JPH04349117A - Production of cuprous sulfide - Google Patents

Production of cuprous sulfide

Info

Publication number
JPH04349117A
JPH04349117A JP15112891A JP15112891A JPH04349117A JP H04349117 A JPH04349117 A JP H04349117A JP 15112891 A JP15112891 A JP 15112891A JP 15112891 A JP15112891 A JP 15112891A JP H04349117 A JPH04349117 A JP H04349117A
Authority
JP
Japan
Prior art keywords
copper
sulfide
cuprous sulfide
added
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15112891A
Other languages
Japanese (ja)
Inventor
Kenichi Yamaguchi
健一 山口
Etsuji Kimura
悦治 木村
Akira Akimoto
秋元 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP15112891A priority Critical patent/JPH04349117A/en
Publication of JPH04349117A publication Critical patent/JPH04349117A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides

Abstract

PURPOSE:To wet-produce high-purity cuprous sulfide. CONSTITUTION:Ammonia is added to an aq. copper chloride soln. to form a copper-ammonia complex, a reducing agent is then added to adjust the oxidation-reduction potential to deposit metallic copper, a sulfidizing agent is then added to precipitate cuprous sulfide, the precipitate is separated, cleaned, dried, crushed and then calcined in an inert gas atmosphere to obtain cuprous sulfide. High-purity cuprous sulfide free of such impurities as heavy metals and poisonous arsenic is industrially and easily produced in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、顔料、絵の具、蛍光塗
料、太陽電池等に用いられる硫化第一銅の湿式製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wet method for producing cuprous sulfide used in pigments, paints, fluorescent paints, solar cells, etc.

【0002】0002

【従来の技術】硫化第一銅はCu2ーxS(x<0.0
2)の形で表わされる不定比化合物である。また工業的
には銅の製錬工程中に安定相として存在するが、硫化第
一銅として取り出されることはない。現在まで硫化第一
銅を目的とした工業的製造方法として確立されたものが
なく、文献に実験室的な方法が見られるだけである。従
来知られている実験室的製造方法は、銅の粉末と硫黄の
粉末とをモル比で2対1となるようにして混合し、耐熱
ガラス管に封入して450℃に加熱する方法であるが、
工業的に大量に製造するには適さない。また、銅の製錬
工程中に生成する硫化第一銅は量的には多いが、約12
00℃の高温融体であって取扱いが難かしく、かつ中間
生成物であるため不純物の含有量も多い。
[Prior Art] Cuprous sulfide is Cu2-xS (x<0.0
It is a non-stoichiometric compound represented by the form 2). Industrially, it exists as a stable phase during the copper smelting process, but it is not extracted as cuprous sulfide. To date, there is no established industrial production method for cuprous sulfide, and only laboratory methods can be found in the literature. A conventionally known laboratory production method is to mix copper powder and sulfur powder at a molar ratio of 2:1, seal the mixture in a heat-resistant glass tube, and heat it to 450°C. but,
Not suitable for industrial mass production. In addition, cuprous sulfide produced during the copper smelting process is large in quantity, but about 12
Since it is a high-temperature melt at 00°C, it is difficult to handle, and since it is an intermediate product, it contains a large amount of impurities.

【0003】以上の乾式法による製造方法に対して、銅
塩化合物溶液を用いた湿式法により硫化第一銅を製造す
る場合には、原料の銅塩化合物がpHの低い酸性領域の
ものでは2価の銅イオン(Cu2+)が安定であるため
硫化第二銅が生成し、また高いpH領域である酸化第二
銅を原料とすると酸素が不純物として残留する懸念があ
り、いずれも高純度の硫化第一銅の製造方法としては問
題がある。
[0003] In contrast to the dry method described above, when cuprous sulfide is produced by a wet method using a copper salt compound solution, if the raw material copper salt compound is in an acidic region with a low pH, Cupric sulfide is generated because valent copper ions (Cu2+) are stable, and if cupric oxide, which has a high pH range, is used as a raw material, there is a concern that oxygen may remain as an impurity. There are problems with the method of producing cuprous copper.

