JPH0435071A - Tehrmoelectric thin film and manufacture thereof - Google Patents

Tehrmoelectric thin film and manufacture thereof

Info

Publication number
JPH0435071A
JPH0435071A JP2142814A JP14281490A JPH0435071A JP H0435071 A JPH0435071 A JP H0435071A JP 2142814 A JP2142814 A JP 2142814A JP 14281490 A JP14281490 A JP 14281490A JP H0435071 A JPH0435071 A JP H0435071A
Authority
JP
Japan
Prior art keywords
iron
thin film
silicon
thermoelectric thin
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2142814A
Other languages
Japanese (ja)
Inventor
Kakuei Matsubara
松原 覚衛
Takeshi Koyanagi
剛 小柳
Koichi Kawamura
浩一 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Yamaguchi University NUC
Original Assignee
Ube Industries Ltd
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd, Yamaguchi University NUC filed Critical Ube Industries Ltd
Priority to JP2142814A priority Critical patent/JPH0435071A/en
Publication of JPH0435071A publication Critical patent/JPH0435071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To enhance thermoelectromotive force by a method wherein an alloy whose proportion of silicon atoms to iron atoms exceeds the chemical equivalent of silicon atoms of an iron disilicide is vapor-deposited on a substrate and then annealed. CONSTITUTION:Excess of the Si/Fe ratio of in an aggregate which constitutes a thermoelectric thin film above the chemical equivalent of beta-iron disilicide can provide a high thermoelectromotive force. An electron beam from a generation gun 7 passes through an opening 2 to irradiate the surface of an alloy ingot 8 of iron and silicon which is held by a diaphragm 3 and whose Si/Fe ratio is over 2. A vapor of silicon more susceptible to oxidation than iron reacts with ionized oxygen to produce amorphous silicon oxide, which is turn deposits in a filmy state on a substrate 14 heated by a heater 13. Next, a deposited film is held at 750-900 deg.C and annealed by the heater 13 under vacuum or inactive gas circulation. This process enables conversion of crystals of iron disilicide from alpha-phase to beta-phase to provide a thermoelectric thin film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱起電力の大きい熱電薄膜及びその製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thermoelectric thin film with a large thermoelectromotive force and a method for manufacturing the same.

(従来の技術及びその問題点) β−鉄ジシリサイド粒子から構成される熱電材料は、種
々の排熱エネルギーがら電力を有効に回収するための材
料として注目されている。このβ鉄ジシリサイド粒子か
らなる熱電材料は、例えば電気学会技術報告(■部)第
275号(1988)に記載されているように、一般に
はα−鉄ジシリサイド粒子を成形焼結し、ついでアニー
リングして、α相をβ相に転換させることによって調製
される。このβ−鉄ジシリサイドからなる熱電材料の熱
電起電力(ゼーベック係数S)は高くとも0.5 mV
 / Kである。熱電材料を工業的に使用可能にするた
めには、その熱起電力を高めることが強く要望されてい
る。
(Prior Art and its Problems) Thermoelectric materials composed of β-iron disilicide particles are attracting attention as materials for effectively recovering electric power from various types of waste heat energy. Thermoelectric materials made of β-iron disilicide particles are generally produced by molding and sintering α-iron disilicide particles and then annealing them, as described in, for example, IEEJ Technical Report (Part ■) No. 275 (1988). It is prepared by converting the α phase into the β phase. The thermoelectric electromotive force (Seebeck coefficient S) of this thermoelectric material made of β-iron disilicide is at most 0.5 mV.
/ K. In order to make thermoelectric materials industrially usable, it is strongly desired to increase their thermoelectromotive force.

(問題点を解決するための技術的手段)本発明は公知の
β−鉄ジシリサイド粒子からなる熱電材料に比較して高
い熱起電力を有する熱電薄膜及びその製造法を提供する
(Technical Means for Solving the Problems) The present invention provides a thermoelectric thin film having a higher thermoelectromotive force than known thermoelectric materials made of β-iron disilicide particles, and a method for manufacturing the same.

