JPH04348580A - Manufacture of optical element - Google Patents

Manufacture of optical element

Info

Publication number
JPH04348580A
JPH04348580A JP3120952A JP12095291A JPH04348580A JP H04348580 A JPH04348580 A JP H04348580A JP 3120952 A JP3120952 A JP 3120952A JP 12095291 A JP12095291 A JP 12095291A JP H04348580 A JPH04348580 A JP H04348580A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
substrate
conversion element
holding
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3120952A
Other languages
Japanese (ja)
Inventor
Tetsuya Seki
哲也 関
Tatsuya Asaga
浅賀 達也
Kazuaki Watanabe
和昭 渡辺
Hideaki Iwano
岩野 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3120952A priority Critical patent/JPH04348580A/en
Publication of JPH04348580A publication Critical patent/JPH04348580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To improve a positional accuracy of mounting a photoelectric converter on a pedestal of a package without damaging a light receiving surface by forming a special non-light receiving region for holding a board on the board in which the converter is formed on the surface, and holding the non-light receiving region by vacuum suction. CONSTITUTION:Non-light receiving regions 202, 203 for holding a board by vacuum suction are formed in boards 101, 102 in which a photoelectric converter is formed. This area is 1/3 or more of the area of the board. Vacuum sucking jigs 103, 104 holds the regions 202, 203 of the boards 101, 102. Thus, a light receiving region is not damaged at all, and a photoelectric converter is not destroyed. Further, a mounting accuracy is decided only according to an accuracy at the time of aligning thereby to extremely enhance the mounting accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光を用いて情報を記録
、再生する光記憶の分野における光素子の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an optical element in the field of optical storage in which information is recorded and reproduced using light.

【0002】0002

【従来の技術】光源と4つの光電変換素子を1つのパッ
ケージに組み込み、光記憶媒体からの光を2つの不等周
期回折格子により4つ光電変換素子方向へ分割し、フォ
ーカシングエラー信号、トラッキングエラー信号などの
信号を検出する光素子は、複雑な光学系を必要とせず、
小型で低コストである利点を有するが、実際に光源と光
電変換素子を1つのパッケージに組み込むにあたって、
従来は光電変換素子を如何に保持してパッケージ内の台
座の所定の位置に移動、取り付けを行うかに関しては何
等限定されていなかった。
[Background Art] A light source and four photoelectric conversion elements are integrated into one package, and light from an optical storage medium is divided into four directions toward the photoelectric conversion elements by two nonuniformly periodic diffraction gratings, and a focusing error signal and a tracking error signal are generated. Optical devices that detect signals such as signals do not require complex optical systems;
Although it has the advantage of being small and low cost, when actually incorporating a light source and a photoelectric conversion element into one package,
Conventionally, there have been no restrictions on how to hold the photoelectric conversion element, move it to a predetermined position on the pedestal within the package, and attach it.

【0003】0003

【発明が解決しようとする課題】上記技術では、光電変
換素子の受光部分の大きさは、約0.1×0.5mmと
非常に小さなものである。また光源と光電変換素子を1
パッケージに組み込む場合、光電変換素子をパッケージ
の所定の位置へあわせ、ボンディングする際、光電変換
素子をどの様にして保持するかは、何等規定されていな
い。このため例えば光電変換素子の形成されている基板
の表面を真空チャック等で保持しようとすれば、サイズ
の点から取り扱いが難しく、さらに受光領域が傷ついて
しまい光電変換素子の機能が損なわれてしまうなどの問
題が生じる。さらに、光源と光電変換素子は極めて高い
精度で実装しないと、フォーカシングエラー信号、トラ
ッキングエラー信号を得ることができなくなる。このた
め光電変換素子を位置合わせ、ボンディング中にしっか
りと保持できていないと、位置ずれを起こしてしまい、
信号の検出が不可能となる問題がある。
In the above technology, the size of the light receiving portion of the photoelectric conversion element is very small, approximately 0.1×0.5 mm. In addition, the light source and photoelectric conversion element are
In the case of incorporating the photoelectric conversion element into a package, there are no regulations regarding how to hold the photoelectric conversion element when aligning and bonding the photoelectric conversion element to a predetermined position of the package. For this reason, for example, if you try to hold the surface of a substrate on which a photoelectric conversion element is formed with a vacuum chuck, it will be difficult to handle due to its size, and the light-receiving area will be damaged, impairing the function of the photoelectric conversion element. Such problems arise. Furthermore, unless the light source and photoelectric conversion element are mounted with extremely high precision, it will be impossible to obtain a focusing error signal and a tracking error signal. For this reason, if the photoelectric conversion element is not aligned and held securely during bonding, misalignment may occur.
There is a problem that signal detection becomes impossible.