【0004】0004

【発明の解決課題】以上のように、従来の硫化第一銅の
製造方法には、製造量や製品純度の点で問題がある。本
発明はこれら従来法の課題を解決し、高純度の硫化第一
銅を工業的規模で容易に製造できる方法を提供すること
を目的とする。
[Problems to be Solved by the Invention] As described above, the conventional method for producing cuprous sulfide has problems in terms of production volume and product purity. An object of the present invention is to solve the problems of these conventional methods and provide a method that can easily produce high-purity cuprous sulfide on an industrial scale.

【0005】[0005]

【課題の解決手段:発明の構成】本発明によれば、銅塩
化合物の水溶液にアンモニアを添加して銅アンモニア錯
体を生成させた後、還元剤を添加し該銅アンモニア錯体
を還元して金属銅を析出させ、次いで硫化剤を添加して
硫化銅の沈殿を生成させ、該硫化銅を分離回収すること
からなる硫化第一銅の製造方法が提供される。また本発
明によれば、銅塩化合物の水溶液にアンモニアを添加し
て銅アンモニア錯体を生成させた後、還元剤を添加し該
銅アンモニア錯体を還元して金属銅を析出させ、次いで
硫化剤を添加して硫化銅の沈殿を生成させ、該硫化銅を
分離回収した後に不活性ガス雰囲気中で焼成することか
らなる硫化第一銅の製造方法が提供される。
[Means for Solving the Problems: Structure of the Invention] According to the present invention, ammonia is added to an aqueous solution of a copper salt compound to generate a copper ammonia complex, and then a reducing agent is added to reduce the copper ammonia complex to form a metal. A method for producing cuprous sulfide is provided, which comprises precipitating copper, then adding a sulfiding agent to form a precipitate of copper sulfide, and separating and recovering the copper sulfide. Further, according to the present invention, after adding ammonia to an aqueous solution of a copper salt compound to generate a copper ammonia complex, a reducing agent is added to reduce the copper ammonia complex to precipitate metallic copper, and then a sulfiding agent is added to the copper ammonia complex to precipitate metallic copper. A method for producing cuprous sulfide is provided, which comprises adding copper sulfide to form a precipitate of copper sulfide, separating and recovering the copper sulfide, and then calcining the copper sulfide in an inert gas atmosphere.

【0006】本発明の硫化第一銅の製造工程を図1に示
す。本発明の方法は原料として銅塩化合物を用いる。銅
塩化合物としては、例えば 硫酸銅(CuSO4)、塩
化銅(CuCl,CuCl2)、硝酸銅(Cu(NO3
)2)、炭酸銅(CuCO3) 等が挙げられる。これ
らの銅塩化合物の中、pHの低い酸性領域のものは2価
の銅イオンが安定であるため硫化剤との反応により硫化
第二銅(CuS)が生成し、また高いpH領域である酸
化第二銅を原料とすると酸素等の不純物が残留する懸念
があり、いずれも高純度の硫化第一銅の製造方法として
は適当でない。
The manufacturing process of cuprous sulfide of the present invention is shown in FIG. The method of the present invention uses a copper salt compound as a raw material. Examples of copper salt compounds include copper sulfate (CuSO4), copper chloride (CuCl, CuCl2), copper nitrate (Cu(NO3)
)2), copper carbonate (CuCO3), etc. Among these copper salt compounds, those in the acidic region with a low pH produce cupric sulfide (CuS) by reaction with a sulfiding agent because divalent copper ions are stable, and those in the acidic region with a high pH produce cupric sulfide (CuS). If cupric sulfide is used as a raw material, there is a concern that impurities such as oxygen may remain, and neither method is suitable as a method for producing high-purity cuprous sulfide.

