JPH0434960Y2 - - Google Patents

Info

Publication number
JPH0434960Y2
JPH0434960Y2 JP10320286U JP10320286U JPH0434960Y2 JP H0434960 Y2 JPH0434960 Y2 JP H0434960Y2 JP 10320286 U JP10320286 U JP 10320286U JP 10320286 U JP10320286 U JP 10320286U JP H0434960 Y2 JPH0434960 Y2 JP H0434960Y2
Authority
JP
Japan
Prior art keywords
gas
section
reaction tank
methane
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10320286U
Other languages
Japanese (ja)
Other versions
JPS639300U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10320286U priority Critical patent/JPH0434960Y2/ja
Publication of JPS639300U publication Critical patent/JPS639300U/ja
Application granted granted Critical
Publication of JPH0434960Y2 publication Critical patent/JPH0434960Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、下水、し尿その他のSS(浮遊固形
物)を含有する有機性廃液を上向流式嫌気性汚泥
床(UASB)法を用いて処理するための反応槽
において、浮上するメタン発酵菌グラニユール
(団塊)と原水中のSSを効率良く分離し、該反応
槽中のメタン菌を高濃度に保持するための嫌気性
反応槽に関するものである。
[Detailed description of the invention] [Industrial application field] This invention uses the upflow anaerobic sludge bed (UASB) method to treat organic wastewater containing sewage, human waste, and other SS (suspended solids). An anaerobic reaction tank for efficiently separating floating methane-fermenting bacteria granules from SS in raw water and maintaining a high concentration of methane-fermenting bacteria in the reaction tank. It is.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

上向流式嫌気性汚泥床(Upflow Anaerobic
Sludge Blanket;以下UASBと記載する)法は、
廃水をメタン発酵させるための方法として近年開
発された方法であつて、原廃水を発酵槽の下部よ
り上向流として流入させ、菌の付着担体を用いる
ことなく、汚泥(菌)をグラニユール化せしめる
ことによりグラニユール化汚泥床(スラツジヘツ
ド)を形成させ、発酵槽中に高濃度の微生物を確
保することにより高容積負荷を許容しうる嫌気的
微生物処理技術であつて、その装置としては、底
部に低負荷時の被処理液(原廃水)の短絡を防止
するための原水分配流入部を備え、かつ、上部に
ガス−固−液の三相分離装置、処理水排出部及び
ガス捕集部を配備したものである(下水道協会誌
Vol.22,No.255,1985/8,67〜77頁)。
Upflow Anaerobic Sludge Bed
The Sludge Blanket (hereinafter referred to as UASB) law is
This is a method developed in recent years for methane fermentation of wastewater, in which the raw wastewater flows upward from the bottom of the fermenter, and the sludge (bacteria) is granulated without using a carrier for bacteria to adhere to. This is an anaerobic microbial treatment technology that can tolerate a high volume load by forming a granulated sludge bed (sludge head) and securing a high concentration of microorganisms in the fermenter. Equipped with a raw water distribution inlet to prevent short circuits of the liquid to be treated (raw wastewater) during load, and equipped with a gas-solid-liquid three-phase separation device, treated water discharge section, and gas collection section at the top. (Japanese Sewerage Association Magazine)
Vol. 22, No. 255, 1985/8, pp. 67-77).

即ち、UASB法は、反応槽底部にメタン発酵
菌のグラニユールを形成堆積せしめてメタン発酵
を行なわしめるものであつて、従来の反応槽内を
混合するものと異なり、槽内液を静止状態にお
き、槽底部にメタン発酵菌グラニユールを高濃度
に堆積せしめているため、メタン生成速度が極め
て高いという大きな特長を有する。
In other words, the UASB method involves forming and depositing granules of methane-fermenting bacteria at the bottom of the reaction tank to perform methane fermentation. Because methane-fermenting bacteria granulules are deposited at a high concentration at the bottom of the tank, the methane production rate is extremely high.

しかしながら、この方法においては、メタン発
酵菌グラニユールの生長速度が小さいこと、およ
び生成した該グラニユールに反応槽中で発生した
ガス(主としてメタンガス)が付着して槽外に流
出してしまうという欠点があつた。特に原水中に
SSが含有されている場合には、グラニユールの
流出量が多くなり、これがUASB法の大きな欠
点であつた。
However, this method has the disadvantage that the growth rate of the methane-fermenting bacteria granules is slow and that the gas (mainly methane gas) generated in the reaction tank adheres to the produced granules and flows out of the tank. Ta. especially in raw water
When SS is contained, the amount of granules flowing out increases, which was a major drawback of the UASB method.

