JPH0435013A - Organic semiconductor solid electrolytic capacitor - Google Patents

Organic semiconductor solid electrolytic capacitor

Info

Publication number
JPH0435013A
JPH0435013A JP14229690A JP14229690A JPH0435013A JP H0435013 A JPH0435013 A JP H0435013A JP 14229690 A JP14229690 A JP 14229690A JP 14229690 A JP14229690 A JP 14229690A JP H0435013 A JPH0435013 A JP H0435013A
Authority
JP
Japan
Prior art keywords
density
solid electrolytic
organic semiconductor
capacitor
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14229690A
Other languages
Japanese (ja)
Inventor
Katsunori Minatomi
水富 勝則
Kenji Kaguma
健二 鹿熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14229690A priority Critical patent/JPH0435013A/en
Publication of JPH0435013A publication Critical patent/JPH0435013A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • H01J9/22Applying luminescent coatings
    • H01J9/227Applying luminescent coatings with luminescent material discontinuously arranged, e.g. in dots or lines
    • H01J9/2271Applying luminescent coatings with luminescent material discontinuously arranged, e.g. in dots or lines by photographic processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To reduce a leakage current malfunction by adhering double electrolytic sheets using Manila hemp in which density of separator sheet is specified and esparto. CONSTITUTION:Electrolytic paper sheets using Manila hemp in which separator paper sheets 3 have 0.30 - 0.50 (g/cm<3>) represented by density (g/cm<3>H0 = EBD/T (where WBD: meter weight (g/m<2>), T: thickness (mum) and esparto are adhered double for use.

Description

【発明の詳細な説明】 (イ)産業−にの利用分野 本発明は有機半導体固体電解コンデンサに関するもので
ある。更に詳説すると、本発明は電解質としてTCNQ
塩を使用する有機半導体固体電解コンデンサにおける漏
れ電流を抑制できるコンデンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an organic semiconductor solid electrolytic capacitor. More specifically, the present invention uses TCNQ as an electrolyte.
The present invention relates to a capacitor that can suppress leakage current in an organic semiconductor solid electrolytic capacitor that uses salt.

(ロ)従来の技tli 電解質としてTCNQ塩を1吏用する有機半導体固体電
解コンデンサに関しては、本願出願人より既に種々提案
している。即ち、例えば特開昭5819M14号(HO
IG9,102)等に開示されているN位をアルキル基
で置換したイソキノフンとのTCNQ塩を用いた固体電
解コンデンサは、特に優れた高周波特性をもっているた
め、スイッチング電源用などに広く採用されている。
(b) Conventional Techniques The applicant of the present application has already proposed various organic semiconductor solid electrolytic capacitors using TCNQ salt as an electrolyte. That is, for example, Japanese Patent Application Laid-Open No. 5819M14 (HO
Solid electrolytic capacitors using TCNQ salts with isoquinophene substituted with an alkyl group at the N position, as disclosed in IG9, 102), etc., have particularly excellent high frequency characteristics, and are therefore widely used for switching power supplies. .

次にコンデンサ素子について説明する。第1図は従来使
用されているコンデンサ素子を示す。先ず、高純度(9
9,9%以上)のアルミニウム箔を化学的処理により粗
面化し、実効表面積を増加させるためのいわゆるエツチ
ング処理を行なう。
Next, the capacitor element will be explained. FIG. 1 shows a conventionally used capacitor element. First, high purity (9
A so-called etching process is performed to roughen the surface of the aluminum foil (9.9% or more) by chemical treatment and increase the effective surface area.

次に電解液中にて、電気化学的にアルミニウム箔表面に
酸化皮膜(酸化アルミニウムの薄膜)を形成する(化成
処理)。
Next, an oxide film (thin film of aluminum oxide) is electrochemically formed on the surface of the aluminum foil in an electrolytic solution (chemical conversion treatment).