【0007】そこで本発明の方法においては、まず銅塩
化合物の水溶液にアンモニアを添加して銅アンモニア錯
体を生成させる。この場合の銅塩化合物の濃度は5〜1
50g/水1000ml、好ましくは50〜100g/
水1000mlが用いられる。また、添加するアンモニ
アは、アンモニア水でもよいし、またガス状のアンモニ
アを水溶液中に吹きこんでもよい。反応を穏やかに進め
るためにはアンモニア水が好ましい。この場合のアンモ
ニアの濃度は特に制限はないが、10〜29%の範囲が
好ましい。アンモニアを添加して銅アンモニア錯体が生
成したときの水溶液のpHは10前後となる。
Therefore, in the method of the present invention, ammonia is first added to an aqueous solution of a copper salt compound to form a copper ammonia complex. In this case, the concentration of the copper salt compound is 5 to 1
50g/1000ml of water, preferably 50-100g/
1000 ml of water is used. Further, the ammonia to be added may be aqueous ammonia, or gaseous ammonia may be blown into the aqueous solution. Aqueous ammonia is preferred in order to proceed with the reaction gently. The concentration of ammonia in this case is not particularly limited, but is preferably in the range of 10 to 29%. The pH of the aqueous solution when the copper ammonia complex is generated by adding ammonia is around 10.

【0008】生成した銅アンモニア錯体を含む水溶液の
酸化還元電位は−100mVv程度であり、この水溶液
に還元剤を添加し、酸化還元電位を−500mV程度に
調整する。この操作により銅アンモニア錯体は還元され
て金属銅が析出し、水溶液中に懸濁した状態になる。上
記還元剤としては、例えば抱水ヒドラジン(N2H4・
H2O)、水素化ホウ素ナトリウム(NaBH4)が用
いられる。中でも抱水ヒドラジンは最後の焼成工程にお
いて除去が容易であるため特に好ましい還元剤である。 前記還元剤は一般の市販品を使用することができ、抱水
ヒドラジンを用いる場合は試薬をそのまま使用すること
ができる。もしくは水を加えて希釈して使用してもよい
The oxidation-reduction potential of the aqueous solution containing the produced cuprammonium complex is about -100 mVv, and a reducing agent is added to this aqueous solution to adjust the oxidation-reduction potential to about -500 mV. Through this operation, the copper ammonia complex is reduced and metallic copper is precipitated and suspended in the aqueous solution. As the reducing agent, for example, hydrazine hydrate (N2H4.
H2O), sodium borohydride (NaBH4) are used. Among them, hydrazine hydrate is a particularly preferred reducing agent because it can be easily removed in the final firing step. As the reducing agent, a general commercial product can be used, and when hydrazine hydrate is used, the reagent can be used as it is. Alternatively, it may be used after being diluted by adding water.

【0009】次に錯体の還元により析出した金属銅が懸
濁する水溶液に、硫化剤を添加して硫化第一銅(Cu2
S)の沈殿を生成させる。硫化剤としては、硫化水素ガ
ス(H2S)、硫化ソーダ(Na2S)、水硫化ソーダ
(NaSH)等が用いられる。これらの硫化剤は、たと
えば硫化水素ガスを用いる場合はガスを金属銅の懸濁溶
液中に吹き込む方法、また硫化ソーダ等を用いる場合は
それぞれ適当な濃度の水溶液として金属銅懸濁溶液に添
加する方法等により反応させる。硫化剤の添加量は、最
初に用いた銅塩化合物中の銅に対して1.0〜2.0倍
当量好ましくは1.5倍当量前後である。硫化剤の使用
量が1.0倍当量より少ないと硫化第一銅の収率が低下
し、2.0倍当量より多いと製品中のNa残留率が上昇
するので好ましくない。
Next, a sulfiding agent is added to an aqueous solution in which metallic copper precipitated by reduction of the complex is suspended to form cuprous sulfide (Cu2
S) to form a precipitate. As the sulfiding agent, hydrogen sulfide gas (H2S), sodium sulfide (Na2S), sodium hydrogen sulfide (NaSH), etc. are used. These sulfurizing agents can be used, for example, by blowing the gas into a suspension of metallic copper when using hydrogen sulfide gas, or by adding it to a suspension of metallic copper as an aqueous solution of an appropriate concentration when using soda sulfide, etc. React by a method etc. The amount of the sulfurizing agent added is 1.0 to 2.0 times equivalent, preferably around 1.5 times equivalent, to the copper in the copper salt compound initially used. If the amount of the sulfurizing agent used is less than 1.0 times equivalent, the yield of cuprous sulfide will decrease, and if it is more than 2.0 times equivalent, the Na residual rate in the product will increase, which is not preferable.