〔考案の目的〕[Purpose of invention]

本考案は、前記UASB法の欠点を解消しよう
とするもので、UASB反応槽において、嫌性発
酵により生成したガス(嫌気性ガス)を循環利用
して該反応槽の特定の位置から吐出せしめること
によつて、メタン発酵菌グラニユールをそれに付
着している気泡及びSSから分離せしめるための
装置を提供することを目的とするものである。
The present invention attempts to eliminate the drawbacks of the UASB method, and involves circulating and utilizing the gas (anaerobic gas) produced by anaerobic fermentation in the UASB reaction tank and discharging it from a specific position in the reaction tank. The object of the present invention is to provide an apparatus for separating methane-fermenting bacteria granules from air bubbles and SS attached thereto.

〔考案の構成〕[Structure of the idea]

本考案は、底部に原水分配部およびメタン発酵
菌グラニユール形成部を有し、上部に処理水流出
部およびガス捕集部を有する上向流式嫌気性汚泥
床式反応槽において、水表面からグラニユール堆
積層上部までの水深のうち、水表面から2/3好ま
しくは1/2に至るまでの間で、かつ前記ガス捕集
部より下方に設けられた流出防止板より下方位置
に嫌気性ガス(嫌気性発酵により生成したガス)
を吐出するためのガス放出部を設けてなる上向流
式嫌気性汚泥床式反応槽である。
The present invention uses an upflow anaerobic sludge bed type reaction tank that has a raw water distribution section and a methane fermentation bacteria granule formation section at the bottom, and a treated water outflow section and a gas collection section at the top. Anaerobic gas ( gas produced by anaerobic fermentation)
This is an upflow type anaerobic sludge bed type reaction tank equipped with a gas discharge section for discharging .

以下第1図に基いて本考案を詳しく説明する。 The present invention will be explained in detail below based on FIG.

第1図は本考案の上向流式嫌気性汚泥床式反応
槽の概略を示す図であつて、符号1はUASB反
応槽、2はグラニユール堆積層、3は原水導入
管、4はガス捕集部、5はガス吐出部、6は嫌気
性ガス排出管、7は処理水流出口、8は原水分配
部、9はガス循環用ブロワー、10は嫌気性ガス
気泡、11はグラニユールを示し、13は流出防
止板を示す。
Fig. 1 is a diagram schematically showing the upflow type anaerobic sludge bed type reaction tank of the present invention, in which reference numeral 1 is the UASB reaction tank, 2 is the granule sediment layer, 3 is the raw water introduction pipe, and 4 is the gas capture 5 is a gas discharge part, 6 is an anaerobic gas discharge pipe, 7 is a treated water outlet, 8 is a raw water distribution part, 9 is a blower for gas circulation, 10 is an anaerobic gas bubble, 11 is a granule, 13 indicates a leakage prevention plate.

UASB反応槽1の底部にはメタン発酵菌グラ
ニユール堆積層2が形成されており、該反応槽底
部に原水導入管3および原水分配部8を経て導入
される有機性廃水(原水)中の生物資化性有機物
はメタン発酵菌等により速やかにメタンガスに転
化される。
A methane-fermenting bacteria granule layer 2 is formed at the bottom of the UASB reaction tank 1, and biological materials in organic wastewater (raw water) introduced into the bottom of the reaction tank via the raw water introduction pipe 3 and the raw water distribution section 8 are collected. The oxidizing organic matter is quickly converted into methane gas by methane-fermenting bacteria and the like.