【0004】そこで本発明は上記問題点を解決するもの
であり、その目的とするところは、光源と光電変換素子
を高い位置精度で再現良く実装できる光素子の製造方法
を提供するところにある。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and its object is to provide a method for manufacturing an optical element that allows a light source and a photoelectric conversion element to be mounted with high positional accuracy and good reproducibility.

【0005】[0005]

【課題を解決するための手段】本発明の光素子の製造方
法は、光記憶媒体からの光を4つの光電変換素子の方向
へ分割する回折手段と、非点収差発生手段と、前記回折
手段の0次回折光の光軸を中心として放射状に長軸が配
置された帯状の4つの前記光電変換素子と、光源を有す
る光素子の製造方法において、前記光電変換素子をパッ
ケージ内の台座の所定の位置に取り付けるときの前記光
電変換素子の保持方法は、前記光電変換素子が表面に形
成された基板に基板保持用の非受光領域を基板面積の1
/3以上形成し、前記基板保持用の非受光領域を真空吸
着により保持することを特徴とする。
[Means for Solving the Problems] The method for manufacturing an optical element of the present invention includes a diffraction means for splitting light from an optical storage medium in the directions of four photoelectric conversion elements, an astigmatism generating means, and the diffraction means. In the method for manufacturing an optical element having a light source and four band-shaped photoelectric conversion elements whose long axes are arranged radially around the optical axis of the 0th-order diffracted light, the photoelectric conversion element is placed on a predetermined position on a pedestal in a package. The method for holding the photoelectric conversion element when attaching it to a certain position is to set a non-light-receiving area for holding the substrate on a substrate on which the photoelectric conversion element is formed by dividing the area of the substrate into a non-light-receiving area.
/3 or more, and the non-light receiving area for holding the substrate is held by vacuum suction.

【0006】[0006]

【実施例】図1は本発明の実施例を示す光素子の製造方
法を示す図である。101、102は光電変換素子が形
成された基板で、101は+1次回折光を受光する光電
変換素子を有する基板で、102は−1次回折光を受光
する光電変換素子を有する基板である。基板101、1
02の詳細は図2(a)、(b)に示されており、例え
ば+1次回折光を受光する2つの光電変換素子201A
、201Bは光軸を法線とする同一面内にあるため、+
1次回折光を受光する光電変換素子201A、201B
は基板101上にモノリシックに形成されている。同様
に−1次回折光を受光する光電変換素子201C、20
1Dは基板102上にモノリシックに形成されている。 これらの光電変換素子201A、201B、201C、
201Dはフォトリソグラフィーなどの工程を経て作製
されるため同一基板内の2つの光電変換素子間の位置精
度(201Aと201B、201Cと201D)は非常
に高く、位置ずれは無視できるものである。さらに基板
101、102内には、真空吸着により基板を保持する
ための非受光領域202、203が形成されており、こ
の広さは、基板面積の約1/2である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a method of manufacturing an optical device according to an embodiment of the present invention. 101 and 102 are substrates on which photoelectric conversion elements are formed; 101 is a substrate having a photoelectric conversion element that receives +1st-order diffracted light; and 102 is a substrate having a photoelectric conversion element that receives -1st-order diffracted light. Substrate 101, 1
Details of 02 are shown in FIGS. 2(a) and 2(b), for example, two photoelectric conversion elements 201A that receive +1st-order diffracted light.
, 201B are in the same plane with the optical axis as the normal, so +
Photoelectric conversion elements 201A and 201B that receive first-order diffracted light
is monolithically formed on the substrate 101. Similarly, photoelectric conversion elements 201C and 20 that receive −1st-order diffracted light
1D is monolithically formed on the substrate 102. These photoelectric conversion elements 201A, 201B, 201C,
Since 201D is manufactured through a process such as photolithography, the positional accuracy between two photoelectric conversion elements (201A and 201B, 201C and 201D) on the same substrate is very high, and positional deviation can be ignored. Furthermore, non-light-receiving areas 202 and 203 are formed in the substrates 101 and 102 to hold the substrates by vacuum suction, and the size of these areas is approximately 1/2 of the area of the substrates.