次にエツチング処理と化成処理を行なったアルミニウム
箔を陽極箔(1)とし、対向陰極箔(2)との間にセパ
レータ(3)として密度約0.35(g7′Cm 3)
のマニラ紙を挟み、第1図に示すように円筒状に巻き取
る。こうしてアルミニウム箔に酸化皮膜を形成した陽極
箔(1)及び陰極箔(2)と両電極箔間に介挿された密
度約0.35 (g/Cm3)のマニラ紙よりなるセパ
レータ(3)とを1巻回してコンデンサ素子(6)が形
成される。なお、(4)(4°)はアルミリード、(5
)(5’)はリード線である。
Next, the aluminum foil that has undergone etching treatment and chemical conversion treatment is used as an anode foil (1), and a separator (3) with a density of approximately 0.35 (g7'Cm 3) is placed between it and the opposing cathode foil (2).
sandwich the manila paper and roll it up into a cylindrical shape as shown in Figure 1. An anode foil (1) and a cathode foil (2) in which an oxide film is formed on the aluminum foil in this way, and a separator (3) made of manila paper with a density of about 0.35 (g/Cm3) inserted between both electrode foils. A capacitor element (6) is formed by winding the capacitor element (6) once. In addition, (4) (4°) is aluminum lead, (5
)(5') is a lead wire.

さらに、コンデンサ素子(6)に熱処理を施し、セパレ
ータ(3)を構成するマニラ紙を炭化して繊維の細径化
による密度の低下を図る。
Further, the capacitor element (6) is subjected to heat treatment, and the manila paper forming the separator (3) is carbonized to reduce the density by reducing the diameter of the fibers.

第2図はこのコンデンサ素子(6)をアルミケース(7
)内に収納した状態の断面図である。即ち、所定量の各
種TCNQ塩(8)をケース(7)内に入れ、加熱した
熱板上にアルミケース(7)を載置し、本実施例では2
50〜300℃にてケース(7)内の粉末状TCNQ塩
を加熱融解させる。
Figure 2 shows this capacitor element (6) in an aluminum case (7).
) FIG. That is, a predetermined amount of various TCNQ salts (8) is placed inside the case (7), and the aluminum case (7) is placed on a heated hot plate.
The powdered TCNQ salt in the case (7) is heated and melted at 50 to 300°C.

方、予め加熱しであるコンデンサ素子(6)をアルミテ
ース(7)内に挿入して、融解したTCNQ塩をコンデ
ンサ素子(6)に含浸させ、すぐに冷却固化させる。そ
の後、エポキシ樹脂等(9)またはゴムでケース(7)
の開口部を封止する。
On the other hand, a preheated capacitor element (6) is inserted into the aluminum teeth (7), and the capacitor element (6) is impregnated with molten TCNQ salt, which is immediately cooled and solidified. Then, use epoxy resin (9) or rubber to cover the case (7).
Seal the opening.

このような従来技術においては約0.35 (g、/ 
cm ’ )のマニラ紙を炭化使用していたため漏れ電
流による不良となるものがあった。
In such conventional technology, approximately 0.35 (g,/
Since carbonized manila paper (cm') was used, there were some defects due to leakage current.

(ハ)発明が解決しようとする課題 本発明はセパレータに密度的0.35 (g、、/cm
3)の低密度のマニラ紙を使用することに起因して発生
する漏れ電流不良を減少させるものである。
(c) Problems to be Solved by the Invention The present invention provides a separator with a density of 0.35 (g, /cm).
3) Leakage current defects caused by the use of low-density manila paper are reduced.

り二)課題を解決するための手段 本発明はコンデンサ素子のセパレータとして密度0.3
0−0.50 (g、/cm3)でマニラ麻とエスパル
トを使用した電解紙を二重に貼り合わせたものを使用す
る。
2) Means for Solving the Problems The present invention uses a separator with a density of 0.3 as a capacitor element separator.
A double layer of electrolytic paper made of manila hemp and esparto with a weight of 0-0.50 (g,/cm3) is used.

(ホ)作 用 コンデンサ素子内に含浸されている陰極電解質の抵抗(
R)は電極面積(S)とTCNQ塩の厚みdに対して(
1)のような関係にある。
(e) Function Resistance of the cathode electrolyte impregnated in the capacitor element (
R) is (
The relationship is as shown in 1).

