JPH0435636B2 - - Google Patents

Info

Publication number
JPH0435636B2
JPH0435636B2 JP5991285A JP5991285A JPH0435636B2 JP H0435636 B2 JPH0435636 B2 JP H0435636B2 JP 5991285 A JP5991285 A JP 5991285A JP 5991285 A JP5991285 A JP 5991285A JP H0435636 B2 JPH0435636 B2 JP H0435636B2
Authority
JP
Japan
Prior art keywords
discharge
pressure
passage
chamber
scroll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5991285A
Other languages
Japanese (ja)
Other versions
JPS61218792A (en
Inventor
Katsuharu Fujio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5991285A priority Critical patent/JPS61218792A/en
Publication of JPS61218792A publication Critical patent/JPS61218792A/en
Publication of JPH0435636B2 publication Critical patent/JPH0435636B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はスクロール圧縮機に係り、起動初期の
圧縮効率の向上、ならびに摺動面の耐久性に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a scroll compressor, and relates to improving compression efficiency at the initial stage of startup and durability of sliding surfaces.

従来の技術 近年、特に低振動、低騒音特性を備えた圧縮機
として注目を浴びているスクロール圧縮機は、例
えば特開昭59−49386号公報にも示されているよ
うに、第4図のような圧縮原理になつている。
BACKGROUND TECHNOLOGY In recent years, a scroll compressor has been attracting attention as a compressor with particularly low vibration and low noise characteristics. The compression principle is as follows.

すなわち、うず巻き状の固定スクロールラツプ
23に対してうず巻状の旋回スクロールラツプ1
6を噛み合わせ、吸入口から吸入した流体を固定
スクロールラツプ23と旋回スクロールラツプ1
6との間に形成された一対の圧縮室C1,C2内
に閉じ込め、旋回スクロールラツプ16の旋回運
動に伴つて圧縮室の容積を漸次減少させ、この間
に流体を圧縮して高圧流体とし、固定スクロール
ラツプ23のうず巻きの中心部に設けられた吐出
ポート25より吐出室内に高圧流体を吐出する。
That is, the spiral-shaped orbiting scroll lap 1 is opposed to the spiral-shaped fixed scroll lap 23.
6 are engaged, and the fluid sucked from the suction port is transferred to the fixed scroll wrap 23 and the orbiting scroll wrap 1.
The fluid is confined in a pair of compression chambers C1 and C2 formed between the orbiting scroll wrap 16, and the volume of the compression chamber is gradually reduced as the orbiting scroll wrap 16 rotates, during which time the fluid is compressed to become a high-pressure fluid, High-pressure fluid is discharged into the discharge chamber from a discharge port 25 provided at the center of the spiral of the fixed scroll wrap 23.

また、この種の高圧ガス密閉シエル構造の圧縮
機は、特開昭57−73885号公報で知られるように
第5図に示す構成が提案され、旋回スクロールの
軸方向のスラスト力を軽減するために設けられた
背圧室や各摺動部の給油が次のように構成されて
いた。
In addition, for this type of compressor with a high-pressure gas-tight shell structure, the configuration shown in FIG. 5 was proposed, as known from Japanese Patent Application Laid-Open No. 57-73885, in order to reduce the thrust force in the axial direction of the orbiting scroll. The back-pressure chamber installed in the machine and the lubrication of each sliding part were configured as follows.

すなわち第5図においては、固定スクロールラ
ツプ223は駆動軸205を支承する本体フレー
ム202に取付られた鏡板221に固定され、旋
回スクロールラツプ216はラツプ支持円盤21
5に固定され、このラツプ支持円盤215は、鏡
板221と本体フレーム202との間の背圧室2
20に遊合状態で配置され、自転防止機能を備え
たオルダムリング218と本体フレーム202に
より旋回可能に支承され、各端部に駆動用のモー
タ201と偏心部をもつ駆動軸205によつて旋
回運動をする。
That is, in FIG. 5, the fixed scroll wrap 223 is fixed to the end plate 221 attached to the main body frame 202 that supports the drive shaft 205, and the orbiting scroll wrap 216 is fixed to the wrap support disk 21.
This lap support disk 215 is fixed to the back pressure chamber 2 between the end plate 221 and the main body frame 202.
20, is rotatably supported by an Oldham ring 218 with an anti-rotation function and a main body frame 202, and is rotated by a drive shaft 205 having a drive motor 201 and an eccentric portion at each end. exercise.

そして吸入・圧縮されたガスは密閉シエル20
1内に吐出する。吐出ガスから分離した潤滑油は
密閉シエル201の底部の油溜に収集され、駆動
軸205の下端に開口して偏心状態で設けられた
油穴206、および駆動軸205を支承する軸受
の微少〓間を通して漸次減圧しながら遠心ポンプ
作用を利用して高圧力状態で背圧室220に導か
れる。さらにオルダムリング218の摺動部の微
少〓間を経て吐出圧力と吸入圧力との中間圧力に
まで減圧された潤滑油は、鏡板221に設けた細
穴のバランス通路226を通して吸入室222に
流入する過程で摺動部を潤滑すると共に、背圧室
220の潤滑油圧力によつて旋回スクロールを固
定スクロールの側に押しつけ圧縮ガスの圧力によ
つて両方のスクロールが離れようとするのを防ぐ
構成であつた。
The inhaled and compressed gas is sealed in a sealed shell 20
Discharge within 1 hour. The lubricating oil separated from the discharged gas is collected in an oil sump at the bottom of the sealed shell 201, and an oil hole 206 is opened at the lower end of the drive shaft 205 and provided in an eccentric manner, and a small amount of oil in the bearing that supports the drive shaft 205 is collected. While the pressure is gradually reduced throughout the period, the high pressure is introduced into the back pressure chamber 220 using a centrifugal pump action. Furthermore, the lubricating oil whose pressure is reduced to an intermediate pressure between the discharge pressure and the suction pressure through the small gap between the sliding parts of the Oldham ring 218 flows into the suction chamber 222 through the balance passage 226, which is a thin hole provided in the head plate 221. In addition to lubricating the sliding parts during the process, the orbiting scroll is pressed against the fixed scroll by the lubricating oil pressure in the back pressure chamber 220 to prevent both scrolls from separating due to the pressure of the compressed gas. It was hot.

発明が解決しようとする問題点 しかしながら上記の第5図のような給油通路の
構成では、常に吐出室が外部の配管系に連通して
おり、特に圧縮機冷時始動直後などは密閉シエル
201内の圧力上昇が遅く、しかも潤滑油温度が
低いことから、潤滑油の粘性も高いので駆動軸2
05の各軸受部や背圧室220の各摺動部への給
油が不能であり、密閉シエル201内が圧力上昇
して背圧室220の圧力よりも高くなり、さらに
潤滑油の粘性が各軸受〓間を通過できる程度にま
で変化するまでの始動運転中に摺動面の焼付きや
異常摩耗などを生じて圧縮機の耐久性を低下させ
る問題があつた。
Problems to be Solved by the Invention However, in the configuration of the oil supply passage as shown in FIG. Since the pressure rise in the drive shaft 2 is slow and the lubricating oil temperature is low, the viscosity of the lubricating oil is also high.
It is impossible to supply oil to each bearing part of 05 and each sliding part of back pressure chamber 220, and the pressure inside sealed shell 201 increases and becomes higher than the pressure of back pressure chamber 220, and the viscosity of lubricating oil increases. During the start-up operation until the compressor changes to the extent that it can pass between the bearings, seizure and abnormal wear of the sliding surfaces occur, reducing the durability of the compressor.

また、冷時始動直後などは油溜209、駆動軸
205の各軸受〓間を介して背圧室220への潤
滑油流入が遅いので背圧室220の背圧が定常運
転時よりも低く、かつ圧縮室への給油不足の運転
状態が長く続き、潤滑油膜による圧縮室〓間の密
封作用が期待できないばかりか、圧縮室圧力によ
つて両スクロールが軸方向に離れて圧縮室〓間が
拡大し、圧縮効率が低い運転状態の継続が問題で
あつた。
In addition, immediately after a cold start, the lubricating oil flows slowly into the back pressure chamber 220 through the oil reservoir 209 and the bearings of the drive shaft 205, so the back pressure in the back pressure chamber 220 is lower than during normal operation. In addition, the operation state in which the oil supply to the compression chamber is insufficient continues for a long time, and not only is it impossible to expect the sealing effect between the compression chambers by the lubricating oil film, but also the pressure in the compression chamber causes both scrolls to separate in the axial direction, causing the gap between the compression chambers to expand. However, the continuation of an operating state with low compression efficiency was a problem.