【0007】図3は図2(a)、(b)の基板101、
102をパッケージ内の台座105、106に取り付け
たものの正面図である。301は光源で紙面に対し垂直
で、これは半導体レーザ107等を用いる。各々2つの
光電変換素子が一つの基板に形成されているため、台座
105、106へ基板101と102を取り付ければ、
図2に示すように光源301を中心として放射状に4つ
の光電変換素子を配置することができる。取り付け時の
基準は、例えば予め半導体レーザ107をパッケージに
取り付けLED発光させたものとすればよい。
FIG. 3 shows the substrate 101 of FIGS. 2(a) and 2(b),
102 attached to pedestals 105 and 106 inside the package. FIG. A light source 301 is perpendicular to the paper surface, and uses a semiconductor laser 107 or the like. Since two photoelectric conversion elements are each formed on one substrate, if the substrates 101 and 102 are attached to the pedestals 105 and 106,
As shown in FIG. 2, four photoelectric conversion elements can be arranged radially around the light source 301. The reference for attachment may be, for example, that the semiconductor laser 107 is attached to a package in advance and emitted from an LED.

【0008】基板101、102を台座105、106
に取り付けるときの基板101、102の保持は、図1
に示すような真空吸着治具103、104で基板101
、102の非受光領域202、203を吸着する方法に
より取り扱う。この方法によれば、治具との接触は非受
光領域であるから、光電変換素子201A、201B、
201C、201Dを傷つけて破壊してしまうことはな
い。また、吸着面積は本実施例では基板面積の約1/2
であり、基板保持のための十分な拘束力を有している。 このため、基板101、102の台座105、106へ
の取り付けは半田等を用いて融着するが、加熱、融着、
冷却時に真空吸着治具103、104で拘束しておけば
、ボンディング中に位置ずれを起こす可能性は皆無とな
る。このため取り付け精度は位置合わせ時の精度だけで
決定されるものとなり、極めて取り付け精度が高くなる
。なお、この非受光領域202、203は基板面積の1
/3以上あれば、基板保持のための十分な拘束力を有す
る。
[0008] The substrates 101 and 102 are mounted on pedestals 105 and 106.
The holding of the substrates 101 and 102 when attached to the
The substrate 101 is attached using vacuum suction jigs 103 and 104 as shown in FIG.
, 102 are handled by a suction method. According to this method, since the contact with the jig is a non-light receiving area, the photoelectric conversion elements 201A, 201B,
It will not damage or destroy 201C and 201D. In addition, in this example, the suction area is approximately 1/2 of the substrate area.
, and has sufficient restraining force to hold the substrate. For this reason, the substrates 101 and 102 are attached to the pedestals 105 and 106 by welding using solder or the like.
If it is restrained by vacuum suction jigs 103 and 104 during cooling, there is no possibility of positional deviation occurring during bonding. Therefore, the mounting accuracy is determined only by the accuracy at the time of positioning, and the mounting accuracy becomes extremely high. Note that these non-light-receiving regions 202 and 203 occupy 1 part of the substrate area.
/3 or more provides sufficient restraining force to hold the substrate.