本発明によれば、β−鉄ジシリサイド粒子と非晶質酸化
ケイ素との集合体からなる熱電薄膜が捉供される。
According to the present invention, a thermoelectric thin film comprising an aggregate of β-iron disilicide particles and amorphous silicon oxide is provided.

さらに、本発明によれば、鉄原子に対するケイ素原子の
割合(以下rsi/Fe比」ということがある。)が、
鉄ジシリサイドのケイ素原子の化学当量を超えている鉄
とケイ素との合金を、酸素イオンの存在下に蒸発させて
基板上に蒸着させ、ついでアニーリングするごとによっ
て、上記熱電薄膜を製造する方法が提供される。
Furthermore, according to the present invention, the ratio of silicon atoms to iron atoms (hereinafter sometimes referred to as rsi/Fe ratio) is
A method is provided for producing the above-mentioned thermoelectric thin film by evaporating an alloy of iron and silicon in excess of the chemical equivalent of the silicon atoms of iron disilicide onto a substrate in the presence of oxygen ions, followed by annealing. be done.

本発明の熱電薄膜を構成する集合体の一方の成分である
β−鉄レジシリサイド粒子粒径は一般に500Å以下で
ある。集合体の他方の成分である非晶質酸化ケイ素は二
酸化ケイ素及び−酸化ケイ素の両者を包含する。本明細
書において、「非晶質」とは、X線回折において明瞭な
ピークが観察されないことを言う。
The particle diameter of β-iron resilicide particles, which is one component of the aggregate constituting the thermoelectric thin film of the present invention, is generally 500 Å or less. The other component of the assemblage, amorphous silicon oxide, includes both silicon dioxide and -silicon oxide. As used herein, "amorphous" means that no clear peak is observed in X-ray diffraction.

第1図及び第2図は、それぞれ、後述する実施例1で調
製された熱電薄膜(Si/Fe比−3)のX線回折スペ
クトル及び赤外線吸収スペクトルである。第1図を参照
すると、本発明の熱電薄膜には、2θ−30° (22
0)及び50° (422)にβ−鉄ジシリサイドの微
粒子に基づく回折が観察される。また、第2図を参照す
ると、本発明の熱電薄膜には、1100cr+r’に5
i−0−Si結合に基づく吸収が、800cm’にSi
O□に基づく吸収が、さらに430cnr’にβ−Fe
Sizに基づく吸収がそれぞれ観察される。
FIG. 1 and FIG. 2 are an X-ray diffraction spectrum and an infrared absorption spectrum, respectively, of a thermoelectric thin film (Si/Fe ratio -3) prepared in Example 1, which will be described later. Referring to FIG. 1, the thermoelectric thin film of the present invention has 2θ-30° (22
Diffraction based on fine particles of β-iron disilicide is observed at 0) and 50° (422). Also, referring to FIG. 2, the thermoelectric thin film of the present invention has a
Absorption based on the i-0-Si bond occurs at 800 cm'
The absorption based on O□ is further
Absorption based on Siz is observed respectively.

第3図は同じく本発明の実施例1で調製された熱電薄膜
(Si/Fe比−3)の透過型電子顕微鏡像である。第
3図かられかるように、本発明の熱電薄膜は、β−鉄レ
ジシリサイド粒子図中の黒いスポット)が非晶質の酸化
ケイ素中に分散した集合体から構成されている。
FIG. 3 is a transmission electron microscope image of a thermoelectric thin film (Si/Fe ratio -3) also prepared in Example 1 of the present invention. As can be seen from FIG. 3, the thermoelectric thin film of the present invention is composed of an aggregate of β-iron resilicide particles (black spots in the diagram) dispersed in amorphous silicon oxide.

本発明の熱電薄膜を構成する集合体におけるSi/Fe
肚がβ−鉄ジシリサイドの化学当量より大であることが
、高い熱起電力を得るうえて重要である。上記Si/F
e比は2.5以上、特に3以上であることが好ましい。
Si/Fe in the aggregate constituting the thermoelectric thin film of the present invention
It is important to have a higher chemical equivalent than the β-iron disilicide in order to obtain a high thermoelectromotive force. Above Si/F
The e ratio is preferably 2.5 or more, particularly 3 or more.

