JPH04347174A - Heating element for thermotherapy - Google Patents

Heating element for thermotherapy

Info

Publication number
JPH04347174A
JPH04347174A JP14659591A JP14659591A JPH04347174A JP H04347174 A JPH04347174 A JP H04347174A JP 14659591 A JP14659591 A JP 14659591A JP 14659591 A JP14659591 A JP 14659591A JP H04347174 A JPH04347174 A JP H04347174A
Authority
JP
Japan
Prior art keywords
temperature
heating
conductive metal
thermotherapy
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14659591A
Other languages
Japanese (ja)
Inventor
Sakae Minagawa
皆川栄
Koji Henmi
逸見浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP14659591A priority Critical patent/JPH04347174A/en
Publication of JPH04347174A publication Critical patent/JPH04347174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

PURPOSE:To provide a sufficient heat value and to prevent a metal ion from run-off by coating the surface of a temp. sensitive amorphous powder having a Curie point in a specified range with an electrically conductive metal film and coating furthermore it with a resin film. CONSTITUTION:The surface of a temp. sensitive amorphous powder having a Curie point of 42-90 deg.C is covered with an electrically conductive metal film with a thickness of 0.05-1.0mum and it is furthermore coated with a resin film such as silicon, acrylic and polyethylene being harmless to organisms and with a thickness of 0.1-1.0mum to obtain a heating element for thermotherapy. When it is used, the heat-up time to a specified temp. can be shortened with this electrically conductive metal film and run-off of a metal caused by ionization into an organism can be prevented with the resin film and therefore, there is no possibility of run-off of the used metal into an organism caused by ionization and it is possible to perform effectively heating of a tumor in a deep part by means of a magnetic induction heating system.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、温熱療法用発熱体に関
するものである。詳しくは癌などの悪性腫瘍治療法の1
種であるハイパーサーミア(温熱療法)における磁気誘
導方式において、局部加熱用インプラント材料として使
用できる温熱療法用発熱体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating element for thermotherapy. For details, see 1. Treatment methods for malignant tumors such as cancer.
The present invention relates to a heating element for thermotherapy that can be used as an implant material for local heating in the magnetic induction method of hyperthermia (hyperthermia therapy).

【0002】0002

【従来の技術】癌などの悪性腫瘍細胞と正常細胞との間
に存在する熱感受性の差異に着目して、腫瘍付近の温度
を42℃或はそれ以上に加熱することによって癌治療を
おこなう手法(ハイパーサーミア)が1960年頃から
研究され始め、最近のめざましい加温技術の進歩により
、広範囲な応用が試みられつつある。ハイパーサーミア
は、その加熱方式によって全身温熱療法と局部温熱療法
とに大別される。全身温熱療法には、温水や溶融パラフ
ィンが用いられ、我国では体外循環血液加温法が最も普
及している。
[Prior Art] A method of treating cancer by heating the temperature near the tumor to 42°C or higher, focusing on the difference in heat sensitivity that exists between cells of malignant tumors such as cancer and normal cells. Research into hyperthermia (hyperthermia) began around the 1960s, and with recent remarkable advances in heating technology, a wide range of applications are being attempted. Hyperthermia is broadly classified into whole body thermotherapy and local thermotherapy depending on the heating method. Warm water and molten paraffin are used for whole body thermotherapy, and extracorporeal circulation blood warming is the most popular method in Japan.

【0003】局部温熱療法では、電磁波を用いるものが
多く、マイクロ波加温(2,450MHz, 915M
Hz, 434MHz等)、RF誘導加温(27.12
MHz,13.56MHz),RF誘電加温(13.5
6MHz,8MHz)及び超音波加温(1〜3MHz)
に基ずく種々の外部加温装置が厚生省の製造承認を得て
臨床応用に供されている。
[0003] Local heat therapy often uses electromagnetic waves, and microwave heating (2,450 MHz, 915 MHz)
Hz, 434MHz, etc.), RF induction heating (27.12
MHz, 13.56MHz), RF dielectric heating (13.5MHz)
6MHz, 8MHz) and ultrasonic heating (1-3MHz)
Various external heating devices based on the above have been approved for manufacturing by the Ministry of Health and Welfare and are now available for clinical use.