【0009】このようにして光電変換素子をパッケージ
の台座に実装した後、配線を行い、キャップ等を取り付
け、パッケージとして完成した後、さらにこのパッケー
ジに集光レンズ、不等周期回折格子を配して、回折手段
、非点収差発生手段を設ければ光素子は完成する。
After the photoelectric conversion element is thus mounted on the pedestal of the package, wiring is performed, a cap etc. are attached, and the package is completed. Then, a condensing lens and an unequal periodic diffraction grating are arranged on this package. Then, by providing a diffraction means and an astigmatism generating means, the optical element is completed.

【0010】このようにして作製された光素子は、光信
号、エラー信号を検出するの必要な光学部品が少ないた
め極めて小型のものとなる。
[0010] The optical device manufactured in this manner has a small number of optical parts necessary for detecting optical signals and error signals, so that it is extremely compact.

【0011】[0011]

【発明の効果】以上述べたように本発明によれば、以下
の効果を有する。
[Effects of the Invention] As described above, the present invention has the following effects.

【0012】(1)光電変換素子の位置合わせ、及び台
座へ取り付け時の保持方法について、光電変換素子が形
成された基板に基板保持用の非受光領域を基板面積の1
/3以上形成し、前記基板保持用の非受光領域を真空吸
着により保持することにより受光領域を傷つけることが
皆無となり光電変換素子を破壊してしまうことがなくな
る。
(1) Regarding the positioning of the photoelectric conversion element and the holding method when attaching it to the pedestal, the non-light receiving area for holding the substrate is set on the substrate on which the photoelectric conversion element is formed by 1 part of the substrate area.
/3 or more, and by holding the non-light-receiving region for holding the substrate by vacuum suction, the light-receiving region will not be damaged at all, and the photoelectric conversion element will not be destroyed.

【0013】(2)基板の台座へ融着の際、加熱、融着
、冷却時に真空吸着治具で拘束しておけば、ボンディン
グ中に位置ずれを起こす可能性は皆無となる。このため
取り付け精度は位置合わせ時の精度だけで決定されるも
のとなり、極めて取り付け精度が高くなる。
(2) When fusing the substrate to the pedestal, if the substrate is restrained with a vacuum suction jig during heating, fusing, and cooling, there is no possibility of misalignment occurring during bonding. Therefore, the mounting accuracy is determined only by the accuracy at the time of positioning, and the mounting accuracy becomes extremely high.

【0014】[0014]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は本発明の実施例を示す光素子の製造方法
を示す図で、光電変換素子をパッケージの台座へ取り付
ける際の光電変換素子の形成された基板の保持方法を示
した図。
FIG. 1 is a diagram illustrating a method for manufacturing an optical device according to an embodiment of the present invention, and is a diagram illustrating a method for holding a substrate on which a photoelectric conversion element is formed when attaching the photoelectric conversion element to a pedestal of a package. .

【図2】図2(a)、(b)は、図1の光電変換素子の
形成された基板の詳細を示した図で、図2(a)は+1
次回折光を受光する光電変換素子の形成された基板、図
2(b)は−1次回折光を受光する光電変換素子の形成
された基板を示した図。
2(a) and 2(b) are diagrams showing details of a substrate on which the photoelectric conversion element of FIG. 1 is formed, and FIG. 2(a) is a +1
FIG. 2(b) is a diagram showing a substrate on which a photoelectric conversion element is formed to receive the -1st order diffracted light. FIG.

【図3】図3は、図2の光電変換素子の形成された基板
をパッケージ内の台座に取り付けたものを示した図。
FIG. 3 is a diagram showing the substrate on which the photoelectric conversion element of FIG. 2 is formed attached to a pedestal within a package.