メタン菌グラニユール11は直径が0.5〜5mm
のほぼ球形の団塊である。原水導入管3から導入
される有機性廃水中にはSS(浮遊固形物)が含有
されているが、SSは通常難生物分解性の有機物
であり、UASB法においてもSSの分解率は低い。
そしてこのSSにはメタンガスが極めて付着し易
いため、メタンガスの付着したSSは反応槽内を
浮上してガス捕集部4にスカムを形成する。ま
た、この際、メタンガスの付着したSS12は第
2図に示すようにメタン菌グラニユール11を同
伴して浮上せしめ、最終的には第3図に示すよう
に上昇した浮上グラニユールは捕捉されることな
く処理水と共に反応槽外に流出す。
Methane bacteria Granule 11 has a diameter of 0.5 to 5 mm.
It is an almost spherical nodule. The organic wastewater introduced from the raw water introduction pipe 3 contains SS (suspended solids), but SS is normally an organic substance that is difficult to biodegrade, and the decomposition rate of SS is low even in the UASB method.
Since methane gas is extremely likely to adhere to this SS, the SS to which methane gas has adhered floats up inside the reaction tank and forms scum in the gas collection section 4. In addition, at this time, the SS 12 with methane gas attached to it floats along with the methane bacteria granule 11 as shown in Figure 2, and eventually the floating granule that rises as shown in Figure 3 is not captured. It flows out of the reaction tank together with the treated water.

第1図で示す13は、反応槽1内のメタンガス
の付着したSS12(第2図参照)及びメタン菌
グラニユールが浮上して処理水流出口へ流れ込む
のを防止するための流出防止板であつて、反応槽
1の内面からその内端縁部は、ガス捕集部4の下
端部より内側まで延びている。
Reference numeral 13 shown in FIG. 1 is an outflow prevention plate for preventing the SS 12 (see FIG. 2) to which methane gas is attached in the reaction tank 1 and the methane bacteria granules from floating to the surface and flowing into the treated water outlet. The inner edge of the reaction tank 1 extends from the inner surface to the inner side of the lower end of the gas collection section 4 .

メタン菌グラニユールはほとんど純粋なメタン
菌によつて構成されており、またその生長速度は
極めて小さいので、該グラニユールが反応槽外に
流出することはUASB法の機能そのものが失わ
れることを意味する。
Since the methane bacteria granulules are composed of almost pure methane bacteria, and their growth rate is extremely slow, the flow of the granules out of the reaction tank means that the function of the UASB method itself is lost.

一方、スカムの形成およびグラニユールの浮上
を防止するために従来の如く攪拌を行うと、全槽
に乱れが生じグラニユールが全槽に分散してしま
い、また、このような条件下ではグラニユールは
形成されない。
On the other hand, if conventional stirring is performed to prevent the formation of scum and the floating of granules, the entire tank will be disturbed and the granules will be dispersed throughout the tank, and under such conditions, granules will not be formed. .

UASB反応槽中におけるグラニユールの形成
機構はまだ解明されていないが、少なくともメタ
ン菌を反応槽底部に堆積せしめ、該反応槽に導入
される有機性廃水のゆるやかな上昇流と生成する
メタンガスの上昇に伴つて生ずる微少な乱流の作
用によつて形成されるものと推定されている。
The formation mechanism of granulules in the UASB reactor has not yet been elucidated, but at least it causes methane bacteria to accumulate at the bottom of the reactor, and due to the gradual upward flow of organic wastewater introduced into the reactor and the rise of the generated methane gas. It is estimated that the formation is caused by the slight turbulence that occurs.

本考案者等は、グラニユールの形成を妨害する
ことなく、グラニユールの浮上を防止しうる装置
を種々試作検討した結果第1図に示す如く、
UASB反応槽中にガス吐出部を設け該ガス吐出
部から、反応槽で生成したメタンガスを循環吐出
せしめて槽上部を攪拌することが最も効果的であ
ることを見いだした。
The inventors of the present invention have developed various prototype devices that can prevent granules from floating without interfering with the formation of granules, as shown in Figure 1.
It has been found that the most effective method is to provide a gas discharge part in the UASB reaction tank and circulate and discharge the methane gas produced in the reaction tank from the gas discharge part to stir the upper part of the tank.

一方、メタンガスの吐出部を反応槽底部に配備
する場合第4図に示すようにガス吐出部5のまわ
りに形成される有機性水溶液の下降流によつて堆
積しているグラニユールの暑さが不均一となり、
反応槽下部から導入される有機性水溶液がグラニ
ユール層の薄い部分でシヨートパスしメタン生成
量が低下する。
On the other hand, when the methane gas discharge part is installed at the bottom of the reaction tank, the heat of the granules deposited by the downward flow of the organic aqueous solution formed around the gas discharge part 5 becomes undesirable, as shown in FIG. becomes uniform,
The organic aqueous solution introduced from the bottom of the reaction tank passes through the thin part of the granule layer, reducing the amount of methane produced.