また、背圧室圧力が設定値まで上昇せず固定ス
クロール側への旋回スクロール付勢力不足状態で
の運転時は、旋回駆動に起因して旋回スクロール
を転覆させようとするモーメントの発生により旋
回スクロールが傾斜し固定スクロールとの衝突や
駆動軸との結合軸受部に片当たりが生じ、低騒音
性能、耐久性を著しく低下させるという問題があ
つた。
In addition, when the back pressure chamber pressure does not rise to the set value and the orbiting scroll is operated with insufficient biasing force toward the fixed scroll, the orbiting scroll is affected by the generation of a moment that tends to overturn the orbiting scroll due to the orbiting drive. This caused problems such as collision with the fixed scroll and uneven contact of the bearing connected to the drive shaft, which significantly reduced low-noise performance and durability.

一方、上記のような差圧給油方式における問題
解決の方策として、実公昭58−15672号公報では、
車両空調用などに用いられるベーン型回転式圧縮
機において、吐出側室の内圧を圧縮機起動後、速
やかに上昇し、その吐出圧力によつて各摺動部や
ベーンの背面室への迅速な差圧給油を図る提案が
されている。同提案における具体的な吐出側室の
圧力上昇手段は、圧縮機起動後、吐出側室が所定
の圧力に達するまで、吐出側室と冷凍系統の高圧
側との連絡を遮断するためにバネ装置によつて弁
体を付勢し、その弁体により吐出通路を塞ぐ構成
である。
On the other hand, as a measure to solve the problem in the differential pressure lubrication system as mentioned above, Japanese Utility Model Publication No. 15672/1983
In vane-type rotary compressors used for vehicle air conditioning, etc., the internal pressure in the discharge side chamber rises quickly after the compressor is started, and the discharge pressure quickly creates a difference between each sliding part and the rear chamber of the vane. Proposals have been made to provide pressure oil supply. The specific means for increasing the pressure in the discharge side chamber in this proposal is to use a spring device to cut off communication between the discharge side chamber and the high pressure side of the refrigeration system until the discharge side chamber reaches a predetermined pressure after the compressor is started. The configuration is such that the valve body is energized and the discharge passage is closed by the valve body.

しかしながら上記構成では、吐出側室の圧力と
潤滑油の温度との関係上、起動初期からベーンの
背面室に潤滑油を供給することができず、圧縮室
圧力によつてベーンが後退し圧縮開始不能となる
ことから一般的には、ベーンを背面から付勢する
バネ装置などが用いられるが、吐出側の圧力上昇
後には、ベーンの先端がシリンダの内壁を過度に
押圧し、ベーン先端の摩耗を招くという問題があ
つた。また、吐出側室の圧力が差圧給油に必要な
圧力に達した後は、吐出圧力が作用する弁体がバ
ネ装置の付勢力に抗して作動し吐出通路を開通さ
せるが、圧縮機高速運転時など吐出流体が多い場
合には、弁体が吐出冷媒ガスの流れを阻害し、圧
力損失による圧縮効率の低下を招くという問題が
あつた。
However, with the above configuration, due to the relationship between the pressure in the discharge side chamber and the temperature of the lubricating oil, lubricating oil cannot be supplied to the back chamber of the vane from the early stage of startup, and the vane retreats due to the pressure in the compression chamber, making it impossible to start compression. Therefore, a spring device is generally used to bias the vane from the back, but after the pressure on the discharge side increases, the tip of the vane will press excessively against the inner wall of the cylinder, causing wear on the tip of the vane. There was the problem of inviting people. In addition, after the pressure in the discharge side chamber reaches the pressure required for differential pressure oil supply, the valve body on which the discharge pressure acts operates against the biasing force of the spring device to open the discharge passage. When there is a large amount of fluid discharged, such as when there is a large amount of fluid discharged, there is a problem that the valve body obstructs the flow of discharged refrigerant gas, resulting in a decrease in compression efficiency due to pressure loss.

一方、特公昭56−105174号公報では、弁の開閉
をコイル状の形状記憶合金のマルテンサイト変態
を利用して流路開閉制御を行う手段が提案されて
いる。このような手段を上記実公昭58−15672号
公報のバネ装置に応用し、吐出側室の圧力と温度
が設定値を超えた場合に、吐出通路を全開させて
通路抵抗を少なくする方法を案出し、実験検討も
した。しかしながら、圧縮機冷時起動後、圧縮側
室圧力が上昇し、それに伴う圧縮負荷増加に追従
する圧縮機の温度上昇によつて上記バネ装置が温
度上昇するまでには、圧縮機構成部材の熱容量が
大きいことから、5〜6分以上を必要とし、その
間の圧縮効率低下を回避することができないとい
う問題があり、スクロール圧縮機への積極的な応
用展開が困難であつた。
On the other hand, Japanese Patent Publication No. 56-105174 proposes a means for controlling the opening and closing of a flow path by utilizing the martensitic transformation of a coiled shape memory alloy. By applying such means to the spring device disclosed in the above-mentioned Japanese Utility Model Publication No. 58-15672, we devised a method to fully open the discharge passage and reduce passage resistance when the pressure and temperature of the discharge side chamber exceed set values. We also conducted an experimental study. However, after the compressor starts when cold, the pressure in the compression side chamber increases, and the temperature of the compressor that follows the increase in compression load increases.By the time the temperature of the spring device increases, the heat capacity of the compressor components has Because of the large size, it takes 5 to 6 minutes or more, and there is a problem that it is impossible to avoid a decrease in compression efficiency during that time, making it difficult to actively apply it to scroll compressors.

そこで本発明は、電動機の発熱ロスに着目し
て、圧縮機駆動源となる電動機の発熱を受熱でき
る位置に上述の形状記憶特性を有するバネ装置を
配置し、差圧給油系全体の立ち上がり特性を早め
て背圧室の適正背圧設定と圧縮室への給油を早め
ると共に、吐出ガス通路抵抗を少なくすることに
より、始動直後の圧縮効率や摺動部耐久性に優れ
たスクロール圧縮機を提供するものである。
Therefore, the present invention focuses on the heat loss of the electric motor, and arranges a spring device with the above-mentioned shape memory characteristics at a position where it can receive the heat generated by the electric motor, which is the drive source of the compressor, to improve the start-up characteristics of the entire differential pressure oil supply system. To provide a scroll compressor with excellent compression efficiency immediately after startup and durability of sliding parts by quickly setting the appropriate back pressure in the back pressure chamber and supplying oil to the compression chamber, and by reducing resistance in the discharge gas passage. It is something.