【0010】得られた硫化第一銅の沈殿は、そのまま攪
拌しながら20分ないし1時間熟成した後濾過その他適
当な方法により分離し、ついで水洗、乾燥、粉砕して製
品とする。水洗は分離した硫化第一銅に付着含有される
NH3、Na等を除去するため十分に行なうことが必要
であり、好ましくは水でリパルプすることが望ましい。 また乾燥は真空または窒素等の不活性ガス気流中で10
0℃以上、好ましくは120℃前後で、30時間以上、
好ましくは40時間前後行なうことが望ましい。以上の
製造方法により、純度97%〜98%の硫化第一銅が得
られる。
The resulting cuprous sulfide precipitate is aged for 20 minutes to 1 hour while being stirred, separated by filtration or other suitable method, and then washed with water, dried, and pulverized to obtain a product. It is necessary to wash thoroughly with water in order to remove NH3, Na, etc. attached to the separated cuprous sulfide, and it is preferable to repulp with water. Drying is carried out in vacuum or in a stream of inert gas such as nitrogen for 10 minutes.
At 0°C or higher, preferably around 120°C, for 30 hours or more,
It is preferable to carry out the heating for about 40 hours. By the above manufacturing method, cuprous sulfide with a purity of 97% to 98% can be obtained.

【0011】次に前記のようにして得られた硫化第一銅
を、さらにブラウン粉砕機等によって粉砕した後、硫化
水素気流中またはアルゴン等の不活性ガス雰囲気中で、
600〜700℃の温度で30分以上焼成して付着した
硫酸基(SO4)等を分解して除去することにより、9
9.5%以上の純度の硫化第一銅を得ることができる。
Next, the cuprous sulfide obtained as described above is further pulverized using a Braun pulverizer or the like, and then pulverized in a hydrogen sulfide stream or an inert gas atmosphere such as argon.
By decomposing and removing attached sulfuric acid groups (SO4) by baking at a temperature of 600 to 700°C for 30 minutes or more, 9
Cuprous sulfide with a purity of 9.5% or more can be obtained.

【0012】0012

【実施例】図2のフローチャートに示すように、硫酸銅
(5水和物、純度99.99%以上)、4.94 Kg
を水45リットルに溶解し、アンモニア水(NH3 2
9%)を6.5リットル加えて銅アンモニア錯体溶液を
形成した。このときpHは10前後であった。これに抱
水ヒドラジン(N2H4・H2O)10%溶液を4リッ
トル添加し、酸化還元電位を−100mV前後に調整し
た。次いで攪拌しながら、結晶硫化ソーダ(Na2S・
9H2O) 3.7 Kgを水10リットルに溶解した
液を加えて、硫化第一銅の沈殿を生成させ、この沈殿を
濾過して回収した。得られた沈殿を、リパルプ、水洗浄
、濾過のサイクルを3回繰り返した後に、N2ガス気流
中で、120℃約40時間乾燥した。これを横型ブラウ
ン粉砕機で1mm以下に粉砕し、管状型電気炉内の石英
反応管中に、試料をのせた石英製ボートを入れ、Ar雰
囲気で630℃、30分間焼成し、その後冷却した。得
られた試料をボールミルでさらに微粉砕して所定の粒度
(325メッシュ以下)に調整した。最終的に得た試料
のX線回折図を図3に示し、Cu2S及び不純物の分析
値を表1に示す。
[Example] As shown in the flow chart of Figure 2, copper sulfate (pentahydrate, purity 99.99% or more), 4.94 Kg
was dissolved in 45 liters of water, and aqueous ammonia (NH3 2
9%) was added to form a copper ammonia complex solution. At this time, the pH was around 10. Four liters of 10% hydrazine hydrate (N2H4.H2O) solution was added to this, and the redox potential was adjusted to around -100 mV. Then, while stirring, add crystalline sodium sulfide (Na2S.
A solution of 3.7 kg of 9H2O) dissolved in 10 liters of water was added to form a precipitate of cuprous sulfide, and this precipitate was collected by filtration. The resulting precipitate was subjected to a cycle of repulping, water washing, and filtration three times, and then dried at 120° C. for about 40 hours in a N2 gas stream. This was ground to 1 mm or less using a horizontal Braun grinder, and the quartz boat carrying the sample was placed in a quartz reaction tube in a tubular electric furnace, fired at 630°C for 30 minutes in an Ar atmosphere, and then cooled. The obtained sample was further finely pulverized using a ball mill to adjust to a predetermined particle size (325 mesh or less). The X-ray diffraction diagram of the finally obtained sample is shown in FIG. 3, and the analytical values of Cu2S and impurities are shown in Table 1.

