、No.14の本発明に係る圧粉磁心材お
よびその製造方法の範囲外のものは、劣っていることが
わかる。
[0027] Furthermore, No. 15 is the No. 1 for super malloy. The same can be said for 10. Therefore, No. 12
, No. 13, No. It can be seen that the powder magnetic core material and the method for producing the same according to No. 14 of the present invention are inferior.

【0028】[0028]

【発明の効果】以上説明したように、本発明に係る圧粉
磁心材およびその製造方法は上記の構成であるから、磁
気特性に優れた磁心材であり、ノイズフィルターおよび
チョークコイル、アクティブフィルター等の電磁気部品
に適した磁心材を得ることができるという効果を有して
いる。
Effects of the Invention As explained above, since the powder magnetic core material and the method for manufacturing the same according to the present invention have the above-mentioned configuration, it is a magnetic core material with excellent magnetic properties, and can be used for noise filters, choke coils, active filters, etc. This has the effect that a magnetic core material suitable for electromagnetic parts can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】600℃以下の温度において焼鈍回復可能
な強磁性粉末を体積率5〜30%のイミド樹脂をバイン
ダ−として固化成形したことを特徴とする圧粉磁心材。
1. A powder magnetic core material comprising a ferromagnetic powder that can be recovered by annealing at a temperature of 600° C. or lower and is solidified and molded using an imide resin having a volume fraction of 5 to 30% as a binder.
【請求項2】強磁性粉末とイミド樹脂粉末、或いは、溶
剤により溶解したイミド樹脂を混合した後、プレス成形
を行い、硬化後、600℃以下の温度において焼鈍を行
うことを特徴とする磁気特性の優れた圧粉磁心材の製造
方法。
2. Magnetic properties characterized in that ferromagnetic powder and imide resin powder or imide resin dissolved in a solvent are mixed, then press molded, and after hardening, annealing is performed at a temperature of 600°C or less. A method for producing excellent powder magnetic core material.
JP2412309A 1990-12-20 1990-12-20 Powder magnetic core material and its production Withdrawn JPH04358003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2412309A JPH04358003A (en) 1990-12-20 1990-12-20 Powder magnetic core material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2412309A JPH04358003A (en) 1990-12-20 1990-12-20 Powder magnetic core material and its production

Publications (1)

Publication Number Publication Date
JPH04358003A true JPH04358003A (en) 1992-12-11

Family

ID=18521163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2412309A Withdrawn JPH04358003A (en) 1990-12-20 1990-12-20 Powder magnetic core material and its production

Country Status (1)

Country Link
JP (1) JPH04358003A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0959480A2 (en) * 1998-05-18 1999-11-24 Daido Tokushuko Kabushiki Kaisha Core material for noise filter
US6054210A (en) * 1996-04-10 2000-04-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Molded magnetic article
US7423358B2 (en) * 2003-08-26 2008-09-09 Delta Electronics, Inc. Stator structure and manufacturing method thereof
JP2009246398A (en) * 1995-07-18 2009-10-22 Vishay Dale Electronics Inc Method for making high current low profile inductor
US7921546B2 (en) 1995-07-18 2011-04-12 Vishay Dale Electronics, Inc. Method for making a high current low profile inductor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246398A (en) * 1995-07-18 2009-10-22 Vishay Dale Electronics Inc Method for making high current low profile inductor
US7921546B2 (en) 1995-07-18 2011-04-12 Vishay Dale Electronics, Inc. Method for making a high current low profile inductor
US7986207B2 (en) 1995-07-18 2011-07-26 Vishay Dale Electronics, Inc. Method for making a high current low profile inductor
JP2012124513A (en) * 1995-07-18 2012-06-28 Vishay Dale Electronics Inc High current thin inductor manufacturing method
JP2013084988A (en) * 1995-07-18 2013-05-09 Vishay Dale Electronics Inc Method of manufacturing high-current thin inductor
US6054210A (en) * 1996-04-10 2000-04-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Molded magnetic article
EP0959480A2 (en) * 1998-05-18 1999-11-24 Daido Tokushuko Kabushiki Kaisha Core material for noise filter
EP0959480A3 (en) * 1998-05-18 2000-03-15 Daido Tokushuko Kabushiki Kaisha Core material for noise filter
US6183657B1 (en) 1998-05-18 2001-02-06 Daido Tokushuko Kabushiki Kaisha Core material for noise filter
US7423358B2 (en) * 2003-08-26 2008-09-09 Delta Electronics, Inc. Stator structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN108242309B (en) Material preparation method for improving direct current bias characteristic and preparation method of magnetic powder core
JP5288405B2 (en) Inductor and method of manufacturing inductor
CN102007550A (en) Method of producing composite magnetic material and composite magnetic material
JP2001011563A (en) Manufacture of composite magnetic material
JPS58147106A (en) Core material
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
JPH0353506A (en) Manufacture of softly magnetic sintered body of fe-p alloy
JPH04346204A (en) Compound material and manufacture thereof
JPH04358003A (en) Powder magnetic core material and its production
JP6103191B2 (en) A method for producing granulated powder using magnetic powder as a raw material.
CN117198731A (en) Amorphous magnetic powder core and preparation method thereof
JP2010118521A (en) Soft magnetic material using injection molding, and method of manufacturing the same
JP2002528910A (en) Injection-molded soft magnetic powder composite material and method for producing the same
JP2003526738A (en) Method for producing iron-based powder and iron-based powder
JPS61154014A (en) Dust core
JP2004214418A (en) Dust core and its alloy powder and method for manufacturing the same
JPH0521220A (en) Method for producing injection-molded pure iron-sintered soft magnetic material with high residual magnetic flux density
JP2001250709A (en) Magnetic powder for dust core
CN111696745A (en) Composite Fe-Si-Al soft magnetic powder core and preparation method thereof
JPS63260005A (en) Dust core
JP2000021664A (en) Production of dust core
JPH04219902A (en) Dust core material and its manufacture
TWI824673B (en) Low loss inductor and manufacturing method thereof
JPS62101004A (en) Rare earth-iron group permanent magnet
JPS63114108A (en) Dust core raw material powder to be used for high frequency

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312