問題点を解決するための手段 上記問題を解決するために本発明のスクロール
圧縮機は、固定スクロールの一部をなす鏡板の一
面に形成されたうず巻状の固定スクロールラツプ
に対して旋回スクロールの一部をなすラツプ支持
円盤上の旋回スクロールラツプをかみあわせ、固
定スクロールラツプの外側には吸入室を形成し、
旋回スクロールのラツプ支持円盤は、駆動軸を支
承する本体フレームと固定スクロールの鏡板との
間に形成され、かつ本体フレームの外側の吐出圧
力の作用する潤滑油供給元とは絞り通路を介して
連通し、かつ本体フレームの外側の圧力よりも低
圧力状態となる旋回スクロールの背圧室に遊合状
態で配置されラツプ支持円盤の自転防止機構を介
して旋回可能に支承され、固定スクロールラツプ
と旋回スクロールラツプとの間に形成される圧縮
室の容積変化を利用して流体を圧縮するようにし
たスクロール式圧縮機構を形成し、そのスクロー
ル式圧縮機構とそれを駆動する電動機を収納する
密閉容器内に吐出流体を排出すべく構成し、吐出
圧力の作用する潤滑油供給元、絞り通路、旋回ス
クロールの背圧室、その背圧室より圧力の低い圧
縮室から固定スクロールラツプの外側に設けた吸
入室までの流体通路の少なくとも一部を順次経由
する差圧給油通路を形成すると共に、旋回スクロ
ールの背圧室と気体通路との間を絞り通路を介し
て連通し、圧縮室の吐出ポートから圧縮機出口の
吐出管までの吐出通路の途中で且つ潤滑油供給元
となる油溜空間に吐出通路制御弁装置を配置し、
吐出通路制御弁装置にはそれ自身の温度が設定温
度超えるとその通路を広げ、設定温度以下ではそ
の通路を閉じるか、狭めるべく変形する形状記憶
特性を備えたバネ装置により弁体を作動させて通
路の開度を調整し、そのバネ装置を圧縮駆動源と
なる電動機のコイルの発熱を受熱すべく位置に配
置したものである。
Means for Solving the Problems In order to solve the above problems, the scroll compressor of the present invention provides an orbiting scroll with respect to a spiral fixed scroll lap formed on one surface of an end plate that is a part of the fixed scroll. A suction chamber is formed outside the fixed scroll wrap,
The lap support disk of the orbiting scroll is formed between the main body frame that supports the drive shaft and the end plate of the fixed scroll, and communicates with the lubricating oil supply source on the outside of the main frame where the discharge pressure acts through a throttle passage. It is disposed loosely in the back pressure chamber of the orbiting scroll where the pressure is lower than the pressure outside the main body frame, and is rotatably supported via the rotation prevention mechanism of the lap support disk, and is connected to the fixed scroll lap. A closed enclosure that forms a scroll-type compression mechanism that compresses fluid by utilizing changes in the volume of the compression chamber formed between the orbiting scroll wrap and the scroll-type compression mechanism and the electric motor that drives it. It is configured to discharge the discharge fluid into the container, from the lubricating oil supply source where the discharge pressure acts, the throttle passage, the back pressure chamber of the orbiting scroll, and the compression chamber whose pressure is lower than the back pressure chamber to the outside of the fixed scroll lap. A differential pressure oil supply passage is formed which sequentially passes through at least part of the fluid passage to the provided suction chamber, and the back pressure chamber of the orbiting scroll and the gas passage are communicated via a throttle passage, and the discharge from the compression chamber is formed. A discharge passage control valve device is disposed in the middle of the discharge passage from the port to the discharge pipe at the compressor outlet and in the oil sump space that serves as the lubricating oil supply source,
The discharge passage control valve device has a valve body actuated by a spring device with a shape memory characteristic that expands the passage when its own temperature exceeds a set temperature, and deforms to close or narrow the passage when the temperature falls below the set temperature. The opening degree of the passage is adjusted, and the spring device is placed at a position to receive heat generated by the coil of the electric motor that serves as the compression drive source.

作 用 本発明は上記構成によつて圧縮機が冷時起動し
流体通路を経由して導かれた吸入流体が圧縮室で
圧縮されて吐出空間に排出され、吐出通路制御弁
装置によつて圧縮機出口を阻止された吐出空間内
に吐出流体が排出され続けると吐出空間内は急速
に昇圧、昇温して吐出圧力の作用する潤滑油供給
元の潤滑油の流動性が良くなり、潤滑油供給元、
絞り通路、旋回スクロールの背圧室、その背圧室
より圧力の低い圧縮室から吸入室までの流体通路
を順次経由する差圧給油の立ち上がりが早くな
り、それによつて旋回スクロールの背圧室を適正
圧力に早期設定して旋回スクロールが固定スクロ
ールから離反するのを阻止させる一方、圧縮室に
も潤滑油が差圧供給されて、その潤滑油の油膜シ
ール作用による圧縮室〓間密封効果とが相乗して
圧縮流体漏れの少ない圧縮運転が継続すると共
に、吐出流体熱に加えて電動機の発熱により吐出
通路制御弁装置の昇温を早める。吐出通路制御弁
装置が設定温度を超えると吐出通路が開路し、圧
縮機外部の配管系に連通して定常運転状態とな
り、安定した圧縮作用と差圧給油がなされる。
Effects According to the present invention, with the above configuration, the compressor starts when cold, the suction fluid guided through the fluid passage is compressed in the compression chamber and discharged to the discharge space, and is compressed by the discharge passage control valve device. If the discharge fluid continues to be discharged into the discharge space where the machine outlet is blocked, the pressure and temperature in the discharge space will rapidly increase, and the fluidity of the lubricating oil at the lubricating oil supply source, where the discharge pressure acts, will improve, and the lubricating oil Supply source,
The rise of the differential pressure oil supply, which passes sequentially through the throttle passage, the back pressure chamber of the orbiting scroll, and the fluid passage from the compression chamber, which has a lower pressure than the back pressure chamber, to the suction chamber, becomes faster, thereby reducing the back pressure chamber of the orbiting scroll. While setting the appropriate pressure early to prevent the orbiting scroll from separating from the fixed scroll, lubricating oil is also supplied to the compression chamber at a differential pressure, and the oil film sealing effect of the lubricating oil creates a sealing effect between the compression chambers. Synergistically, compression operation with less leakage of compressed fluid continues, and the temperature of the discharge passage control valve device is accelerated due to the heat generated by the electric motor in addition to the heat of the discharge fluid. When the temperature of the discharge passage control valve device exceeds the set temperature, the discharge passage opens and communicates with the piping system outside the compressor to enter a steady operating state, thereby achieving stable compression action and differential pressure oil supply.

圧縮機高速運転時は、圧縮流体熱、摺動部発
熱、電動機の発熱が増加し、それによつて吐出通
路制御弁装置の開度は更に広がり、吐出通路の通
路抵抗は少なくなる。
When the compressor is operating at high speed, compressed fluid heat, sliding part heat generation, and electric motor heat generation increase, which further widens the opening degree of the discharge passage control valve device and reduces the passage resistance of the discharge passage.

また、圧縮機停止後、吐出通路制御弁装置が設
定温度以下になると、吐出通路は遮断または狭め
られて外部の配管系から圧縮流体が流入するのを
阻止し、潤滑油供給元の潤滑油の希薄化を防止す
る。
In addition, when the temperature of the discharge passage control valve device drops below the set temperature after the compressor has stopped, the discharge passage is shut off or narrowed to prevent compressed fluid from flowing in from the external piping system, and prevent the lubricating oil from the lubricating oil supply source from flowing in. Prevent dilution.

実施例 以下、本発明の実施例のスクロール圧縮機につ
いて、図面を参照しながら説明する。
Embodiment Hereinafter, a scroll compressor according to an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例におけるスクロール
冷媒圧縮機の縦断面図を示すものである。
FIG. 1 shows a longitudinal sectional view of a scroll refrigerant compressor in one embodiment of the present invention.

第1図において、1は密閉シエル、2は密閉シ
エル1に圧入固定された本体フレーム、3,4は
本体フレーム2の中心部に設けられた軸受、5は
軸受3,4に支承され貫通した油穴6と軸受4に
対向した位置に油穴6と連通して油穴7を設けた
駆動軸で、その上端には偏心軸部8が設けられ下
端は密閉シエル1の底部の油溜9にまで伸びて没
入している。10はモータでその回転子11は駆
動軸5に、固定子12は密閉シエル1に圧入固定
されている。
In Fig. 1, 1 is a sealed shell, 2 is a main body frame press-fitted into the sealed shell 1, 3 and 4 are bearings provided in the center of the main body frame 2, and 5 is a penetrating shaft supported by bearings 3 and 4. The drive shaft has an oil hole 7 communicating with the oil hole 6 at a position facing the oil hole 6 and the bearing 4. An eccentric shaft portion 8 is provided at the upper end of the drive shaft, and an oil reservoir 9 at the bottom of the sealing shell 1 is provided at the lower end. It has grown to such an extent that I am immersed in it. A motor 10 has a rotor 11 fixed to the drive shaft 5 and a stator 12 press-fitted into the hermetic shell 1.

