JPH0435753A - Superfine powder classifier - Google Patents

Superfine powder classifier

Info

Publication number
JPH0435753A
JPH0435753A JP14226290A JP14226290A JPH0435753A JP H0435753 A JPH0435753 A JP H0435753A JP 14226290 A JP14226290 A JP 14226290A JP 14226290 A JP14226290 A JP 14226290A JP H0435753 A JPH0435753 A JP H0435753A
Authority
JP
Japan
Prior art keywords
fine powder
discharge port
particles
annular
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14226290A
Other languages
Japanese (ja)
Other versions
JP2946231B2 (en
Inventor
Kantaro Kaneko
貫太郎 金子
Mutsuyasu Kawashima
睦泰 河島
Chiaki Cho
趙 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP14226290A priority Critical patent/JP2946231B2/en
Publication of JPH0435753A publication Critical patent/JPH0435753A/en
Application granted granted Critical
Publication of JP2946231B2 publication Critical patent/JP2946231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Centrifugal Separators (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

PURPOSE:To maintain the classification of superfine powder in high preciseness at any time by providing the supply port of material to be classified to one side of the axis of revolution and a discharge port to the other side, and opening at least one discharge port of coarse particles in the middle way of the flow passage which is freely rotatable and has annular cross-section or plural pipe ways having same shape disposed on the same circumference. CONSTITUTION:The main body of the superfine powder classifier 1 is the annular pipe ways 2 supported freely rotatable around an axis C, in which a supply port 3 of material S to be classified is provided to one end and a discharge port 4 of fine powder F to the other end, and an annular passage is formed making both ports as a starting end and a terminal end. When the gas flow, or slurry including coarse particles G of various size mixed with fine powder F is continuously supplied through the supply port 3 of the superfine powder classifier 1 revolved in high speed, the centrifugal force acts on the particles. Though the resultant force composed of frictional resisting force and buoyant force in fluid, etc., acts on the particles, the coarse particles having the smaller specific surface area the swifter are pushed to the outer side of the annular pipe ways. Thus, the fine powder of uniform particle size in high preciseness is always separated and recovered.

Description

【発明の詳細な説明】 1産業上の利用分野] 本願発明は、ニューセラミックスをはじめ最新の微粉材
料を取扱う上で必須の超微粉分級機に係る。
[Detailed Description of the Invention] 1. Industrial Application Field] The present invention relates to an ultrafine powder classifier that is essential for handling the latest fine powder materials including new ceramics.

[従来の技術] 粒径がまちまちの粗粒と微粉の入り混った混合粉粒体を
、粒径ごとに分離して所望の粒径のみの微粉を精度高く
取り出すことは、ニューセラミックスの製造をはしめ、
広範な分野において求められる技術である。
[Conventional technology] Separating a mixed powder mixture of coarse particles and fine particles with different particle sizes by particle size and extracting only the desired particle size fine powder with high precision is a method of manufacturing new ceramics. Close the
This is a technology required in a wide range of fields.

このため粉粒体のふくまれる固液混合のスラリーヤ、含
塵気流を逸理して固体分のみを分離回収するために数多
くの研究や開発か進められてきた。
For this reason, a lot of research and development has been carried out to create a solid-liquid mixed slurry layer containing powder and granules, and to separate and recover only the solid components by diverting the dust-containing airflow.

粉粒体を含む気流を急激に方向転換させ慣性力を利用し
て微粉を分級する方式を慣性分級と呼び、その−例とし
て特開昭55−167072号公報・第4図を説明する
A method of classifying fine powder by rapidly changing the direction of an air flow containing powder and granules and utilizing inertial force is called inertial classification, and FIG. 4 of Japanese Patent Application Laid-open No. 167072/1982 will be described as an example thereof.

図において密閉容器100内において容器内の空気を吸
引して負圧とし、この中で固気混合の気流を通す管路1
01を開口してノズル102を形成すると、微粉Faの
みノズルから吸引して管路外へ案内され、粗粒Gaは慣
性によってそのまま管路を通り扱けて行くことによって
粗細分級をしようとするものである。
In the figure, air inside the sealed container 100 is suctioned to create a negative pressure, and a pipe line 1 through which a solid-gas mixed air flow is passed.
When 01 is opened to form the nozzle 102, only the fine powder Fa is sucked through the nozzle and guided out of the pipe, while the coarse particles Ga are handled as they are through the pipe due to inertia, thereby attempting to perform coarse classification. It is.