R= k d / s          ・・・ (
1)(但し、k;定数、d;TCNQ塩の厚み、S;電
極面積) 従って、抵抗R1ひいては等価直列抵抗を考える場合、
(1)式におけるSの値を考えなければならない。そこ
で、従来はセパレータに低密度の約0.35 (g、/
cm”)のマニラ紙を使用することで、TCNQ塩のセ
パレータへの含浸率、即ち極間の充填率を高め、もって
T CN Q塩の電極面積を拡大化し、抵抗の低減を図
っていた。しかしながら、マニラ紙は短繊維であるため
低密度化或は炭化を進めていくと、繊維間の結合の力は
弱化し、繊維の分布の不均一な構造となる。このためT
CNQ塩を含浸したコンデンサにおいては、極間短絡の
発生する割合が高く、漏れ電流特性を悪化させるという
欠点が生じていた。本発明では密度0.30−0.50
 (g/cm’)の低密度ツマニラ麻とエスパルトを使
用した電解紙を二重に貼り合わせたものを用いることで
前記欠点を解決したものであり、セパレータ紙の強度を
強化し、漏れ電流の安定したコンデンサを提供するもの
である。
R=kd/s...(
1) (where k: constant, d: thickness of TCNQ salt, S: electrode area) Therefore, when considering the resistance R1 and the equivalent series resistance,
The value of S in equation (1) must be considered. Therefore, conventionally, the separator has a low density of about 0.35 (g, /
By using manila paper with a size of 2 cm"), the impregnation rate of the TCNQ salt into the separator, that is, the filling rate between the electrodes was increased, thereby increasing the electrode area of the TCNQ salt and reducing the resistance. However, since Manila paper is made of short fibers, as the density is reduced or carbonized, the bonding force between the fibers weakens, resulting in a structure with uneven fiber distribution.
Capacitors impregnated with CNQ salt have a high rate of occurrence of short circuits between electrodes, which has the drawback of deteriorating leakage current characteristics. In the present invention, the density is 0.30-0.50.
This problem was solved by using a double layer of electrolytic paper made of (g/cm') low-density tubular hemp and esparto, which strengthened the strength of the separator paper and reduced leakage current. This provides a stable capacitor.

(へ)実施例 本発明のセパレータにマニラ麻とエスパルトを使用した
電解紙を二重に貼り合わせたもの、例えばニラポン高度
紙工業(株)製、品名M R5Do、5−50 (密度
: 0.353 (g7’cm”) )を使用して製造
したコンデンサと従来のマニラ紙を使用して製造したコ
ンデンサの電圧処理(エージング)後の漏れ電流歩留り
、並びに等個直列抵抗値を第1表に記載する。尚、本発
明の実施例ではコンデンサ素子(6)を240℃で30
分〜60分間の炭化処理を2度行なった素子を使用した
(F) Example A separator of the present invention double laminated with electrolytic paper using Manila hemp and esparto, for example, manufactured by Nirapon Kokoshi Kogyo Co., Ltd., product name MR5Do, 5-50 (density: 0.353) Table 1 lists the leakage current yields and equal series resistance values after voltage treatment (aging) of capacitors manufactured using (g7'cm") ) and conventional manila paper. In the embodiment of the present invention, the capacitor element (6) is heated at 240°C for 30°C.
Elements were used which were subjected to carbonization treatment twice for 60 minutes to 60 minutes.

以下余白 第1表 第1表において、(A )(B )は定格35 V、容
量0.68μF、TCNQ塩にN −n−ブチルイソキ
ノリニウム・TCNQ、を使用したコンデンサで、(A
)は本発明の実施例、(B)は従来例である。尚、L 
、 C、は漏れ電流のデータで試験品100個中の不良
数と歩留まりを示しているが、LC規格はQ、5 (p
A/ 10secc、)以下である。
In Table 1, (A) and (B) are capacitors with a rating of 35 V, a capacitance of 0.68 μF, and using N-butylisoquinolinium TCNQ as the TCNQ salt.
) is an example of the present invention, and (B) is a conventional example. Furthermore, L
, C, is leakage current data and indicates the number of defects in 100 test items and yield, but the LC standard is Q,5 (p
A/10sec,) or less.