偏心軸部8に連結し、その中心に軸受部13を
備えた旋回スクロール14のラツプ支持円盤15
は、その上面に直立した旋回スクロールラツプ1
6が一体的に形成され、その下面は本体フレーム
2の上端開口穴に突出したスラスト軸受座17に
支承されている。旋回スクロールラツプ16は、
その平面形状がうず巻き状をなし、その縦断面は
矩形をなして隣り合う旋回スクロールラツプ16
は平行関係にある。
A lap support disk 15 of an orbiting scroll 14 connected to an eccentric shaft portion 8 and having a bearing portion 13 at its center.
is a rotating scroll lap 1 that stands upright on its upper surface.
6 is integrally formed, and its lower surface is supported by a thrust bearing seat 17 protruding into the upper end opening hole of the main body frame 2. The orbiting scroll wrap 16 is
The planar shape is spiral, and the vertical cross section is rectangular.
are in a parallel relationship.

自転阻止用のオルダムリング18は、平らなリ
ングの両面に互いに直交する平行キー形状のキー
部を備えたもので、ラツプ支持円盤15とスラス
ト軸受座17との間に設けられている。このオル
ダムリング18の上面側のキー部はラツプ支持円
盤15の背面に設けられたキー溝(図示せず)
に、下面側のキー部はスラスト軸受座17に設け
られたキー溝19にはめ込まれており、駆動軸5
の回転によつてラツプ支持円盤15の軸受部13
は駆動軸5の軸心の回りに円運動をなし、旋回ス
クロールラツプ16は旋回運動する。また、本体
フレーム2の上端面には上端開口穴をふさいでラ
ツプ支持円盤15の背圧室20とした固定スクロ
ール34の鏡板21がスラスト軸受座17と共に
旋回スクロール14を微少〓間ではさむように取
付られている。鏡板21にはその内側に環状の吸
入室22が設けられ、さらにその内側には旋回ス
クロールラツプ16に平行で同形状寸法の固定ス
クロールラツプ23を有し、この固定スクロール
ラツプ23のうず巻きの中心には密閉シエル1の
内側を吐出空間24とした吐出ポート25が設け
られ、吸入室22と背圧室20とを連通するバラ
ンス通路27がラツプ支持円盤15に設けられて
いる。旋回スクロールラツプ16と固定スクロー
ルラツプ23との噛み合いは、第4図に示すよう
に吐出ポート25に関して対称に2つの三日月状
の圧縮室C1,C2が形成され、これらの容積は
うず巻き中心方向へ移動するにつれて狭められ、
最終圧縮工程で最小になる。
The rotation-blocking Oldham ring 18 is a flat ring with parallel key-shaped key portions perpendicular to each other on both sides thereof, and is provided between the lap support disk 15 and the thrust bearing seat 17. The key part on the upper surface side of this Oldham ring 18 is a key groove (not shown) provided on the back surface of the lap support disk 15.
The key part on the lower surface side is fitted into a key groove 19 provided in the thrust bearing seat 17, and the key part on the lower surface side is fitted into a key groove 19 provided in the thrust bearing seat 17.
The rotation of the bearing portion 13 of the lap support disk 15
makes a circular motion around the axis of the drive shaft 5, and the orbiting scroll lap 16 makes an orbiting motion. In addition, the end plate 21 of the fixed scroll 34 is mounted on the upper end surface of the main body frame 2 so that the end plate 21 of the fixed scroll 34 which closes the upper end opening hole and forms the back pressure chamber 20 of the lap support disk 15 is sandwiched between the orbiting scroll 14 and the thrust bearing seat 17. It is being The end plate 21 is provided with an annular suction chamber 22 inside thereof, and further inside thereof is a fixed scroll wrap 23 which is parallel to the orbiting scroll wrap 16 and has the same shape and dimensions. A discharge port 25 with a discharge space 24 inside the sealed shell 1 is provided at the center thereof, and a balance passage 27 communicating the suction chamber 22 and the back pressure chamber 20 is provided in the lap support disk 15. The engagement between the orbiting scroll wrap 16 and the fixed scroll wrap 23 forms two crescent-shaped compression chambers C1 and C2 symmetrically with respect to the discharge port 25, as shown in FIG. narrows as you move to
It is minimized in the final compression step.

また、環状の吸入室22には側方より密閉シエ
ル1を貫通した吸入管28が接続され、密閉シエ
ル1のモータコイルエンド32の近傍側面には吐
出管29が接続されている。密閉シエル1に圧入
固定された本体フレーム2の外側面には溝30が
設けられ、この溝が密閉シエル1内の鏡板21の
側の吐出空間24とモータ10の側とを連通して
いる。吐出管29の近傍の本体フレーム2には吐
出通路制御弁装置34が設けられモータコイルエ
ンド32の側の吐出通路と吐出管29の通路との
連通を制御する。この吐出通路制御弁装置34は
第2図で示すように弁体35をはさんで弁体35
の弁座36の上側にはコイルバネ37を、弁座3
6の下側のモータコイルエンド32の近傍にはコ
イルバネ38を本体フレーム2に接して配置し、
コイルバネ38はそれ自身の温度が設定温度以下
では収納して弁体35を付勢せず、コイルバネ3
7の反力と弁体35の自重が弁座を付勢して吐出
通路39を塞ぎ、それ自身の温度が設定温度を超
えると第3図で示すように伸長してコイルバネ3
7の反力と弁体35の自重に抗して弁体35を上
方に移動させて吐出通路39を開くような形状記
憶合金特性を備えている。
Further, a suction pipe 28 passing through the sealed shell 1 from the side is connected to the annular suction chamber 22, and a discharge pipe 29 is connected to a side surface of the sealed shell 1 near the motor coil end 32. A groove 30 is provided on the outer surface of the main body frame 2 press-fitted into the hermetic shell 1, and this groove communicates the discharge space 24 on the end plate 21 side in the hermetic shell 1 with the motor 10 side. A discharge passage control valve device 34 is provided in the main body frame 2 near the discharge pipe 29 to control communication between the discharge passage on the side of the motor coil end 32 and the passage of the discharge pipe 29. As shown in FIG. 2, this discharge passage control valve device 34 is connected to
A coil spring 37 is placed above the valve seat 36 of the valve seat 3.
A coil spring 38 is arranged near the motor coil end 32 on the lower side of 6 in contact with the main body frame 2,
When the temperature of the coil spring 38 is lower than the set temperature, the coil spring 38 is retracted and does not bias the valve body 35.
7 and the weight of the valve body 35 urges the valve seat to close the discharge passage 39, and when its own temperature exceeds the set temperature, it expands as shown in FIG. 3 and the coil spring 3
The shape memory alloy has properties such that the valve body 35 is moved upward against the reaction force of 7 and the weight of the valve body 35 to open the discharge passage 39.

以上のように構成された密閉型電動スクロール
冷媒圧縮機について、以下第1図、第2図および
第3図を用いてその動作を説明する。
The operation of the hermetic electric scroll refrigerant compressor configured as described above will be described below with reference to FIGS. 1, 2, and 3.

まず第1図はスクロール冷媒圧縮機の縦断面
図、第2図と第3図は吐出通路制御弁装置の動作
を説明する縦断面図であつて、モータ10によつ
て回転子11が回転し、駆動軸5が回転駆動され
ると旋回スクロール14が旋回運動をし、吸入管
28を通して冷媒ガスが吸入室22に吸入され、
この冷媒ガスは旋回スクロールラツプ16と固定
スクロールラツプ23の間に形成された2箇所の
圧縮室C1,C2内に閉じ込められ、旋回スクロ
ールラツプ16の旋回運動にともなつて圧縮室C
1,C2の容積が漸次減少され、冷媒ガスは圧縮
され圧縮工程の周期で吐出ポート25より吐出空
間24へ吐出され、冷媒ガス中に含まれる潤滑油
の一部はその自重などによつて冷媒ガスから分離
して密閉シエル1と本体フレーム2との〓間など
を経て底部の油溜9に収集される。
First, FIG. 1 is a longitudinal sectional view of a scroll refrigerant compressor, and FIGS. 2 and 3 are longitudinal sectional views illustrating the operation of the discharge passage control valve device, in which a rotor 11 is rotated by a motor 10. When the drive shaft 5 is rotationally driven, the orbiting scroll 14 makes an orbital movement, and refrigerant gas is sucked into the suction chamber 22 through the suction pipe 28.
This refrigerant gas is confined in two compression chambers C1 and C2 formed between the orbiting scroll wrap 16 and the fixed scroll wrap 23, and as the orbiting scroll wrap 16 rotates, the compression chamber C
1. The volume of C2 is gradually reduced, and the refrigerant gas is compressed and discharged from the discharge port 25 into the discharge space 24 at the cycle of the compression process, and a part of the lubricating oil contained in the refrigerant gas is transferred to the refrigerant due to its own weight. The oil is separated from the gas, passes between the closed shell 1 and the main body frame 2, and is collected in the oil sump 9 at the bottom.