集合体におけるSi/Pe比の−1−限については特別
の制限はないが、この比が過度に高(なると結果として
集合体中のβ−鉄ジシリサイドの割合が低下し、熱起電
力が低下するので、一般にSi/Fe比の上限ば5であ
る。
There is no particular restriction on the -1 limit of the Si/Pe ratio in the aggregate, but if this ratio is excessively high (as a result, the proportion of β-iron disilicide in the aggregate decreases, and the thermoelectromotive force decreases). Therefore, the upper limit of the Si/Fe ratio is generally 5.

熱電薄膜の厚さについても特別の制限はないが、一般に
は0.1〜IOμmである。
There is no particular limit to the thickness of the thermoelectric thin film, but it is generally 0.1 to IO μm.

つぎに、本発明の熱電薄膜の製造法を図面を参照して説
明する。
Next, a method for manufacturing a thermoelectric thin film according to the present invention will be explained with reference to the drawings.

第4図は、本発明の熱電薄膜の製造法に採用される装置
の一例の概略図である。
FIG. 4 is a schematic diagram of an example of an apparatus employed in the thermoelectric thin film manufacturing method of the present invention.

反応室1ば開口2を有する隔壁3によって上部室4及び
下部室5とに区分けされている。下部室5の側壁には排
気管6か貫通して設けられ、図示しない減圧装置に連結
されている。熱電薄膜の調製時には反応室1は高度の真
空、例えば1×10− ’ torrに保持される。
The reaction chamber 1 is divided into an upper chamber 4 and a lower chamber 5 by a partition wall 3 having an opening 2 . An exhaust pipe 6 is provided penetrating the side wall of the lower chamber 5 and is connected to a pressure reducing device (not shown). During the preparation of the thermoelectric thin film, the reaction chamber 1 is maintained at a high degree of vacuum, for example 1 x 10-' torr.

下部室5には電子ビーム発生ガン7が装着されており、
発生ガン7からの電子ビームは開口2を通って、隔壁3
に保持されているSi/Fe比が2より大きい鉄とケイ
素の合金インゴット8の表面に照射され、この照射によ
って鉄及びケイ素の蒸気が発生する。
An electron beam generating gun 7 is installed in the lower chamber 5.
The electron beam from the generating gun 7 passes through the aperture 2 and reaches the partition wall 3.
The surface of the iron-silicon alloy ingot 8 having a Si/Fe ratio of greater than 2 is irradiated, and iron and silicon vapor is generated by this irradiation.

」二部室4の中央側部にはイオンクラスタ−ビム発生器
9が装着されており、ボンへ10から流量計11を介し
て導管12によって供給される酸素ガスのイオンビーム
を発生ずる。
An ion cluster-beam generator 9 is mounted on the central side of the two-part chamber 4 and generates an ion beam of oxygen gas which is supplied by a conduit 12 from a bomb 10 via a flow meter 11.

鉄に比較して酸化されやすいケイ素蒸気とイオン化され
た酸素とが反応して、非晶質酸化ケイ素が生成し、鉄と
共に、ヒーター13によって200〜600 ”Cに加
熱された基板14上に膜状に堆積する。基板14として
は、各種のセラミック板、石英板及びケイ素板を使用す
ることができる。
Silicon vapor, which is more easily oxidized than iron, reacts with ionized oxygen to produce amorphous silicon oxide, which forms a film along with iron on the substrate 14 heated to 200-600''C by the heater 13. As the substrate 14, various ceramic plates, quartz plates, and silicon plates can be used.