気流を旋回させて遠心力を動かせ粉体のみを分離回収す
る自由渦型は、集塵機のサイクロンとして広く慣用され
、分離の効果を向上するために多くの提案もある(例え
ば特開昭59−49817号公報・第5図)。
The free-vortex type, which swirls airflow to move centrifugal force to separate and collect only powder, is widely used as a cyclone in dust collectors, and many proposals have been made to improve the separation effect (for example, Japanese Patent Application Laid-Open No. 59-49817 Figure 5).

一方、固液混合のスラリーを処理して遠心力の場におい
て所望の粒径以下の微粉だけを回収しようとする回分式
遠心分離機もめる(例えば特開昭63−224752号
公報・第6図)。
On the other hand, there are also batch centrifuges that attempt to process solid-liquid mixed slurry and collect only fine powder with a desired particle size or less in the field of centrifugal force (for example, JP-A-63-224752, Figure 6). .

図において固定ケーシング103内に回転軸104に保
持された円筒形回転ボウル105を高速回転する構成に
なっている。材料のスラリーは回転ボウルの内側下方部
の供給口106から供給され、回転による遠心力によっ
て分級されて、微粉と液のみが回転ボウルの上方にある
取出口107より取出して回収される。この発明の要旨
は供給されたスラリーが余りに早く取出口へ達して分級
作用がきわめて不十分なので、スラリーの流れ方向に交
差する様にもぐり堰108も設けたことを特徴に謳って
いる。
In the figure, a cylindrical rotating bowl 105 held on a rotating shaft 104 within a fixed casing 103 is configured to rotate at high speed. A slurry of material is supplied from a supply port 106 at the lower part of the inner side of the rotating bowl, and is classified by the centrifugal force caused by the rotation, and only fine powder and liquid are taken out and collected from an outlet 107 located above the rotating bowl. The gist of this invention is that since the supplied slurry reaches the outlet too quickly and the classification effect is extremely insufficient, a submerged weir 108 is also provided to cross the flow direction of the slurry.

[発明が解決しようとする課題] 最初に掲げた従来技術である慣性力方式は分離力か弱く
、密閉器内の開口部(ノズル)においてのみ瞬間的に作
用するもの−C必るから、余程強力な吸引力を以ってし
でも効率的にはきわめて低いレベルに市ると言わざるを
得ない。旋回流による遠心力を利用する方式は本来固体
(粉塵)と気体とを分離するのが使命であり、粉粒体を
ざらに粒径別に分離回収するためには、強力な気流速度
と広大な分離至とを必要とするであろうから、設備面積
やその費用から見て側底採用し難いと考えられる。
[Problem to be solved by the invention] The inertial force method, which is the prior art mentioned first, has a weak separation force and only acts instantaneously at the opening (nozzle) in the sealing vessel. It must be said that even with strong suction power, the efficiency is extremely low. The original mission of the method that uses centrifugal force from swirling flow is to separate solids (dust) and gas, and in order to roughly separate and collect powder and granules by particle size, it is necessary to have a powerful air flow velocity and a vast space. Since it would require a separate base, it is considered difficult to adopt the side bottom in view of the equipment area and cost.