しかし、吐出通路制御弁装置34の周囲温度が
設定温度以下ではコイルバネ38は伸長せず弁体
35を作動させる力が生ぜず、コイルバネ37の
付勢と弁体35の自重によつて弁座36部の吐出
通路39が閉じられる。このため吐出ガスは密閉
シエル1内に閉ざされ、密閉シエル1内の圧力が
急速に上昇して圧縮負荷は大きくなる。この結
果、冷媒ガスの圧縮とモータ入力によるコイルの
発熱が急速に早まり、吐出冷媒ガスの加熱は加速
的に高まると共に、モータコイルエンド32の発
熱が加わつて吐出通路制御弁装置34の周囲温度
を上昇させる。コイルバネ33が設定温度を超え
るとコイルバネ38の伸長によりコイルバネ37
の反力と弁体35の自重に抗して弁体35を作動
させ弁座36部の吐出通路39を開き、吐出管2
9を通して吐出冷媒ガスは冷凍サイクルへ搬出さ
れる。
However, when the ambient temperature of the discharge passage control valve device 34 is lower than the set temperature, the coil spring 38 does not expand and no force is generated to actuate the valve body 35. The discharge passage 39 of the section is closed. Therefore, the discharged gas is confined within the hermetic shell 1, the pressure within the hermetic shell 1 rises rapidly, and the compression load increases. As a result, the compression of the refrigerant gas and the heat generation of the coil due to the motor input rapidly accelerate, and the heating of the discharged refrigerant gas increases at an accelerated pace, and the heat generation of the motor coil end 32 is added to increase the ambient temperature of the discharge passage control valve device 34. raise. When the coil spring 33 exceeds the set temperature, the coil spring 38 expands and the coil spring 37
The valve body 35 is actuated against the reaction force of
9, the discharged refrigerant gas is carried out to the refrigeration cycle.

一方、固定スクロール34の鏡板21と本体フ
レーム2とによつて吐出空間24から隔離されて
形成された背圧室20を経由して低圧側の吸入室
22まで差圧給油されるべき高圧側の油溜9の潤
滑油は、吐出通路制御弁装置34がその吐出通路
39を開くまでの間に圧縮ガス熱とモータコイル
エンド32部の発熱により温度上昇して粘性を低
くし流動性が良くなり、駆動軸5を支承する軸受
3,4や偏心軸部8の軸受部13の微少〓間を通
過することによつて漸次減圧され、吸入圧力と吐
出圧力との中間圧力状態で背圧室20に供給され
各摺動面を潤滑する。
On the other hand, the high-pressure side oil is to be supplied with differential pressure to the low-pressure side suction chamber 22 via the back pressure chamber 20 formed by being isolated from the discharge space 24 by the end plate 21 of the fixed scroll 34 and the main body frame 2. The temperature of the lubricating oil in the oil sump 9 rises due to the heat of the compressed gas and the heat generated by the motor coil end 32 until the discharge passage control valve device 34 opens the discharge passage 39, thereby lowering the viscosity and improving fluidity. , the pressure is gradually reduced by passing between the bearings 3 and 4 supporting the drive shaft 5 and the bearing part 13 of the eccentric shaft part 8, and the back pressure chamber 20 is at an intermediate pressure between the suction pressure and the discharge pressure. is supplied to lubricate each sliding surface.

さらに潤滑油は旋回スクロール14のラツプ支
持円盤15に設けられたバランス通路27を通つ
て吸入室22に流入し、吸入冷媒ガスと共に再び
圧縮吐出される。
Further, the lubricating oil flows into the suction chamber 22 through a balance passage 27 provided in the lap support disk 15 of the orbiting scroll 14, and is again compressed and discharged together with the suction refrigerant gas.

この差圧給油方式によれば、ラツプ支持円盤1
5の背面の背圧室20の圧力を給油通路の通路抵
抗調整によつて吐出圧力に近い状態から吸入圧力
に近い状態にまで自由に設定できるが、本実施例
では定常運転時に圧縮室内のガス圧荷重よりもラ
ツプ支持円盤15の背面に作用するガス圧荷重を
少し大きくしてラツプ支持円盤15が鏡板21の
側へスラスト力が作用すべく背圧室20の圧力調
整がなされている。
According to this differential pressure lubrication system, the lap support disk 1
The pressure in the back pressure chamber 20 on the back of the fuel supply passage 5 can be freely set from a state close to the discharge pressure to a state close to the suction pressure by adjusting the passage resistance of the oil supply passage. The pressure in the back pressure chamber 20 is adjusted so that the gas pressure load acting on the back surface of the wrap support disk 15 is slightly larger than the pressure load so that a thrust force is applied to the wrap support disk 15 toward the mirror plate 21 side.

また圧縮機停止後、吐出通路制御弁装置34の
周囲温度が低下しコイルバネ38の温度が設定温
度以下になるとコイルバネ38は収縮して弁体3
5への付勢を解き、コイルバネ37の反力と弁体
35の自重によつて弁座36部の吐出通路39を
閉じて冷凍サイクルの凝縮器の側と吐出空間24
との連通を絶つ。
Further, after the compressor is stopped, when the ambient temperature of the discharge passage control valve device 34 decreases and the temperature of the coil spring 38 becomes lower than the set temperature, the coil spring 38 contracts and the valve body 3
5 is released, the discharge passage 39 of the valve seat 36 is closed by the reaction force of the coil spring 37 and the weight of the valve body 35, and the discharge passage 39 is closed between the condenser side of the refrigeration cycle and the discharge space 24.
cut off communication with.

以上のように本実施例によれば、吐出冷媒ガス
圧力の作用する油溜9、駆動軸5を貫通した油穴
6、駆動軸5を支承する軸受3,4や偏心軸部8
の軸受部13の微少〓間で構成される絞り通路、
旋回スクロール14の背圧室20、吸入室22を
順次経由する差圧給油通路を形成すると共に、背
圧室20と吸入室22との間を旋回スクロール1
4のラツプ支持円盤15に設けられた細穴のバラ
ンス通路27を介して連通し、圧縮室C1,C2
の吐出ポート25から圧縮機出口の吐出管29ま
での吐出通路の途中には油溜空間とその油溜空間
の下流側に吐出通路制御弁装置34とを配置し、
その吐出通路制御弁装置34にはそれ自身の温度
が設定温度を超えるとその通路を広げ、設定温度
以下ではその通路を閉じるべく変形する形状記憶
特性を備えたコイルバネ38により弁体35を作
動させてその通路の開度を調整し、コイルバネ3
8を圧縮駆動源となるモータ10のコイルエンド
32の発熱を受熱すべく位置に配置したことによ
り、吐出通路39が閉じた圧縮機冷時始動後の吐
出空間における吐出冷媒ガス圧力や油溜9の潤滑
油温度の上昇が極めて早いので吐出圧力よりも低
い状態の背圧室20への差圧給油の立ち上がりや
背圧室20の圧力設定を早めることができるの
で、冷時始動直後の背圧室20周辺の摺動部に潤
滑油不足が生じないことから耐久性が高く、また
旋回スクロール14を固定スクロール33の側へ
付勢する背圧力も早期に安定して、背圧力不安定
に起因する旋回スクロール14のハタ付き現象も
少なく精粛運転ができると共に、旋回スクロール
14が固定スクロール33から軸方向に離れるこ
とがないので圧縮ガスの漏れ〓間も小さく圧縮効
率が高い。
As described above, according to this embodiment, the oil reservoir 9 on which discharged refrigerant gas pressure acts, the oil hole 6 penetrating the drive shaft 5, the bearings 3 and 4 supporting the drive shaft 5, and the eccentric shaft portion 8
A throttle passage constituted by a minute gap of the bearing part 13 of
A differential pressure oil supply passage passing through the back pressure chamber 20 and the suction chamber 22 of the orbiting scroll 14 in sequence is formed, and the orbiting scroll 1 passes between the back pressure chamber 20 and the suction chamber 22.
The compression chambers C1 and C2 communicate through a balance passage 27 of a thin hole provided in the lap support disk 15 of
An oil sump space is disposed in the middle of the discharge passage from the discharge port 25 to the discharge pipe 29 at the compressor outlet, and a discharge passage control valve device 34 is disposed on the downstream side of the oil sump space.
The discharge passage control valve device 34 operates a valve body 35 by a coil spring 38 having a shape memory characteristic that expands the passage when its own temperature exceeds a set temperature, and deforms to close the passage when the temperature falls below the set temperature. Adjust the opening degree of the passage, and then tighten the coil spring 3.
8 is placed in a position to receive the heat generated by the coil end 32 of the motor 10, which is the compression drive source, so that the pressure of the discharged refrigerant gas in the discharge space and the oil sump 9 are reduced after the compressor starts when the discharge passage 39 is closed and the compressor is cold. Since the lubricating oil temperature rises extremely quickly, it is possible to start the differential pressure oil supply to the back pressure chamber 20, which is lower than the discharge pressure, and to set the pressure in the back pressure chamber 20 earlier, so that the back pressure immediately after a cold start can be increased. Durability is high because there is no shortage of lubricating oil in the sliding parts around the chamber 20, and the back pressure that urges the orbiting scroll 14 toward the fixed scroll 33 is stabilized early, which eliminates the problem caused by unstable back pressure. There is little cluttering phenomenon of the orbiting scroll 14, which allows for careful operation, and since the orbiting scroll 14 does not separate from the fixed scroll 33 in the axial direction, leakage of compressed gas is also small and compression efficiency is high.