堆積膜が所望の厚さになるまで上記の操作を継続した後
に、電子ビーム及び酸素イオンビームの発生を停止する
。ついで、真空下あるいはアルゴン、窒素などの不活性
ガス流通下にヒーター13によって堆積膜を750〜9
00°Cの温度範囲に保持するアニーリングを行って、
鉄ジシリサイドの結晶をα相からβ相に転換して、本発
明の熱電薄膜が得られる。
After continuing the above operation until the deposited film reaches a desired thickness, the generation of the electron beam and oxygen ion beam is stopped. Next, the deposited film is heated to 750 to 900 nm using a heater 13 under vacuum or under a flow of inert gas such as argon or nitrogen.
Annealing is performed at a temperature range of 00°C.
The thermoelectric thin film of the present invention can be obtained by converting iron disilicide crystals from α phase to β phase.

(実施例) 以下に実施例を示す。実施例において、熱電薄膜は第4
図に示す装置を使用して調製した。
(Example) Examples are shown below. In embodiments, the thermoelectric thin film is the fourth
Prepared using the equipment shown in the figure.

実施例1 下記反応条件で熱電薄膜を製造した。Example 1 A thermoelectric thin film was manufactured under the following reaction conditions.

反応室の圧力    I X 10−’Torr原料中
のSi/Fc比  2.0 膜堆積速度     0.72μm/h」1記操作を継
続して厚さ6000人の堆積膜を形成させた後に、アル
ゴンガス流通下に800°Cで4時間アニーリングして
、熱電薄膜を調製した。
Pressure in reaction chamber: I A thermoelectric thin film was prepared by annealing at 800°C for 4 hours under gas flow.

この薄膜中のSi/Fe比を電子線マイクロアナライザ
ーで測定したところ、3.0であった。 得られた薄膜
のX線回折スペクトル及び赤外線スペクトルを、それぞ
れ、第1図及び第2図に示す。また、]二二記膜の高エ
ネルギー電子線回折図を第3図に示す。
The Si/Fe ratio in this thin film was measured with an electron beam microanalyzer and was found to be 3.0. The X-ray diffraction spectrum and infrared spectrum of the obtained thin film are shown in FIGS. 1 and 2, respectively. Furthermore, a high-energy electron diffraction pattern of the XXII film is shown in FIG.

実施例2 原料中のSi/Fc比を3.0に変えた以外は実施例1
を繰り返した。得れた熱電薄膜のSi/Fe比を実施例
1と同様の方法で測定したとこと、3.8であった。
Example 2 Example 1 except that the Si/Fc ratio in the raw material was changed to 3.0.
repeated. The Si/Fe ratio of the obtained thermoelectric thin film was measured in the same manner as in Example 1 and was found to be 3.8.

実施例1及び2で得られた熱電薄膜の熱起電力第1図及
び第2図は、それぞれ、本発明の熱電F7膜のX線回折
スペクトル及び赤外線吸収スペクI・ルであり、第3図
は本発明の熱電薄膜の粒子構造を示す図である。
The thermoelectromotive forces of the thermoelectric thin films obtained in Examples 1 and 2 are shown in FIGS. 1 and 2, respectively, and the X-ray diffraction spectrum and infrared absorption spectrum of the thermoelectric F7 film of the present invention are shown in FIG. FIG. 2 is a diagram showing the particle structure of the thermoelectric thin film of the present invention.

第4図は本発明の熱電薄膜の製造に使用される装置の一
例の概略図である。
FIG. 4 is a schematic diagram of an example of an apparatus used for manufacturing the thermoelectric thin film of the present invention.

第5図は実施例で得られた熱電薄膜の熱起電力を示す図
である。
FIG. 5 is a diagram showing the thermoelectromotive force of the thermoelectric thin film obtained in the example.