【0004】マイクロ波加温は原理的に表皮から数セン
チメートルの深さまでが加熱限界であり、表在性の腫瘍
に対してのみ有効である。RF誘電加温は電極の間に生
体を挟み高周波電流を生体に流すことにより発生するジ
ュール熱によって発熱する。そのため、電極周辺や電気
抵抗が他の物質よりも高い皮下脂肪が選択的に加温され
、患部のみの加温は難しい。RF誘導加温は、高周波磁
界の印加により生体に生じる渦電流によって発熱する。 そのため深部加温が可能であるが、生体内の不均一イン
ピーダンスによって発熱パターンが乱れやすく、病巣以
外も加温されてしまうという欠点がある。更に超音波に
よる加温は収束性が良好であり、深部の加温に適しては
いるが、骨や空気との境界面で反射されるため適用部位
に制限がある。
[0004] In principle, microwave heating is limited to a depth of several centimeters from the epidermis, and is effective only for superficial tumors. RF dielectric heating generates heat by Joule heat generated by sandwiching a living body between electrodes and passing a high-frequency current through the living body. Therefore, the area around the electrodes and subcutaneous fat, which has higher electrical resistance than other substances, is selectively heated, making it difficult to heat only the affected area. In RF induction heating, heat is generated by eddy currents generated in a living body by application of a high-frequency magnetic field. Therefore, deep heating is possible, but there is a drawback that the heat generation pattern is likely to be disturbed due to non-uniform impedance within the body, and areas other than the lesion are also heated. Furthermore, heating by ultrasonic waves has good convergence and is suitable for heating deep parts, but there are limitations to the areas where it can be applied because they are reflected at the interface with bones and air.

【0005】以上述べてきた方法は、加温に対しては何
れも生体外より電磁波および超音波を加える方式であり
生体内部への電極挿入の必要がない(非侵襲的である)
という利点を有する。しかし、生体深部の局所加温を確
実に実現するのに容易ではなく、不要な場所での高温領
域(HOT SPOT)の発生などを防ぐために、常時
生体内部の温度計測をする必要があり、生体内患部及び
患部周辺に温度センサーを挿入する必要がある(侵襲的
である)。なぜなら、生体内部の温度を測定してその測
定温度によってフィードバック制御をしなければ生体の
加温箇所の温度が上昇し過ぎるため生体に害を及ぼす可
能性があるからである。更にHOT SPOTの発生箇
所は予測し難く、適切な温度分布計測法は未だ確立され
ていない。一般に電磁波を用いる場合、高周波化すれば
局所加温は可能であるものの深部加温が困難になり、低
周波化すれば深部加温は容易になるが加温範囲が広くな
るという本質的な問題を有している。
[0005] The methods described above all apply electromagnetic waves and ultrasonic waves from outside the body for heating, and there is no need to insert electrodes into the body (they are non-invasive).
It has the advantage of However, it is not easy to reliably achieve local heating deep within the body, and it is necessary to constantly measure the temperature inside the body to prevent the occurrence of high temperature areas (HOT SPOT) in unnecessary places. It is necessary to insert a temperature sensor into and around the affected area in the body (this is invasive). This is because if the temperature inside the living body is not measured and feedback control is performed based on the measured temperature, the temperature at the heated portion of the living body will rise too much, which may cause harm to the living body. Furthermore, it is difficult to predict where hot spots will occur, and an appropriate temperature distribution measurement method has not yet been established. Generally, when using electromagnetic waves, the essential problem is that if the frequency is increased, local heating is possible but deep heating is difficult, and if the frequency is lowered, deep heating is easier but the heating range becomes wider. have.