また吐出圧力上昇による圧縮負荷の立ち上がり
も早く、これに伴う冷媒ガス圧縮熱やモータ入力
による発熱により吐出冷媒ガス温度の上昇が早
く、それに加えてモータコイルエンド32部の発
熱によつて吐出通路制御弁装置34のコイルスプ
リング38が設定温度を超えて吐出通路39を開
状態にし、外気温度の低い冬期におけるヒートポ
ンプ冷凍サイクル運転での暖房立ち上がりを早く
することができる。特に、吐出弁を必要としない
スクロール圧縮機構では、冷時始動時から圧縮比
が一定で、ガス圧縮工程での圧縮熱の確保が安定
しており暖房運転をさらに早めることができる。
In addition, the compression load rises quickly due to the increase in discharge pressure, and the temperature of the discharged refrigerant gas rises quickly due to the heat of compression of the refrigerant gas and heat generated by the motor input. When the coil spring 38 of the valve device 34 exceeds the set temperature, the discharge passage 39 is opened, and heating can be started quickly in the heat pump refrigeration cycle operation in the winter when the outside air temperature is low. In particular, in a scroll compression mechanism that does not require a discharge valve, the compression ratio is constant from the time of cold start, and the heat of compression in the gas compression process is stably secured, making it possible to further speed up the heating operation.

また圧縮機運転後、吐出通路制御弁装置34の
コイルスプリング38が設定温度以下になると吐
出通路39を閉じるので、冷凍サイクルの凝縮器
から吐出管29を通して液化冷媒が圧縮機に流入
し、油溜9の潤滑油の粘度を希薄化させ、圧縮機
再始動時の潤滑特性を劣化せしめて圧縮機の耐久
性を損なうのを防止することができる。
In addition, after the compressor is operated, the coil spring 38 of the discharge passage control valve device 34 closes the discharge passage 39 when the temperature drops below the set temperature, so that liquefied refrigerant flows into the compressor from the condenser of the refrigeration cycle through the discharge pipe 29, causing an oil sump. By diluting the viscosity of the lubricating oil in No. 9, it is possible to prevent deterioration of the lubricating properties at the time of restarting the compressor and impairing the durability of the compressor.

また上記実施例によれば、吐出通路制御弁装置
34の入口側と出口側との圧力差設定圧力を超え
た場合に、弁体35がコイルスプリング37の付
勢力に抗して吐出通路制御弁装置34の通路の開
度を広げるべく作動することにより、起動後の油
溜9の圧力上昇に追従して潤滑油中に溶解する冷
媒ガスが分離・蒸発する際に、潤滑油が激しく発
泡するが、吐出通路が設定圧力に上昇するまで閉
じているので、圧縮機起動初期における潤滑油の
圧縮機外部流出を防ぐことができると共に、吐出
通路制御弁装置34の通路を開くまでの密閉シエ
ル1内の圧力上昇を早めて油溜9から背圧室20
を経由する吸入室22までの差圧給油の立ち上が
りを早め、それにより始動初期の給油遅延に起因
する摺動部焼付きを防止するし、耐久性を高める
ことができる。
Further, according to the above embodiment, when the pressure difference between the inlet side and the outlet side of the discharge passage control valve device 34 exceeds the set pressure, the valve body 35 resists the biasing force of the coil spring 37 and By operating to widen the opening of the passage of the device 34, the lubricating oil foams violently when the refrigerant gas dissolved in the lubricating oil separates and evaporates following the rise in pressure in the oil sump 9 after startup. However, since the discharge passage is closed until the pressure rises to the set pressure, it is possible to prevent lubricating oil from flowing out of the compressor at the initial stage of compressor startup, and the closed shell 1 is closed until the passage of the discharge passage control valve device 34 is opened. Accelerate the rise in pressure inside the oil sump 9 to the back pressure chamber 20.
The rise of the differential pressure oil supply to the suction chamber 22 via the engine is accelerated, thereby preventing the sliding parts from seizing caused by a delay in oil supply at the initial stage of startup, and improving durability.

また上記実施例によれば、給油通路制御弁装置
34のコイルスプリング37が設定温度以下の
時、弁体35を付勢して吐出通路を遮断すること
により、圧縮機長時間停止中に、圧縮機外部配管
系から液冷媒が圧縮機内に流入するのを阻止し、
それにより、圧縮機内に液冷媒が充満することに
よる潤滑油の希薄化、圧縮室内への液冷媒充満に
よる圧縮機再始動トルク増大を防止して圧縮機耐
久性低下を防ぐことができる。
Further, according to the above embodiment, when the coil spring 37 of the oil supply passage control valve device 34 is lower than the set temperature, the valve body 35 is energized to shut off the discharge passage, so that the compressor can be operated while the compressor is stopped for a long time. Prevents liquid refrigerant from flowing into the compressor from the external piping system,
Thereby, it is possible to prevent dilution of lubricating oil due to filling of the compressor with liquid refrigerant and an increase in compressor restart torque due to filling of the compression chamber with liquid refrigerant, thereby preventing a decrease in compressor durability.

また上記実施例によれば、吐出通路制御弁装置
34が本体フレーム2に設けられていることによ
り、吐出通路制御弁装置34には吐出冷媒ガスに
よる圧縮熱量のみならず駆動軸5の回転に係わる
各摺動部の摩擦熱量をも伝熱して吐出通路制御弁
装置34の温度上昇を早め、吐出冷媒ガス温度の
上昇、吐出ガスの圧力の上昇にあまり遅延するこ
となく吐出通路39を開き、外部の冷凍サイクル
へ吐出冷媒ガスを排出して吐出通路の異常な圧力
上昇を抑えて圧縮効率の低下を防ぐことができ
る。
Further, according to the above embodiment, since the discharge passage control valve device 34 is provided in the main body frame 2, the discharge passage control valve device 34 has not only the amount of compression heat generated by the discharged refrigerant gas but also the amount of heat related to the rotation of the drive shaft 5. The amount of frictional heat of each sliding part is also transferred to accelerate the temperature rise of the discharge passage control valve device 34, and the discharge passage 39 is opened without much delay in the rise in discharge refrigerant gas temperature and discharge gas pressure, and the discharge passage 39 is opened to the outside. By discharging the discharged refrigerant gas to the refrigeration cycle, it is possible to suppress abnormal pressure rise in the discharge passage and prevent a decrease in compression efficiency.