1・・・反応室 7・・・電子ビーム発生ガン 8・・・鉄ジシリサイドのインゴット 9・・・イオンクラスタービーム発生器13・・・ヒー
タ 14・・・基板 20 (leり・) ンルミ  −f、y (ttn−’ )30λ
1...Reaction chamber 7...Electron beam generating gun 8...Iron disilicide ingot 9...Ion cluster beam generator 13...Heater 14...Substrate 20 ,y (ttn-')30λ

Claims (3)

【特許請求の範囲】[Claims] (1)β−鉄ジシリサイド粒子と非晶質酸化ケイ素との
集合体からなる熱電薄膜。
(1) A thermoelectric thin film consisting of an aggregate of β-iron disilicide particles and amorphous silicon oxide.
(2)鉄原子に対するケイ素原子の割合が、β−鉄ジシ
リサイドのケイ素原子の化学当量を超えている集合体か
らなる、特許請求の範囲第1項に記載の熱電薄膜。
(2) The thermoelectric thin film according to claim 1, comprising an aggregate in which the ratio of silicon atoms to iron atoms exceeds the chemical equivalent of silicon atoms in β-iron disilicide.
(3)鉄原子に対するケイ素原子の割合が鉄ジシリサイ
ドのケイ素原子の化学当量を超えている鉄とケイ素との
合金を、酸素イオンの存在下に蒸発させて基板上に蒸着
させ、ついでアニーリングすることを特徴とする、特許
請求の範囲第1項に記載の熱電薄膜の製造法。
(3) An alloy of iron and silicon in which the ratio of silicon atoms to iron atoms exceeds the chemical equivalent of silicon atoms in iron disilicide is evaporated onto a substrate in the presence of oxygen ions, and then annealed. A method for producing a thermoelectric thin film according to claim 1, characterized by:
JP2142814A 1990-05-31 1990-05-31 Tehrmoelectric thin film and manufacture thereof Pending JPH0435071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2142814A JPH0435071A (en) 1990-05-31 1990-05-31 Tehrmoelectric thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2142814A JPH0435071A (en) 1990-05-31 1990-05-31 Tehrmoelectric thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0435071A true JPH0435071A (en) 1992-02-05

Family

ID=15324251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2142814A Pending JPH0435071A (en) 1990-05-31 1990-05-31 Tehrmoelectric thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0435071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547598A (en) * 1993-08-04 1996-08-20 Technova, Inc. Thermoelectric semiconductor material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547598A (en) * 1993-08-04 1996-08-20 Technova, Inc. Thermoelectric semiconductor material

Similar Documents

Publication Publication Date Title
JP3352842B2 (en) Thin film formation method by gas cluster ion beam
EP0301463A2 (en) Thin film silicon semiconductor device and process for producing it
JPS6141762A (en) Formation of hyperfine pattern
US4767517A (en) Process of depositing diamond-like thin film by cathode sputtering
Scheuer et al. Electron beam decomposition of carbonyls on silicon
JPH06105779B2 (en) Semiconductor device and manufacturing method thereof
Chaudhari et al. Swift heavy ion induced growth of nanocrystalline silicon in silicon oxide
JPS582022A (en) Thin film formation
Hanabusa et al. Dynamics of laser‐induced vaporization for ultrafast deposition of amorphous silicon films
JPH0435071A (en) Tehrmoelectric thin film and manufacture thereof
EP0029747A1 (en) An apparatus for vacuum deposition and a method for forming a thin film by the use thereof
JP3351679B2 (en) Method for manufacturing polycrystalline silicon thin film laminate and silicon thin film solar cell
US5501745A (en) Low temperature method for making a photovoltaic material
JP3592806B2 (en) Manufacturing method of silicon oxide film
JPH0891818A (en) Production of carbon cluster-containing hard film
JP3795423B2 (en) Thin film formation method by gas cluster ion beam
JPS5853869A (en) Preparation of photo-electric conversion apparatus
JPH01194373A (en) Thermoelectrical conversion material
Kuchumov et al. Chemical Composition, Structure, and Functional Properties of the Coatings of Microchannel Plate Channels
JPH0424595A (en) Method of nuclear fusion and device thereof
JPH0344081A (en) Powder for thermoelectric conversion material and sintered body thereof
Bäuerle Laser induced chemical vapour deposition
Wang et al. CdS thin films prepared by continuous wave Nd: YAG laser
JP2802207B2 (en) Method for synthesizing compound semiconductor and method for manufacturing solar cell element
JPH11310406A (en) Production of functional carbonaceous material