【0006】これらの電磁波応用ハイパーサーミアの問
題点をカバーすべく近年開発されつつあるのが、ソフト
ヒーテイング法と呼ばれる方法である。この方法では感
温性磁性材料を生体内の腫瘍部に埋め込み、高周波交番
磁界で励磁することによって発生するヒステリシス損失
等を発熱源として利用し加温するものである。この方法
によれば、治療温度は、感温素子のキュリー温度により
決まるため、電磁波出力の調整をする必要がないことを
特徴としている。
[0006] A method called a soft heating method has been developed in recent years to overcome the problems of hyperthermia using electromagnetic waves. In this method, a temperature-sensitive magnetic material is implanted into a tumor in a living body, and hysteresis loss generated by excitation with a high-frequency alternating magnetic field is used as a heat source to heat the tumor. According to this method, the treatment temperature is determined by the Curie temperature of the temperature-sensitive element, so there is no need to adjust the electromagnetic wave output.

【0007】[0007]

【発明が解決しようとする課題】特開平2−47243
号及び特開平2−61036号公報に開示されている感
温性アモルファス合金は、局部加熱用インプラント材と
して開発され、生体深部に留置するため、形状は粉末状
である。一般に、磁性材料は形状により磁気特性が変化
する。特に、粉末状では反磁界係数が大きいため磁気特
性は劣化する。また、粉末状であるため、高周波交番磁
界を印加したときの昇温特性は粉末の粒径に依存する。 即ち、粒径が細かくなるに従って昇温速度が遅くなるた
め、一定温度(治療温度)に達するまでに時間がかかる
という欠点がある。更に、感温性アモルファス合金自体
は、耐食性が良好であるが生体内に留置された場合の腐
食反応は複雑であり、金属イオン流出の可能性があると
考えられている。
[Problem to be solved by the invention] JP-A-2-47243
The temperature-sensitive amorphous alloy disclosed in JP-A-2-61036 and JP-A-2-61036 was developed as an implant material for local heating, and is in powder form because it is indwelled deep inside the living body. Generally, magnetic properties of magnetic materials change depending on their shape. In particular, in powder form, the demagnetizing field coefficient is large, so the magnetic properties deteriorate. Furthermore, since it is in powder form, the temperature increase characteristics when a high frequency alternating magnetic field is applied depend on the particle size of the powder. That is, as the particle size becomes finer, the rate of temperature increase becomes slower, so there is a drawback that it takes time to reach a constant temperature (therapeutic temperature). Further, although the temperature-sensitive amorphous alloy itself has good corrosion resistance, the corrosion reaction when indwelled in a living body is complicated, and it is thought that metal ions may leak out.

【0008】従って、本発明の目的は、磁気誘導方式に
おけるソフトヒーティング法において、充分な発熱量を
持ち、且つ金属イオンの流出を防止する温熱療法用粉末
状発熱体を提供することである。
[0008] Accordingly, an object of the present invention is to provide a powder heating element for thermotherapy which has a sufficient calorific value and prevents the outflow of metal ions in a magnetic induction soft heating method.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
め種々検討した結果、キュリー温度が42〜90℃であ
る感温性アモルファス粉末の表面に導電性金属被膜を被
覆し、さらにその上に樹脂被膜を被覆させた温熱療法用
発熱体を作成し、高周波交番磁界を印加した時、本発明
の発熱体が加熱され、生体深部腫瘍を効果的に加温出来
ることを発見し、本発明を完成した。
[Means for Solving the Problems] As a result of various studies to solve the above problems, we coated the surface of a thermosensitive amorphous powder with a Curie temperature of 42 to 90°C with a conductive metal film, and further coated the surface with a conductive metal film. It was discovered that when a heating element for thermotherapy coated with a resin film was created and a high-frequency alternating magnetic field was applied, the heating element of the present invention was heated and could effectively heat a deep tumor in a living body. completed.