スラリ〜の湿式分級は回転ボウル中の遠心力の差を利用
するもので、遠心分離機の典型的な方式である。この方
式については所定の粒径以上の粒子の沈降速度を遠心力
で高めて短時間に沈澱物層Gbへ沈積させ、微粒子層ス
ラリーFbを分級回収するのであるが、沈澱物層へ行か
ず微粒子層スラリー内に残るのはストークスの抵抗式に
よって理論上決定できるが、この式か適用できるのはき
わめて濃度の小さなスラリーに留まるので非工業的であ
り、実際の生産レベルにあっては回転ボウル内のスラリ
ーは操作中にデッドストックとじて滞留して了うので、
後から供給されても、スラリーの平衡液面上を上滑りに
短絡して分級の余地がきわめて小さいと考えられる。こ
のような短絡を防止するために、もぐり堰108を設け
て供給スラリーの回転ボウル内で滞留時間を延長して遠
心力の場に留め、分級精度を高めて行こうとするのであ
るが、連続的に操作をする限り、回転ボウルの内壁に添
着する沈澱層の層厚は肥大するばかりだから、遠心力の
強さはMJする方向にあり、分級の精度は次第に低下す
ると言っても差支えないいのではないか。その仙回転体
中の遠心力の場を利用する方式では常に分級の継続か精
度の劣化を誘発するという課題がつきまとう。
Wet classification of slurry utilizes the difference in centrifugal force in a rotating bowl, and is a typical method for centrifugal separators. In this method, the sedimentation speed of particles larger than a predetermined particle size is increased by centrifugal force to deposit them in the sediment layer Gb in a short time, and the fine particle layer slurry Fb is classified and collected, but the fine particles do not go to the sediment layer. The amount remaining in the layered slurry can be determined theoretically using Stokes' resistance formula, but this formula can only be applied to slurries with extremely low concentrations, so it is non-industrial. Because the slurry remains as dead stock during operation,
Even if the slurry is supplied later, it is thought that there is very little room for classification due to short-circuiting due to upward sliding on the equilibrium liquid level of the slurry. In order to prevent such short circuits, a dam 108 is installed to extend the residence time of the supplied slurry in the rotating bowl and keep it in the field of centrifugal force, thereby increasing classification accuracy. As long as the operation is performed strictly, the thickness of the precipitate layer adhering to the inner wall of the rotating bowl will only increase, so it is safe to say that the strength of the centrifugal force will be in the direction of MJ, and the accuracy of classification will gradually decrease. Isn't it? The method that uses the centrifugal force field in the centrifugal rotor always has the problem of continuing classification or causing a deterioration in accuracy.

本願発明は以上の課題を解決するために乾式(気流)、
湿式(スラリー)を問わず、精度の高い超微粉分級を常
に持続でき、かつ構成も簡単で保全の容易な超微粉分級
機の提供を目的とする。
In order to solve the above problems, the present invention uses a dry method (airflow),
The purpose of the present invention is to provide an ultrafine powder classifier that can always maintain highly accurate ultrafine powder classification regardless of wet type (slurry), has a simple configuration, and is easy to maintain.

[課題を解決するための手段] 本願発明に係る超微粉分級機は、回転軸線の一方を被分
級材料の供給口、他方を微粉の排出口とし、両者を始端
と終端として断面か円環状又は軸線に対して対称的な同
一円周上に均等割り付けされて配置されている複数個の
同一形状の回転自在の環状管路の中途に少くとも一周の
粗粒排出口を開口し、開口部からの残り環状管路は外周
と軸線の距離を順次縮小して終端に至ることによって前
記の課題を解決した。
[Means for Solving the Problems] The ultrafine powder classifier according to the present invention has one of the rotational axes as a supply port for the material to be classified and the other as a discharge port for the fine powder, and with both as the starting end and the ending end, the cross section is annular or circular. A plurality of rotatable annular pipes of the same shape are arranged at equal intervals on the same circumference symmetrical about the axis, and a coarse particle discharge port is opened at least once around the middle of the pipe, and The above-mentioned problem was solved by sequentially reducing the distance between the outer circumference and the axis of the remaining annular pipe until reaching the terminal end.

[作用・実施例] 第1図は本願実施例の垂直断面図、第2図イ。[Action/Example] FIG. 1 is a vertical sectional view of the embodiment of the present application, and FIG.

口、ハは第1図のA−A’断面における種々の態様を示
したものでおる。
Figures 1 and 2 show various aspects taken along the line AA' in Fig. 1.