【符号の説明】[Explanation of symbols]

101、102・・・基板 103、104・・・基板保持用のピンセット状の治具
105、106・・・台座 107・・・半導体レーザ 201A、201B、201C、201D・・・光電変
換素子 202、203・・・基板保持用非受光領域301・・
・光源
101, 102... Substrates 103, 104... Tweezers-like jigs for holding the substrate 105, 106... Pedestal 107... Semiconductor lasers 201A, 201B, 201C, 201D... Photoelectric conversion element 202, 203...Non-light receiving area for holding substrate 301...
·light source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  光記憶媒体からの光を4つの光電変換
素子の方向へ分割する回折手段と、非点収差発生手段と
、前記回折手段の0次回折光の光軸を中心として放射状
に長軸が配置された帯状の4つの前記光電変換素子と、
光源を有する光素子の製造方法において、前記光電変換
素子をパッケージ内の台座の所定の位置に取り付けると
きの前記光電変換素子の保持方法は、前記光電変換素子
が表面に形成された基板に基板保持用の非受光領域を基
板面積の1/3以上形成し、前記基板保持用の非受光領
域を真空吸着により保持することを特徴とする光素子の
製造方法。
1. Diffraction means for splitting light from an optical storage medium in the directions of four photoelectric conversion elements, astigmatism generation means, and long axes radially centered on the optical axis of the 0th order diffracted light of the diffraction means. The four band-shaped photoelectric conversion elements in which are arranged;
In the method of manufacturing an optical element having a light source, the method of holding the photoelectric conversion element when attaching the photoelectric conversion element to a predetermined position on a pedestal in a package includes holding the photoelectric conversion element on a substrate on the surface of which the photoelectric conversion element is formed. 1. A method of manufacturing an optical device, characterized in that a non-light-receiving region for holding the substrate is formed at least ⅓ of the substrate area, and the non-light-receiving region for holding the substrate is held by vacuum suction.
JP3120952A 1991-05-27 1991-05-27 Manufacture of optical element Pending JPH04348580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3120952A JPH04348580A (en) 1991-05-27 1991-05-27 Manufacture of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3120952A JPH04348580A (en) 1991-05-27 1991-05-27 Manufacture of optical element

Publications (1)

Publication Number Publication Date
JPH04348580A true JPH04348580A (en) 1992-12-03

Family

ID=14799044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3120952A Pending JPH04348580A (en) 1991-05-27 1991-05-27 Manufacture of optical element

Country Status (1)

Country Link
JP (1) JPH04348580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176202A1 (en) * 2012-05-25 2013-11-28 株式会社村田製作所 Vertical-cavity surface-emitting laser element and vertical-cavity surface-emitting laser array element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176202A1 (en) * 2012-05-25 2013-11-28 株式会社村田製作所 Vertical-cavity surface-emitting laser element and vertical-cavity surface-emitting laser array element
JPWO2013176202A1 (en) * 2012-05-25 2016-01-14 株式会社村田製作所 Vertical cavity surface emitting laser element, vertical cavity surface emitting laser array element
US9698568B2 (en) 2012-05-25 2017-07-04 Murata Manufacturing Co., Ltd. Vertical-cavity surface-emitting laser device and vertical-cavity surface-emitting laser array device

Similar Documents

Publication Publication Date Title
US5861654A (en) Image sensor assembly
EP0753893B1 (en) An image sensor assembly and packaging method
US5148037A (en) Position detecting method and apparatus
US20040084610A1 (en) Optical navigation sensor with integrated lens
KR900008969Y1 (en) Optical head unit
JPH04348580A (en) Manufacture of optical element
JPH04348581A (en) Manufacture of optical element
JPS6446243A (en) Optical pickup device
JP2004201328A (en) Image sensor positioning system and method
JPH04350984A (en) Optical element
JPH04349232A (en) Light element
US6184543B1 (en) Optical semiconductor device and method for fabricating the same
EP0069529A2 (en) Chip alignment method
JPH05181026A (en) Optical integrated circuit and its manufacture
JP3981250B2 (en) Semiconductor light receiving element and optical pickup device
JP4775750B2 (en) Optical encoder and optical encoder manufacturing method
JP2832127B2 (en) Optical pickup device
JPS6180212A (en) Automatic focus detecting mechanism
JPH0765398A (en) Light emitting and receiving element device
JP2662054B2 (en) Optical head device
JPH05327129A (en) Semiconductor laser device and photo pickup device using the same
JP2001339182A (en) Structure for attaching semiconductor
JPH04348577A (en) Optical element
JPS60230627A (en) Circuit board for led array
JP2001338428A (en) Light receiving member and its mounting structure