【0013】[0013]

【表1】 ─────────────────────────
──────────  Cu(%)   S(%) 
  Al  Ca  Mg  Fe  Mn  Na 
 Si (ppm)    80.2     19.
3   <10   <10   <10   <10
   <10   <100  <100──────
─────────────────────────
────        (Cu,S の含有量は重量
%、その他の含有量はppm)
[Table 1] ──────────────────────────
────────── Cu (%) S (%)
Al Ca Mg Fe Mn Na
Si (ppm) 80.2 19.
3 <10 <10 <10 <10
<10 <100 <100──────
──────────────────────────
──── (Cu, S content is weight%, other contents are ppm)

【0014】[0014]

【発明の効果】本発明の製造方法によれば、重金属等の
不純物や毒性のある砒素等を含まない高純度の硫化第一
銅を効率よく工業的規模で製造することができる。
[Effects of the Invention] According to the production method of the present invention, highly pure cuprous sulfide, which does not contain impurities such as heavy metals or toxic arsenic, can be produced efficiently on an industrial scale.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の硫化第一銅の製造工程を示すフロ
ーチャート。
FIG. 1 is a flowchart showing the manufacturing process of cuprous sulfide of the present invention.

【図2】  実施例の製造工程を示すフローチャート。FIG. 2 is a flowchart showing the manufacturing process of the example.

【図3】  実施例で得た硫化第一銅のX線回析図。FIG. 3: X-ray diffraction diagram of cuprous sulfide obtained in Example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  銅塩化合物の水溶液にアンモニアを添
加して銅アンモニア錯体を生成させた後、還元剤を添加
し該銅アンモニア錯体を還元して金属銅を析出させ、次
いで硫化剤を添加して硫化銅の沈殿を生成させ、該硫化
銅を分離回収することからなる硫化第一銅の製造方法。
Claim 1: After adding ammonia to an aqueous solution of a copper salt compound to generate a copper ammonia complex, a reducing agent is added to reduce the copper ammonia complex to precipitate metallic copper, and then a sulfiding agent is added. A method for producing cuprous sulfide, which comprises producing a precipitate of copper sulfide and separating and recovering the copper sulfide.
【請求項2】  銅塩化合物の水溶液にアンモニアを添
加して銅アンモニア錯体を生成させた後、還元剤を添加
し該銅アンモニア錯体を還元して金属銅を析出させ、次
いで硫化剤を添加して硫化銅の沈殿を生成させ、該硫化
銅を分離回収した後に不活性ガス雰囲気中で焼成するこ
とからなる硫化第一銅の製造方法。
[Claim 2] Adding ammonia to an aqueous solution of a copper salt compound to generate a copper ammonia complex, adding a reducing agent to reduce the copper ammonia complex to precipitate metallic copper, and then adding a sulfiding agent. A method for producing cuprous sulfide, which comprises producing a precipitate of copper sulfide, separating and recovering the copper sulfide, and then calcining it in an inert gas atmosphere.
【請求項3】  銅アンモニア錯体水溶液に還元剤を添
加して水溶液の酸化還元電位を−300〜−500mV
の範囲に調整することを特徴とする請求項1の硫化第一
銅の製造方法。
3. Adding a reducing agent to the aqueous solution of the copper ammonia complex to increase the redox potential of the aqueous solution from -300 to -500 mV.
2. The method for producing cuprous sulfide according to claim 1, wherein the content of cuprous sulfide is adjusted to a range of .
JP15112891A 1991-05-27 1991-05-27 Production of cuprous sulfide Withdrawn JPH04349117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15112891A JPH04349117A (en) 1991-05-27 1991-05-27 Production of cuprous sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15112891A JPH04349117A (en) 1991-05-27 1991-05-27 Production of cuprous sulfide