【0010】本発明において、導電性金属による被膜は
渦電流による発熱によりキュリー温度以下での発熱量改
善の為である。導電性金属被膜の厚さを0.05μm未
満にすると渦電流損失による発熱が少ないため充分に発
熱しない。これが2.0μmを越えて厚くなりすぎると
渦電流損失による発熱が支配的となって、一定温度(治
療温度)に留まらず過熱となる。特に好ましい厚さは、
0.1〜1.0μmである。導電性金属としては電気伝
導性の良好な金属が好ましく、特に、金・白金などの貴
金属が望ましい。
In the present invention, the purpose of the conductive metal coating is to improve the amount of heat generated at temperatures below the Curie temperature due to heat generated by eddy currents. When the thickness of the conductive metal film is less than 0.05 μm, heat generation due to eddy current loss is small, so that sufficient heat is not generated. If this becomes too thick, exceeding 2.0 μm, heat generation due to eddy current loss becomes dominant, and the temperature does not remain constant (therapeutic temperature), resulting in overheating. A particularly preferable thickness is
It is 0.1 to 1.0 μm. As the conductive metal, metals with good electrical conductivity are preferred, and noble metals such as gold and platinum are particularly preferred.

【0011】また、樹脂被膜は金属イオンの流出を防ぐ
為であり、厚さを、0.1μm未満にすると金属イオン
流出の可能性があり、10μmを越えて厚くなりすぎる
と充分な発熱が得られなくなる。好ましい厚さは、2〜
5μmである。樹脂被膜に使用される樹脂は、例えばシ
リコン系,アクリル系,ポリエチレン系などの如く生体
無害のものであり、特にシリコン系の樹脂が好ましい。
[0011] Furthermore, the resin coating is used to prevent metal ions from flowing out, and if the thickness is less than 0.1 μm, metal ions may leak out, and if it is too thick (more than 10 μm), sufficient heat generation cannot be achieved. I won't be able to do it. The preferred thickness is 2~
It is 5 μm. The resin used for the resin coating is harmless to living organisms, such as silicone-based, acrylic-based, polyethylene-based, etc., and silicone-based resin is particularly preferred.

【0012】感温性アモルファス粉末のキュリー温度は
、42〜90℃である必要がある。キュリー温度が42
℃未満では、ハイパーサーミアとして有効な温度域まで
加温できず、90℃を越えると治療温度域をオーバーし
て過熱となるためである。好ましいキュリー温度範囲は
、45〜55℃である。
[0012] The Curie temperature of the thermosensitive amorphous powder must be 42 to 90°C. Curie temperature is 42
This is because if the temperature is less than 90°C, the temperature cannot be heated to an effective temperature range for hyperthermia, and if it exceeds 90°C, the therapeutic temperature range will be exceeded and overheating will occur. A preferred Curie temperature range is 45-55°C.

【0013】[0013]

【実施例】導電性金属被膜として厚さ0.2μmの金被
膜であり、樹脂被膜が厚さ3μmのシリコン樹脂被膜で
あり、粉末粒径が74〜149μmである感温性アモル
ファス粉末を、寒天ファントム中に留置し200KHz
・3400A/mの高周波交番磁界を印加した。寒天フ
ァントムは生体の体液を模倣した生理食塩水を用いて製
作した。この時の昇温特性を図1に示す。この方法では
1分以内に所定の温度まで昇温し、一定温度で維持され
ているのが分かる。
[Example] Temperature-sensitive amorphous powder having a gold coating with a thickness of 0.2 μm as the conductive metal coating, a silicone resin coating with a thickness of 3 μm as the resin coating, and a powder particle size of 74 to 149 μm was mixed with agar. 200KHz placed in the phantom
- A high frequency alternating magnetic field of 3400 A/m was applied. The agar phantom was made using physiological saline, which mimics the body fluids of living organisms. The temperature increase characteristics at this time are shown in FIG. It can be seen that this method raises the temperature to a predetermined temperature within one minute and maintains it at a constant temperature.