グラニユールの形成、グラニユール堆積層の均
一化および効果的なグラニユール流出防止を行う
ための循環ガス吐出部の位置について更に検討し
た結果、吐出部の位置はグラニユールの堆積層を
こわさない位置にすればよく、水表面からグラニ
ユール堆積層上部までの水深のうち、水表面から
2/3に至るまでの間、好ましくは1/2に至るまでの
間で、かつガス捕集部より下方位置にガス吐出部
を配置すればよいことが判明した。
As a result of further consideration of the position of the circulating gas discharge part in order to form granules, make the granule deposit layer uniform, and effectively prevent the granules from flowing out, we found that the discharge part should be located at a position that does not damage the granule deposit layer. , a gas discharge section is located between 2/3 of the water surface, preferably 1/2 of the water depth from the water surface to the upper part of the granule sediment layer, and at a position below the gas collection section. It turned out that it was sufficient to place the .

ガス吐出部を水表面からグラニユール堆積層上
部までの水深のうち、水表面から2/3に至るまで
の間、好ましくは1/2に至るまでの間に配置する
理由は、2/3より深い位置に配置した場合、第4
図について説明したように、ガス吐出部のまわり
に形成される有機性水溶液の下降流によつて堆積
しているグラニユールの暑さが不均一になるのを
防止するためであり、また、ガス捕集部より下方
に設けられた流出防止板より下方位置に設けるの
は放出部吐出ガスの浮上汚泥への付着を防止する
ためと、浮上物の処理水からの分離を効率的に達
成するためである。
The reason why the gas discharge part is located between the water surface and the upper part of the granule sediment layer is from the water surface to 2/3, preferably 1/2 of the depth. If placed in the fourth position,
As explained in the figure, this is to prevent the heating of the granules deposited by the downward flow of the organic aqueous solution formed around the gas discharge part from becoming uneven, and also to prevent the gas from being trapped. The purpose of installing the outflow prevention plate below the collection section is to prevent the discharge section discharge gas from adhering to the floating sludge, and to efficiently separate the floating matter from the treated water. be.

また、ガス吐出部におけるガス吐出孔の孔径は
1〜10mm好ましくは2〜5mm程度がよい。孔径が
小さ過ぎるとSSによつて孔が閉塞しやすく、ま
た孔径が大き過ぎる場合攪拌効果が不均一とな
り、グラニユールが破壊されるおそれがあるから
である。
Further, the diameter of the gas discharge hole in the gas discharge portion is preferably about 1 to 10 mm, preferably about 2 to 5 mm. This is because if the pore diameter is too small, the pores are likely to be clogged by SS, and if the pore diameter is too large, the stirring effect will be uneven and the granules may be destroyed.

〔考案の効果〕[Effect of idea]

以上述べたように本考案によれば、簡単な構成
でグラニユールの浮上流出を防止でき、反応槽中
のメタン菌を高濃度に保持できるので、効率よく
処理ができる。
As described above, according to the present invention, it is possible to prevent granules from floating and flowing out with a simple configuration, and the methane bacteria in the reaction tank can be maintained at a high concentration, so that efficient processing can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の上向流式嫌気性汚泥床式反応
槽の一例を示す図面、第2図はメタン菌グラニユ
ールの浮上状態を示す図、第3図はメタン菌グラ
ニユールの流出状態を示す図、第4図はガス吐出
部を低位置に設けた場合の堆積グラニユールの状
態を示す図である。 1……UASB反応槽、2……グラニユール堆
積層、3……原水導入管、4……ガス捕集部、5
……ガス吐出部、6……嫌気性ガス排出管、7…
…処理水出口、8……原水分配部、9……ブロワ
ー、10……嫌気性ガス気泡、11……グラニユ
ール、12……SS、13……流出防止板。
Figure 1 is a diagram showing an example of an upflow type anaerobic sludge bed type reaction tank of the present invention, Figure 2 is a diagram showing the floating state of methane bacteria granule, and Figure 3 is a diagram showing the outflow state of methane bacteria granule. 4 are diagrams showing the state of deposited granules when the gas discharge part is provided at a low position. 1... UASB reaction tank, 2... Granule sediment layer, 3... Raw water introduction pipe, 4... Gas collection section, 5
...Gas discharge section, 6...Anaerobic gas discharge pipe, 7...
... Treated water outlet, 8 ... Raw water distribution section, 9 ... Blower, 10 ... Anaerobic gas bubbles, 11 ... Granule, 12 ... SS, 13 ... Outflow prevention plate.