超微粉分級機1は回転自在に軸支された環状管路2を主
体とし、管路の一端が被分級材Sの供給口3てあり、他
端が微粉Fの排出口4であって、この両口を始端と終端
としてリング状の管路を形成し、全体が軸線Cの周囲を
回転する。この環状管路2の実施の一例としては第1図
のようにフィールド競技のトラック様の長円形かよいが
、規則的な多角形でもよく、また軸線Cと直角に截った
A−A’ 断面は第2図イのようにドーナツ様の円環で
おるのか、分級有効空間か広くかつ均等で望ましい。し
かし第2図口、ハに示すように第−例の一部だけを切り
取った断面で形成することも可能でおり、断面は種々の
態様か適用できる。環状管路2の中途点に少くとも一周
の開口部を設け、これが粗粒Gの排出口5を形成する。
The ultrafine powder classifier 1 mainly includes a rotatably supported annular pipe 2, one end of which is a supply port 3 for the material to be classified S, and the other end is a discharge port 4 for the fine powder F. A ring-shaped pipe is formed with these two ports as the starting and ending ends, and the entire pipe rotates around the axis C. As an example of the implementation of this annular pipe 2, it may be an oval shape like a track for a field competition as shown in FIG. It is desirable to have a donut-like ring as shown in Figure 2A, or a wide and even effective classification space. However, as shown in FIG. An opening extending around at least one circumference is provided at a midpoint of the annular pipe 2, and this forms an outlet 5 for the coarse particles G.

この排出口5以後の環状管路2の外周と軸線Cとの距離
は順次縮小する。順次と言う意味は第3図に示す第三実
施例のように、粗粒Gの排出口5が一組ではなく二組5
A、5B設定されているときにはその都度段階的と言う
状態を指す。
The distance between the outer periphery of the annular conduit 2 after the discharge port 5 and the axis C gradually decreases. The meaning of "sequentially" means that, as in the third embodiment shown in FIG.
When A or 5B is set, it indicates a state called stepwise each time.

本願発明の構成は以上のような形状、組合せよりなるか
ら、どのような態様であれ、基本的な作用としては、不
揃いな粗粒Gと微粉Fを不規則に混じて流動可能とした
含塵気流、又はスラリ=(泥漿)を高速回転中の超微粉
分級機1の供給口3から連続的に供給すると、粒子には
遠心力か作用するか、その他に摩擦抵抗力や流体の浮力
などが相互に影響を及ぼし合って複雑な力を合成し、結
局粒径が大きく単重量も大きく、比表面積の小ざい粗粒
はど早く環状管路の外周側へ押しやられ、一方管路の外
壁面については粒子の濃度の増加につれて、反対側へ粒
子を拡散しようとするが、ここでも粒径の小さい微粉(
Jと拡散しようとする作用が強く動く。
Since the structure of the present invention consists of the above-mentioned shapes and combinations, no matter what the embodiment is, the basic function is to create a dust-containing mixture of irregular coarse particles G and fine particles F that can be made to flow. When airflow or slurry (slurry) is continuously supplied from the supply port 3 of the ultrafine powder classifier 1 rotating at high speed, centrifugal force acts on the particles, or other forces such as frictional resistance or buoyancy of the fluid act on the particles. They influence each other and synthesize complex forces, and in the end, coarse particles with large particle sizes, large unit weights, and small specific surface areas are quickly pushed toward the outer circumference of the annular pipe, while the outer wall surface of the pipe As the particle concentration increases, the particles try to diffuse to the opposite side, but here too, fine powder with small particle size (
J and the action of trying to diffuse move strongly.

したかって回転中の環状管路のどこを截って見ても遠心
方向の粒子移動速度と反対方向への拡散速度の平衡によ
って、管内の断面においては外周側壁に最も粗大な粒子
か集中し、軸線へ近づく程、粒は細かく並び管路の最内
周側は最も微粉体を形成する。流動体か気流のときは管
路の全断面に亘ってこの作用が及び、流動体か固液混合
のスラリー状であるときは普通は管路断面の全域を埋め
切らないが、外周側から内周側へ至る粒度の分布状態は
全く同じ傾向を見せる。
Therefore, no matter where you look at the rotating annular pipe, due to the balance between the particle movement speed in the centrifugal direction and the diffusion speed in the opposite direction, the coarsest particles will be concentrated on the outer peripheral side wall in the cross section inside the pipe. The closer to the axis, the finer the particles are, forming the finest powder on the innermost side of the pipe. When it is a fluid or air flow, this effect extends over the entire cross section of the pipe, and when it is a fluid or a slurry of solid-liquid mixture, it usually does not fill the entire cross section of the pipe, but it spreads from the outer circumference to the inside. The particle size distribution toward the periphery shows exactly the same tendency.