【0014】図2に、表面被覆をしていない粉末粒径が
74〜149μmである感温性アモルファス粉末を寒天
ファントム中に留置し、前記条件で励磁したときの結果
を示す。図1との比較より、本発明の発熱体は導電性金
属被覆によって一定温度までの昇温時間が短縮されてい
るのが分かる。
FIG. 2 shows the results when a temperature-sensitive amorphous powder with a particle size of 74 to 149 μm without surface coating was placed in an agar phantom and excited under the above conditions. A comparison with FIG. 1 shows that the heating element of the present invention has a shorter heating time to a certain temperature due to the conductive metal coating.

【0015】表1に生理食塩水中において37℃に保ち
、8時間攪拌し、16時間静置のサイクルを毎日繰り返
し3週間経過したときの腐食減量と流出金属イオンの観
察結果を示す。
[0015] Table 1 shows the observation results of corrosion weight loss and metal ions released after 3 weeks of maintaining the sample in physiological saline at 37°C, stirring for 8 hours, and allowing it to stand for 16 hours, repeated every day.

【0016】[0016]

【表1】[Table 1]

【0017】表1に示したように、Fe−Cr アモル
ファス合金及び金被覆とポリマー被覆を行ったFe−C
r アモルファス粉末において腐食減量がゼロであった
。流出金属イオンの観察でも検出されなかった。生体内
での腐食はイオン化傾向と一致せず複雑な反応で進行す
ることが推定される。即ち、金属を生体内においた場合
、それによって受ける細胞の傷害は、体液と金属の間の
化学反応の強さと形式によって異なった形相を示す。一
方水素イオンよりイオン化傾向の小さい貴金属を生体内
材料として使用すると、その金属がイオン化して生体内
に流出することが抑制される。このため白金などの貴金
属が、一般に生体内材料として用いられるが、本発明に
よる樹脂を被膜したアモルファス合金は、金属のイオン
化による生体内への流出が、樹脂被膜によって妨げられ
る。従って貴金属を使用する場合と同じように、使用し
た金属がイオン化して生体内に流出することがないので
、貴金属以外の金属でも使用可能となる。
As shown in Table 1, Fe--Cr amorphous alloy and gold-coated and polymer-coated Fe--C
r Corrosion loss was zero in the amorphous powder. No metal ions were detected even by observation of effluent metal ions. It is presumed that corrosion in living organisms progresses through complex reactions that do not match the ionization tendency. That is, when a metal is placed in a living body, the resulting damage to cells varies depending on the strength and type of chemical reaction between the body fluid and the metal. On the other hand, when a noble metal, which has a smaller ionization tendency than hydrogen ions, is used as an in-vivo material, it is suppressed that the metal is ionized and flows out into the in-vivo. For this reason, noble metals such as platinum are generally used as in-vivo materials, but in the resin-coated amorphous alloy of the present invention, the resin coating prevents the metal from ionizing and flowing out into the living body. Therefore, as in the case of using noble metals, the metals used will not be ionized and leaked into the living body, so metals other than noble metals can also be used.

【0018】[0018]

【発明の効果】本発明による過熱療法用発熱体を使用す
ることにより、磁気誘導加熱方式における深部腫瘍の加
熱を効果的に行うことが出来る。
Effects of the Invention By using the heating element for hyperthermia therapy according to the present invention, it is possible to effectively heat deep tumors using the magnetic induction heating method.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本願発明による発熱体の昇温特性の1例である
FIG. 1 is an example of temperature increase characteristics of a heating element according to the present invention.