又、E、S、Rは100KI(zでの等価直列抵抗のデ
ータで、LC良品10個における平均値を示している。
Further, E, S, and R are equivalent series resistance data at 100KI (z), and indicate the average value for 10 good LC products.

巻回したコンデンサ素子を使用する場合、案内に含浸さ
れるTCNQ塩の量は本発明の場合従来の場合とでは差
はなく、電荷担体の移動距離、即ち式(1)におけるd
の値はほぼ等しいと考えてよい。又電極面積(S)につ
いてもTCNQ塩は同程度の密度の電解紙に含浸される
ことから、本発明品と従来品との差は小さく、無視でき
る範囲であ)、全体としてはほぼ従来品レベルにあるも
のと推測される。従って、等価直列抵抗についてもほぼ
従来レベルになるものと考えられる。
When using a wound capacitor element, the amount of TCNQ salt impregnated into the guide does not differ in the present case from the conventional case, and the distance traveled by the charge carriers, i.e. d in equation (1)
The values of can be considered to be almost equal. In addition, regarding the electrode area (S), since TCNQ salt is impregnated with electrolytic paper of the same density, the difference between the inventive product and the conventional product is small and can be ignored), and overall it is almost the same as the conventional product. It is assumed that it is at the level. Therefore, it is thought that the equivalent series resistance will also be approximately at the conventional level.

第1表から本発明によれば、等価直列抵抗を劣化させる
ことなく、漏れ電流不良を著しく減少させることが判か
る。
From Table 1, it can be seen that according to the present invention, leakage current defects are significantly reduced without deteriorating the equivalent series resistance.

(ト)発明の効果 本発明はこのようにコンデンサ素子におけるセパレータ
紙に密度0.30−0.50 (g/cm3)でマニラ
麻とエスパルトを使用した電解紙を二重に貼り合わせた
ものを用いることにより従来に比べ極めて漏れ電流特性
の安定したコンデンサの実現が可能となる。
(G) Effects of the Invention The present invention uses electrolytic paper made of manila hemp and esparto with a density of 0.30-0.50 (g/cm3) laminated in double layers as a separator paper in a capacitor element. This makes it possible to realize a capacitor with extremely stable leakage current characteristics compared to conventional capacitors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のコンデンサ素子の斜視図、第2図は、コ
ンデンサ素子をアルミケース内に収納した状態を示す固
体電解コンデンサの断面図である。 (1)(2)・・・陽、陰極箔、(3)・・・セパレー
タ、(6)・・・コンデンサ素子、(7)・・・アルミ
ケース、(8)・・・TCNQ塩。
FIG. 1 is a perspective view of a conventional capacitor element, and FIG. 2 is a sectional view of a solid electrolytic capacitor showing the capacitor element housed in an aluminum case. (1) (2)...Positive, cathode foil, (3)...Separator, (6)...Capacitor element, (7)...Aluminum case, (8)...TCNQ salt.

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウム、タンタル、ニオブ等の弁作用を有
する金属をエッチングし化成した箔よりなる陽極箔と該
金属の薄箔よりなる陰極箔との間にセパレータ紙を介し
て巻回して形成したコンデンサ素子に、加熱融解可能で
且つ冷却固化後コンデンサ用電解質として使用し得る電
導度を有するTCNQ塩を加熱融解して含浸させ、冷却
固化させてなる有機半導体固体電解コンデンサにおいて
、前記セパレータ紙が密度(g/cm^3)=WBD/
T(但し、WBD;メートル秤量(g/m^2)、T;
厚さ(μm))で示される密度0.30〜0.50(g
/cm^3)であるマニラ麻とエスパルトを使用した電
解紙を二重に貼り合わせたものであることを特徴とする
有機半導体固体電解コンデンサ。
(1) A capacitor formed by winding a separator paper between an anode foil made of etched and chemically formed metal having a valve action such as aluminum, tantalum, niobium, etc. and a cathode foil made of a thin foil of the metal. In an organic semiconductor solid electrolytic capacitor in which the element is heated and melted and impregnated with TCNQ salt that can be heated and melted and has a conductivity that can be used as an electrolyte for a capacitor after being cooled and solidified, and then cooled and solidified, the separator paper has a density ( g/cm^3) = WBD/
T (However, WBD; metric weight (g/m^2), T;
Density 0.30-0.50 (g
/cm^3) An organic semiconductor solid electrolytic capacitor characterized by being made by laminating a double layer of electrolytic paper made of Manila hemp and esparto.
JP14229690A 1990-05-31 1990-05-31 Organic semiconductor solid electrolytic capacitor Pending JPH0435013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14229690A JPH0435013A (en) 1990-05-31 1990-05-31 Organic semiconductor solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14229690A JPH0435013A (en) 1990-05-31 1990-05-31 Organic semiconductor solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0435013A true JPH0435013A (en) 1992-02-05