管内で同心円的に粒度分布を形成し終った点て、外周側
の粗粒Gのみが、全周に亘って開口した排出口5から強
制的に押し出され、外周の縮小された残りの環状管路内
には内周側に残った微粉だけか流下を続け、微粉の排出
口4に至って分級品として回収される。この場合、回転
速度、流体の進行速度、粗粉排出口の大きさ、位置、個
数などを適宜調整することによって被分級材の性状や目
標の分級精度などを十分溝たすことかできる。
At the point where the particle size distribution has been concentrically formed within the tube, only the coarse particles G on the outer circumference side are forcibly pushed out from the discharge port 5 which is open over the entire circumference, and the remaining annular tube with the reduced outer circumference is Only the fine powder remaining on the inner circumferential side continues to flow down into the passage, reaches the fine powder discharge port 4, and is recovered as a classified product. In this case, the properties of the material to be classified and the target classification accuracy can be satisfactorily adjusted by appropriately adjusting the rotational speed, the advancing speed of the fluid, the size, position, number, etc. of the coarse powder discharge ports.

:発明の効果] 本願発明に係る超微粉分級機は以上に述へた作用に基き
、比較的簡単な構造でおるため製作、運転、保全が容易
であるにも拘らず、粗粒を分別して効果的に排出し、常
に精度の高い粒径の揃った微粉だけを分級回収できる。
:Effect of the invention] Based on the above-mentioned functions, the ultrafine powder classifier according to the present invention has a relatively simple structure and is easy to manufacture, operate, and maintain; however, it is difficult to separate coarse particles. It can be effectively discharged and always classify and collect only fine powder with a uniform particle size.

所望の分級精度に対応して粗粒を段階ごとに排除する複
数の段列を連ねることが自由に計画できるし、−旦設置
した後も運転条件や分離板の形状、傾斜なとの微調整で
広範に適応できる汎用性も具えている。
You can freely plan a series of multiple rows that remove coarse particles in stages according to your desired classification accuracy, and even after installation, you can make fine adjustments to operating conditions, separator shape, slope, etc. It also has the versatility to be widely applicable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明の実施例を示す垂直断面図、第2図イ
1口、ハは第1図のA−A’断面における種々の態様を
示す断面図、第3図は別の実施例の垂直断面図、第4図
から第6図まではそれぞれ別の従来技術を示す垂直断面
図。 1・・・・・・超微粉分級機 3・・・・・・供給口 5・・・・・・排出口(粗粒) F・・・・・・微粉  G・・・・・・粗粒2・・・・
・・環状管路 4・・・・・・排出口(微粉) S・・・・・・被分級材 C・・・・・・軸線
Fig. 1 is a vertical sectional view showing an embodiment of the present invention, Fig. 2 A1 and C are sectional views showing various aspects taken along the AA' cross section in Fig. 1, and Fig. 3 is another embodiment. FIG. 4 to FIG. 6 are vertical sectional views showing different conventional techniques. 1... Ultrafine powder classifier 3... Supply port 5... Discharge port (coarse particles) F... Fine powder G... Coarse particles 2...
...Annular pipe line 4...Discharge port (fine powder) S...Material to be classified C...Axis line

Claims (1)

【特許請求の範囲】[Claims] 回転軸線の一方を被分級材料の供給口、他方を微粉の排
出口とし、両者を始端と終端として断面が円環状又は軸
線に対して対称的な同一円周上に均等割り付けされて配
置されている複数個の同一形状の回転自在の環状管路の
中途に少くとも一周の粗粒排出口を開口し、開口部から
の残り環状管路は外周と軸線の距離を順次縮小して終端
に至ることを特徴とする超微粉分級機。
One side of the axis of rotation is the supply port for the material to be classified, and the other side is the discharge port for the fine powder, and the cross section is annular or is arranged equally on the same circumference that is symmetrical with respect to the axis, with both as the starting and ending ends. At least one coarse particle discharge port is opened in the middle of a plurality of rotatable annular pipes having the same shape, and the distance between the outer circumference and the axis of the remaining annular pipes from the opening is successively reduced until reaching the end. This is an ultra-fine powder classifier characterized by:
JP14226290A 1990-05-31 1990-05-31 Ultra fine powder classifier Expired - Lifetime JP2946231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14226290A JP2946231B2 (en) 1990-05-31 1990-05-31 Ultra fine powder classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14226290A JP2946231B2 (en) 1990-05-31 1990-05-31 Ultra fine powder classifier