Claims (1)

【実用新案登録請求の範囲】 1 底部に原水分配部およびメタン発酵菌クラニ
ユール形成部を有し、上部に処理水流出部およ
びガス捕集部を有する上向流式嫌気性汚泥床式
反応槽において、水表面からグラニユール堆積
層上部までの水深のうち、水表面から2/3に至
るまでの間で、かつ前記ガス捕集部より下方に
設けられた流出防止板より下方位置に嫌気性ガ
スを吐出するガス放出部を設けてなる上向流式
嫌気性汚泥床式反応槽。 2 ガス捕集部とガス放出部とを連結せしめ、捕
集ガスの一部をガス放出部に循環し放出せしめ
るように構成してなる実用新案登録請求の範囲
第1項記載の上向流式嫌気性汚泥床式反応槽。
[Scope of Claim for Utility Model Registration] 1. In an upflow anaerobic sludge bed type reaction tank having a raw water distribution section and a methane fermentation bacteria craniule forming section at the bottom, and a treated water outflow section and a gas collection section at the top. , Anaerobic gas is supplied to a position between 2/3 of the water depth from the water surface to the upper part of the granule sediment layer and below the outflow prevention plate provided below the gas collection section. An upflow anaerobic sludge bed type reaction tank equipped with a gas discharge section. 2. The upward flow type according to claim 1 of the utility model registration claim, which is configured to connect a gas collecting section and a gas discharging section so that a part of the collected gas is circulated and released to the gas discharging section. Anaerobic sludge bed type reaction tank.
JP10320286U 1986-07-07 1986-07-07 Expired JPH0434960Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10320286U JPH0434960Y2 (en) 1986-07-07 1986-07-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10320286U JPH0434960Y2 (en) 1986-07-07 1986-07-07

Publications (2)

Publication Number Publication Date
JPS639300U JPS639300U (en) 1988-01-21
JPH0434960Y2 true JPH0434960Y2 (en) 1992-08-19

Family

ID=30975537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10320286U Expired JPH0434960Y2 (en) 1986-07-07 1986-07-07

Country Status (1)

Country Link
JP (1) JPH0434960Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574749Y2 (en) * 1992-02-14 1998-06-18 東洋化学株式会社 Kotatsu Hori
KR100479411B1 (en) * 2002-07-26 2005-03-30 박석균 Anaerobic Rotary Reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220194A (en) * 1984-04-18 1985-11-02 Kurita Water Ind Ltd Anaerobic treatment apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220194A (en) * 1984-04-18 1985-11-02 Kurita Water Ind Ltd Anaerobic treatment apparatus

Also Published As

Publication number Publication date
JPS639300U (en) 1988-01-21

Similar Documents

Publication Publication Date Title
JPH0434960Y2 (en)
JP3641700B2 (en) Water quality improvement system for closed water areas
JPS6349297A (en) Waste water treatment device
JP2544712B2 (en) Wastewater treatment facility
JP2001029975A (en) Carrier stirring and separating apparatus
CN110451635A (en) A kind of biological treatment system and method for high organic matter industrial wastewater with high salt
JPS6323999Y2 (en)
JP3368150B2 (en) Fluid bed type biological treatment apparatus and method
JP4187889B2 (en) Aerobic filter bed tank and septic tank
JPH0128870Y2 (en)
JPH0225676B2 (en)
JPS6094194A (en) Treating apparatus for organic waste water
JP3477219B2 (en) Fluidized bed wastewater treatment equipment
JPH0214118B2 (en)
JP3250042B2 (en) Wastewater treatment equipment
JPH0352158Y2 (en)
JPS6321554B2 (en)
JPH0217676Y2 (en)
JPS6340597B2 (en)
JPH05138185A (en) Treatment of organic sewage and equipment
JP2552493B2 (en) Pressurized upflow wastewater treatment equipment and its usage
JPH0128871Y2 (en)
JPS5842077Y2 (en) Biological “filtration” device
JPH0128867Y2 (en)
JP3716461B2 (en) Concentration method in the receiving tank for biological filtration backwash wastewater