【図2】表面を被膜していない感温性アモルファス粉末
の昇温特性図である。
FIG. 2 is a temperature rise characteristic diagram of a temperature-sensitive amorphous powder whose surface is not coated.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  42℃乃至90℃のキュリー温度を有
する非晶質合金の表面に、導電性金属膜を被覆し、さら
にその上に生体に無害である樹脂膜を被覆させたことを
特徴とする温熱療法用発熱体。
Claim 1: A conductive metal film is coated on the surface of an amorphous alloy having a Curie temperature of 42°C to 90°C, and a resin film that is harmless to living bodies is further coated thereon. Heating element for thermotherapy.
【請求項2】  導電性金属膜の厚さが0.05〜1.
0μmであり、樹脂膜の厚さが0.1〜1.0μmであ
る請求項1の温熱療法用発熱体。
2. The thickness of the conductive metal film is 0.05 to 1.
The heating element for thermotherapy according to claim 1, wherein the resin film has a thickness of 0.1 to 1.0 μm.
JP14659591A 1991-05-23 1991-05-23 Heating element for thermotherapy Pending JPH04347174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14659591A JPH04347174A (en) 1991-05-23 1991-05-23 Heating element for thermotherapy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14659591A JPH04347174A (en) 1991-05-23 1991-05-23 Heating element for thermotherapy

Publications (1)

Publication Number Publication Date
JPH04347174A true JPH04347174A (en) 1992-12-02

Family

ID=15411274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14659591A Pending JPH04347174A (en) 1991-05-23 1991-05-23 Heating element for thermotherapy

Country Status (1)

Country Link
JP (1) JPH04347174A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361690B2 (en) 2009-06-11 2013-01-29 Ricoh Company, Limited Toner for developing electrostatic latent image, developer including the toner, and image forming method and image forming apparatus using the developer
US9034550B2 (en) 2010-11-22 2015-05-19 Ricoh Company, Ltd. Toner, developer, image forming apparatus, and image forming method
US9857709B2 (en) 2010-10-04 2018-01-02 Ricoh Company, Ltd. Toner and developer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361690B2 (en) 2009-06-11 2013-01-29 Ricoh Company, Limited Toner for developing electrostatic latent image, developer including the toner, and image forming method and image forming apparatus using the developer
US9857709B2 (en) 2010-10-04 2018-01-02 Ricoh Company, Ltd. Toner and developer
US9034550B2 (en) 2010-11-22 2015-05-19 Ricoh Company, Ltd. Toner, developer, image forming apparatus, and image forming method

Similar Documents

Publication Publication Date Title
Brezovich et al. Local hyperthermia with interstitial techniques
Habash et al. Thermal therapy, part 2: hyperthermia techniques
US4679561A (en) Implantable apparatus for localized heating of tissue
Short et al. Physical hyperthermia and cancer therapy
Connor et al. Prospects for hyperthermia in human cancer therapy: Part II: Implications of biological and physical data for applications of hyperthermia to man
Christensen et al. Hyperthermia production for cancer therapy: a rewien of fundamentals and methods
US4016886A (en) Method for localizing heating in tumor tissue
JP4988121B2 (en) Method and apparatus for treating breast lesions using microwaves
TWI653966B (en) Tumor ablation system
Babincova et al. In vivo heating of magnetic nanoparticles in alternating magnetic field
US3653385A (en) Production of focal brain lesions by inductive heating
Astrahan et al. A 500 KHz localized current field hyperthermia system for use with ophthalmic plaque radiotherapy
JPH04347174A (en) Heating element for thermotherapy
Antich et al. Selective heating of cutaneous human tumors at 27.12 MHz
Kurgan et al. Estimation of temperature distribution inside tissues in external RF hyperthermia
Tonthat et al. Position adjustment method and distance estimation method of magnetic field supply and detection unit for magnetic hyperthermia
RU170891U1 (en) HYPERTHERMIC INDUCTION DEVICE
JPH01244767A (en) Cancer remedying device
Jojo et al. Consideration of handy excitation apparatus for the inductive hyperthermia
Lagendijk Microwave Applicator for Hyperthermic Treatment of Retinoblastoma 1, 2
JP2599619B2 (en) Hyperthermia implant material
JPH04348765A (en) Magnetic induction coil for thermotherapy
JPH0261036A (en) Temperature sensitive amorphous alloy
Babbs et al. Equipment for local hyperthermia therapy of cancer
JPH04285572A (en) Heat emitting element for warming therapy