なお、上記実施例では、背圧室20を給油通路
下流側を吸入室としたが、第5図の場合と同様
に、背圧室20の給油通路下流側を背圧室20よ
り圧力の低い圧縮室にしても良く、上述と同様の
作用、効果が期待できる。
In the above embodiment, the back pressure chamber 20 has a suction chamber on the downstream side of the oil supply passage, but as in the case of FIG. It may be used as a compression chamber, and the same actions and effects as described above can be expected.

発明の効果 以上のように本発明は、吐出圧力の作用する潤
滑油供給元、絞り通路、旋回スクロールの背圧
室、その背圧室より圧力の低い圧縮室から固定ス
クロールラツプの外側に設けた吸入室までの流体
通路の少なくとも一部を順次経由する差圧給油通
路を形成すると共に、旋回スクロールの背圧室と
流体通路との間を絞り通路を介して連通し、圧縮
室の吐出ポートから圧縮機出口の吐出管までの吐
出通路の途中で且つ潤滑油供給元となる油溜空間
に吐出通路制御弁装置を配置し、吐出通路制御弁
装置にはそれ自身の温度が設定温度超えるとその
通路を広げ、設定温度以下ではその通路を閉じる
か、狭めるべく変形する形状記憶特性を備えたバ
ネ装置により弁体を作動させて通路の開度を調整
し、そのバネ装置を圧縮駆動源となる電動機のコ
イルの発熱を受熱すべく位置に配置したことによ
り、圧縮機冷時始動直後などには、吐出通路制御
弁装置により圧縮機出口通路が狭められて吐出空
間の流体圧力の上昇が極めて早いので、吐出圧力
の作用する潤滑油供給元から吐出圧力よりも低い
状態の背圧室および流体通路への差圧供給の立ち
上がりや背圧室の圧力設定を早めることができ
る。この結果、冷時始動直後の背圧室周辺の摺動
部に潤滑油不足が生じないことから耐久性が高
く、また旋回スクロールを固定スクロールの側へ
付勢する背圧力も早期に安定して、背圧不足に起
因する旋回スクロールのバタ付現象も少なく静粛
運転ができると共に、旋回スクロールが固定スク
ロールから軸方向に離れることがなく、また圧縮
室にも潤滑油供給される結果、圧縮室〓間が油膜
シールされて圧縮流体洩れも極めて少なく、圧縮
効率が高い。
Effects of the Invention As described above, the present invention provides a lubricating oil supply source where discharge pressure acts, a throttle passage, a back pressure chamber of the orbiting scroll, and a compression chamber whose pressure is lower than that of the back pressure chamber to the outside of the fixed scroll wrap. A differential pressure lubrication passage is formed which sequentially passes through at least part of the fluid passage to the suction chamber, and the back pressure chamber of the orbiting scroll and the fluid passage are communicated via a throttle passage, and a discharge port of the compression chamber is formed. A discharge passage control valve device is disposed in the oil sump space that is the lubricating oil supply source in the middle of the discharge passage from The opening of the passage is adjusted by operating a valve body using a spring device with shape memory that expands the passage and deforms to close or narrow the passage when the temperature is below a set temperature, and the spring device is used as a compression drive source. By arranging the coil in a position to receive the heat generated by the coil of the electric motor, the discharge passage control valve device narrows the compressor outlet passage immediately after starting the compressor when it is cold, causing a significant increase in fluid pressure in the discharge space. Since this is quick, the start-up of the differential pressure supply from the lubricating oil supply source where the discharge pressure acts to the back pressure chamber and the fluid passage which are lower than the discharge pressure and the pressure setting of the back pressure chamber can be accelerated. As a result, the sliding parts around the back pressure chamber do not run out of lubricating oil immediately after a cold start, resulting in high durability, and the back pressure that urges the orbiting scroll toward the fixed scroll stabilizes quickly. , quiet operation is possible with less flapping of the orbiting scroll due to lack of back pressure, the orbiting scroll does not separate from the fixed scroll in the axial direction, and lubricating oil is also supplied to the compression chamber. The gap is sealed with an oil film, so leakage of compressed fluid is extremely small, and compression efficiency is high.

また、効率的な圧縮立ち上がりが早いことか
ら、圧縮負荷の立ち上がりも早く、これに伴う流
体圧縮熱や電動機入力による電動機巻線部(コイ
ル)の発熱により吐出流体温度の上昇が早く、吐
出流体通路の途中に配置された吐出通路制御弁装
置のバネ装置が設定温度に早く到達して吐出通路
に開状態にするので、外気温度の低い冬期などに
おける吐出通路開通遅延に起因する吐出圧力の異
常上昇を阻止して、差圧給油促進策に付随して生
じ易い起動直後圧縮過負荷に伴う耐久性低下を防
ぐことができる。
In addition, since efficient compression rises quickly, the compression load also rises quickly, and the temperature of the discharged fluid rises quickly due to fluid compression heat and heat generated by the motor windings (coils) due to motor input. The spring device of the discharge passage control valve device, which is placed in the middle of the discharge passage, reaches the set temperature quickly and opens the discharge passage, which prevents an abnormal increase in discharge pressure due to a delay in opening the discharge passage during winter when the outside temperature is low. This can prevent a decrease in durability due to compression overload immediately after startup, which tends to occur with measures to promote differential pressure lubrication.

また圧縮機停止後、吐出通路制御弁装置のバネ
装置が設定温度以下になると吐出通路を狭めるの
で、圧縮機外部配管系から吐出流体が圧縮機出口
側から再流入するのを阻止する。その結果、圧縮
機外部に排出した流体が圧縮機出口側から再流入
することによつて潤滑油供給元の潤滑油の粘度を
低下させ、圧縮機再始動時の潤滑特性を劣化させ
圧縮機の耐久性を損なうのを防止することがで
き、耐久性、低振動・低騒音特性に優れたスクロ
ール圧縮機を実現するという効果を奏することが
できる。
Further, after the compressor is stopped, the spring device of the discharge passage control valve device narrows the discharge passage when the temperature drops below the set temperature, thereby preventing discharge fluid from flowing from the compressor external piping system back into the compressor outlet side. As a result, the fluid discharged to the outside of the compressor re-enters from the compressor outlet side, reducing the viscosity of the lubricating oil at the lubricating oil supply source, deteriorating the lubrication characteristics when the compressor is restarted, and causing the compressor to deteriorate. It is possible to prevent the durability from being impaired, and it is possible to achieve the effect of realizing a scroll compressor with excellent durability, low vibration and low noise characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例におけるスクロ
ール冷媒圧縮機の縦断面図、第2図、第3図は第
1図における吐出通路制御弁装置の動作状態を示
す詳細縦断面図、第4図は同圧縮機の圧縮原理を
説明する平面図、第5図は従来のスクロールガス
圧縮機の縦断面図である。 1……密閉シエル、2……本体フレーム、5…
…駆動軸、10……モータ、14……旋回スクロ
ール、15……ラツプ支持円盤、16……旋回ス
クロールラツプ、20……背圧室、21……鏡
板、22……吸入室、23……固定スクロールラ
ツプ、25……吐出ポート、27……バランス
穴、28……吸入管、29……吐出管、33……
固定スクロール、34……吐出通路制御弁装置、
35……弁体、37,38……コイルスプリン
グ。
FIG. 1 is a longitudinal cross-sectional view of a scroll refrigerant compressor according to a first embodiment of the present invention, FIGS. 2 and 3 are detailed longitudinal cross-sectional views showing the operating state of the discharge passage control valve device in FIG. FIG. 4 is a plan view illustrating the compression principle of the compressor, and FIG. 5 is a longitudinal sectional view of a conventional scroll gas compressor. 1... sealed shell, 2... body frame, 5...
... Drive shaft, 10 ... Motor, 14 ... Orbiting scroll, 15 ... Wrap support disk, 16 ... Orbiting scroll lap, 20 ... Back pressure chamber, 21 ... End plate, 22 ... Suction chamber, 23 ... ...Fixed scroll wrap, 25...Discharge port, 27...Balance hole, 28...Suction pipe, 29...Discharge pipe, 33...
Fixed scroll, 34...discharge passage control valve device,
35... Valve body, 37, 38... Coil spring.