Publications (2)

Publication Number Publication Date
JPH0435753A true JPH0435753A (en) 1992-02-06
JP2946231B2 JP2946231B2 (en) 1999-09-06

Family

ID=15311251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14226290A Expired - Lifetime JP2946231B2 (en) 1990-05-31 1990-05-31 Ultra fine powder classifier

Country Status (1)

Country Link
JP (1) JP2946231B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063476U (en) * 1991-02-12 1994-01-18 宇佐美 守一 Dry classifier
JP2009057417A (en) * 2007-08-30 2009-03-19 Sanyo Chem Ind Ltd Method for producing particles
US7695723B2 (en) 2002-12-31 2010-04-13 Sygnis Bioscience Gmbh & Co. Kg Methods of treating neurological conditions with hematopoietic growth factors
JP2010207737A (en) * 2009-03-11 2010-09-24 National Institute Of Advanced Industrial Science & Technology Particle separation apparatus and separation method
US7884069B2 (en) 2002-12-31 2011-02-08 Sygnis Bioscience Gmbh & Co. Kg Methods of treating neurological conditions with hematopoeitic growth factors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063476U (en) * 1991-02-12 1994-01-18 宇佐美 守一 Dry classifier
US7695723B2 (en) 2002-12-31 2010-04-13 Sygnis Bioscience Gmbh & Co. Kg Methods of treating neurological conditions with hematopoietic growth factors
US7884069B2 (en) 2002-12-31 2011-02-08 Sygnis Bioscience Gmbh & Co. Kg Methods of treating neurological conditions with hematopoeitic growth factors
US8053407B2 (en) 2002-12-31 2011-11-08 Sygnis Bioscience Gmbh & Co. Kg Methods of treating neurological conditions with hematopoeitic growth factors
US8071543B2 (en) 2002-12-31 2011-12-06 Sygnis Bioscience Gmbh & Co. Kg Methods of treating neurological conditions with hematopoeitic growth factors
JP2009057417A (en) * 2007-08-30 2009-03-19 Sanyo Chem Ind Ltd Method for producing particles
JP2010207737A (en) * 2009-03-11 2010-09-24 National Institute Of Advanced Industrial Science & Technology Particle separation apparatus and separation method

Also Published As

Publication number Publication date
JP2946231B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
EP2990123B1 (en) Cyclone device
US20060162299A1 (en) Separation apparatus
JP2509374B2 (en) Granule classifier
KR100312018B1 (en) Double Cyclone for Removing Dust
JPH0435753A (en) Superfine powder classifier
JP2597794B2 (en) Method and apparatus for classifying powder raw materials
HU195746B (en) Method and apparatus for separating the aggregation of grains of smaller than 300 micron size into fine and coarse phase
JP2946230B2 (en) Ultra fine powder classifier
JP2807841B2 (en) Ultra fine powder classifier
JPS62129165A (en) Cyclone separator with powder collector
JP2946229B2 (en) Ultra fine powder classifier
US2874799A (en) Cyclones
JPS6024477Y2 (en) Classifier for powder and granular materials
JPH07328545A (en) Classifier for granule
CN216173296U (en) Cyclone separator with built-in vortex grading mechanism
JPS60161721A (en) Method and apparatus for mixing powders by air stream
JPH04141251A (en) Method and device for centrifugal separation
CN212441659U (en) Cyclone separator with secondary return air
SU1674973A1 (en) Cyclone
SU1554994A2 (en) Separator for separating pulverulent materials
JPH06134401A (en) Classifier of powder raw material
KR19990025224A (en) Air classifier and classification method with enhanced rectifier function
SU1289555A2 (en) Aerodynamic cyclone
SU1711994A1 (en) Centrifugal counterflow separator
SU404518A1 (en) AIR SEPARATOR