Family

ID=15312080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14229690A Pending JPH0435013A (en) 1990-05-31 1990-05-31 Organic semiconductor solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0435013A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110465A (en) * 2000-10-02 2002-04-12 Rubycon Corp Solid-state electrolytic capacitor and method of manufacturing the same
WO2006022049A1 (en) * 2004-08-25 2006-03-02 Sanyo Electric Co., Ltd. Solid electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355766A (en) * 1976-10-29 1978-05-20 Dexter Corp Multiilayer electrolytic paper
JPS53142652A (en) * 1977-05-17 1978-12-12 Nippon Kodoshi Kogyo Kk Paper for electrolytic capacitor
JPS58123715A (en) * 1982-01-18 1983-07-23 三洋電機株式会社 Solid electrolytic condenser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355766A (en) * 1976-10-29 1978-05-20 Dexter Corp Multiilayer electrolytic paper
JPS53142652A (en) * 1977-05-17 1978-12-12 Nippon Kodoshi Kogyo Kk Paper for electrolytic capacitor
JPS58123715A (en) * 1982-01-18 1983-07-23 三洋電機株式会社 Solid electrolytic condenser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110465A (en) * 2000-10-02 2002-04-12 Rubycon Corp Solid-state electrolytic capacitor and method of manufacturing the same
WO2006022049A1 (en) * 2004-08-25 2006-03-02 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
JPWO2006022049A1 (en) * 2004-08-25 2008-05-08 三洋電機株式会社 Solid electrolytic capacitor
US7855870B2 (en) 2004-08-25 2010-12-21 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
JP4726794B2 (en) * 2004-08-25 2011-07-20 三洋電機株式会社 Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JPH0158856B2 (en)
US6816357B2 (en) Solid electrolytic capacitor and a fabrication method therefor
JPH0435013A (en) Organic semiconductor solid electrolytic capacitor
JP2940059B2 (en) Solid electrolytic capacitors
US9023186B1 (en) High performance titania capacitor with a scalable processing method
JP2950575B2 (en) Electrolytic capacitor
JP4307820B2 (en) Aluminum electrolytic capacitor
JPH0338815A (en) Electric double layer capacitor
JPH04233210A (en) Electric double layer capacitor
JP3123772B2 (en) Organic semiconductor solid electrolytic capacitors
JP2755767B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JP2940711B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63126212A (en) Solid electrolytic capacitor
KR100699971B1 (en) Solid Electrolytic Capacitor and Production Method Thereof
JP2730345B2 (en) Manufacturing method of capacitor
JP2007250833A (en) Dc metallized film capacitor
JP2000277389A (en) Solid electrolytic capacitor and its manufacturing method
JPH0274020A (en) Manufacture of solid electrolytic condenser
JP2919726B2 (en) Solid electrolytic capacitors
JPH0395911A (en) Solid electrolytic capacitor
JPH04233212A (en) Electric double layer capacitor
JPH0426106A (en) Electric double layer capacitor
JPH04233211A (en) Electric double layer capacitor
JPH03252117A (en) Solid electrolytic capacitor
JPH0374028B2 (en)