Claims (1)

【特許請求の範囲】 1 固定スクロールの一部をなす鏡板の一面に形
成されたうず巻状の固定スクロールラツプに対し
て旋回スクロールの一部をなすラツプ支持円盤上
の旋回スクロールラツプをかみあわせ、前記固定
スクロールラツプの外側には吸入室を形成し、前
記ラツプ支持円盤は、駆動軸を支承する本体フレ
ームと前記鏡板との間に形成され、かつ前記本体
フレームの外側の吐出圧力の作用する潤滑油供給
元とは絞り通路を介して連通し、かつ前記本体フ
レームの外側の圧力よりも低圧力状態となる前記
旋回スクロールの背圧室に遊合状態で配置され前
記ラツプ支持円盤の自転阻止機構を介して旋回可
能に支承され、前記固定スクロールラツプと前記
旋回スクロールラツプとの間に形成される圧縮室
の容積変化を利用して流体を圧縮するようにした
スクロール式圧縮機構を形成し、前記スクロール
式圧縮機構とそれを駆動する電動機を収納する密
閉容器内に吐出流体を排出すべく構成し、前記潤
滑油供給元、前記絞り通路、前記背圧室、前記背
圧室より圧力の低い圧縮室から前記固定スクロー
ルラツプの外側に設けた前記吸入室までの流体通
路の少なくとも一部を順次経由する差圧給油通路
を形成すると共に、前記背圧室と前記流体通路と
の間を絞り通路を介して連通し、前記圧縮室の吐
出ポートから圧縮機出口の吐出管までの吐出通路
の途中で且つ前記潤滑油供給元となる油溜空間に
吐出通路制御弁装置を配置し、前記吐出通路制御
弁装置にはそれ自身の温度が設定温度超えるとそ
の通路を広げ、設定温度以下ではその通路を閉じ
るか、狭めるべく変形する形状記憶特性を備えた
バネ装置により弁体を作動させて通路の開度を調
整し、そのバネ装置を圧縮駆動源となる電動機の
コイルの発熱を受熱すべく位置に配置した密閉形
電動スクロール圧縮機。 2 吐出通路制御弁装置の入口側と出口側との圧
力差が設定圧力を超えた場合に、弁体がバネ装置
に抗して前記吐出通路制御弁装置の開度を広げる
べく作動する特許請求の範囲第1項記載の密閉形
電動スクロール圧縮機。 3 バネ装置が設定温度以下の時、吐出通路を遮
断する特許請求の範囲第1項記載の密閉形電動ス
クロール圧縮機。 4 吐出通路制御弁装置が本体フレームに設けら
れた特許請求の範囲第1項記載の密閉形電動スク
ロール圧縮機。
[Scope of Claims] 1. An orbiting scroll wrap on a lap support disk that is a part of an orbiting scroll is engaged with a spiral fixed scroll lap formed on one surface of an end plate that is a part of a fixed scroll. In addition, a suction chamber is formed on the outside of the fixed scroll wrap, and the wrap support disk is formed between the main body frame that supports the drive shaft and the end plate, and is configured to absorb the discharge pressure outside the main body frame. It communicates with the acting lubricating oil supply source through a throttle passage, and is disposed in a loose state in the back pressure chamber of the orbiting scroll where the pressure is lower than the pressure outside the main body frame, and A scroll type compression mechanism that is rotatably supported via an autorotation prevention mechanism and compresses fluid by utilizing a change in volume of a compression chamber formed between the fixed scroll wrap and the orbiting scroll wrap. and configured to discharge the discharge fluid into a closed container housing the scroll compression mechanism and the electric motor that drives it, the lubricating oil supply source, the throttle passage, the back pressure chamber, and the back pressure chamber. A differential pressure oil supply passage is formed that sequentially passes through at least a portion of the fluid passage from the compression chamber having a lower pressure to the suction chamber provided outside the fixed scroll wrap, and the back pressure chamber and the fluid passage are connected to each other. A discharge passage control valve device is arranged in the oil sump space which is the lubricating oil supply source and in the middle of the discharge passage from the discharge port of the compression chamber to the discharge pipe at the outlet of the compressor. The discharge passage control valve device has a spring device with shape memory that expands the passage when the temperature of the discharge passage control valve device exceeds a set temperature, and closes or narrows the passage when the temperature falls below the set temperature. A hermetic electric scroll compressor that is operated to adjust the opening of the passage, and its spring device is placed in a position to receive the heat generated by the coil of the electric motor that serves as the compression drive source. 2. A patent claim in which, when the pressure difference between the inlet side and the outlet side of the discharge passage control valve apparatus exceeds a set pressure, the valve body operates to widen the opening of the discharge passage control valve apparatus against a spring device. The hermetic electric scroll compressor according to item 1. 3. The hermetic electric scroll compressor according to claim 1, wherein the spring device shuts off the discharge passage when the temperature is below a set temperature. 4. The hermetic electric scroll compressor according to claim 1, wherein the discharge passage control valve device is provided in the main body frame.
JP5991285A 1985-03-25 1985-03-25 Scroll compressor Granted JPS61218792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5991285A JPS61218792A (en) 1985-03-25 1985-03-25 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5991285A JPS61218792A (en) 1985-03-25 1985-03-25 Scroll compressor

Publications (2)

Publication Number Publication Date
JPS61218792A JPS61218792A (en) 1986-09-29
JPH0435636B2 true JPH0435636B2 (en) 1992-06-11

Family

ID=13126807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5991285A Granted JPS61218792A (en) 1985-03-25 1985-03-25 Scroll compressor

Country Status (1)

Country Link
JP (1) JPS61218792A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820130A (en) * 1987-12-14 1989-04-11 American Standard Inc. Temperature sensitive solenoid valve in a scroll compressor
US5141407A (en) * 1990-10-01 1992-08-25 Copeland Corporation Scroll machine with overheating protection
US5186613A (en) * 1991-12-20 1993-02-16 American Standard Inc. Reverse phase and high discharge temperature protection in a scroll compressor
US5290154A (en) * 1992-12-23 1994-03-01 American Standard Inc. Scroll compressor reverse phase and high discharge temperature protection
US5370513A (en) * 1993-11-03 1994-12-06 Copeland Corporation Scroll compressor oil circulation system
US5707210A (en) * 1995-10-13 1998-01-13 Copeland Corporation Scroll machine with overheating protection
JP4965423B2 (en) * 2007-12-28 2012-07-04 株式会社日立産機システム Compression device
CN203201773U (en) * 2012-11-01 2013-09-18 艾默生环境优化技术(苏州)有限公司 Compressor
WO2021013103A1 (en) * 2019-07-19 2021-01-28 艾默生环境优化技术(苏州)有限公司 Balance block for scroll compressor and scroll compressor
CN112240300A (en) * 2019-07-19 2021-01-19 艾默生环境优化技术(苏州)有限公司 Balance block for scroll compressor and scroll compressor

Also Published As

Publication number Publication date
JPS61218792A (en) 1986-09-29

Similar Documents

Publication Publication Date Title
US4545747A (en) Scroll-type compressor
KR100330456B1 (en) Scroll Machine with Reduced Reverse Noise
JP3263386B2 (en) Scroll compressor
KR100608664B1 (en) Capacity changeable apparatus for scroll compressor
WO2003074879A1 (en) Scroll compressor
JPH11141483A (en) Electric gas compressor
JPS58160583A (en) Scroll type fluidic machine
JPH0435636B2 (en)
JP4222044B2 (en) Scroll compressor
JP2001323881A (en) Compressor
JPH0826861B2 (en) Scroll gas compressor
JPH07109195B2 (en) Scroll gas compressor
JPS61178589A (en) Scroll compressor
JP3045961B2 (en) Scroll gas compression
JPH0778391B2 (en) Scroll gas compressor
JPH1122664A (en) Scroll compressor
JP2511863B2 (en) Scroll gas compressor
JP2605688B2 (en) Scroll gas compressor
JP2674562B2 (en) Scroll refrigerant compressor with refueling control means
JP2574599B2 (en) Scroll compressor
JPH02227583A (en) Scroll compressor
JP2870490B2 (en) Scroll gas compressor
JP2785806B2 (en) Scroll gas compressor
JP2870489B2 (en) Scroll gas compressor
JPH0650274A (en) Scroll compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term