Publications (1)

Publication Number Publication Date
JPH04349117A true JPH04349117A (en) 1992-12-03

Family

ID=15511980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15112891A Withdrawn JPH04349117A (en) 1991-05-27 1991-05-27 Production of cuprous sulfide

Country Status (1)

Country Link
JP (1) JPH04349117A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110683571A (en) * 2019-09-27 2020-01-14 中国科学院合肥物质科学研究院 Preparation method of flower-shaped cuprous sulfide micron particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110683571A (en) * 2019-09-27 2020-01-14 中国科学院合肥物质科学研究院 Preparation method of flower-shaped cuprous sulfide micron particles
CN110683571B (en) * 2019-09-27 2022-07-01 中国科学院合肥物质科学研究院 Preparation method of flower-shaped cuprous sulfide micron particles

Similar Documents

Publication Publication Date Title
CN108190938B (en) Method for preparing high-purity silver nitrate from photovoltaic waste silver paste
US7670407B2 (en) Method of producing titanium
US20080124269A1 (en) Purified molybdenum technical oxide from molybdenite
CN108265178B (en) A kind of processing method of cobalt metallurgy of nickel waste water slag
CN109055719A (en) A method of recycling valuable metal from selenic acid mud
US8715615B2 (en) Recovery of high purity lead oxide from lead acid battery paste
Sinha et al. Recovery of high value copper and zinc oxide powder from waste brass pickle liquor by solvent extraction
CN114561558B (en) Method for recycling antimony and fixing arsenic from arsenic-containing crystal
CN109609783A (en) A method of efficiently separating purification palladium and rhodium from the alloy sheet containing palladium, rhodium alloy
CN102795653B (en) Method for recycling copper oxide and zinc oxide from organosilicon spent contact mass
JP7058284B2 (en) Stannous oxide and its manufacturing method
Shariat et al. Rhenium recovery from Sarcheshmeh molybdenite concentrate
CN110643828B (en) Method for enriching and recovering solid gold from gold-containing solution
RU2410205C2 (en) Method of producing ultra-dispersed metal powder
CN111450835A (en) White carbon black core-shell structure catalyst and preparation method and application thereof
Singh et al. Studies on the processing of a low grade molybdenite concentrate by lime roasting
CN114906871B (en) Method for preparing nano zinc oxide by using secondary zinc oxide
AU2013389686A1 (en) Method and plant for processing roasted pyrites
JPH04349117A (en) Production of cuprous sulfide
CN108063295B (en) Method for extracting lithium from slag generated by pyrogenic recovery of lithium battery
US3986866A (en) Method of recovery of metal compounds and metals from nitrate solutions
US3342547A (en) Method for the production of high purity dense nickel oxide and the product thereof
JP2006144102A (en) Method for recovering nickel and/or cobalt sulfide
JP2000169116A (en) Selectively leaching recovery process of selenium
CN107827149B (en) A kind of production method of the sodium stannate of low leaded antimony arsenic iron tramp

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806